#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <avr/pgmspace.h>
#include <stdarg.h>
#include <string.h>
#include "eeprom.h"
#include "menu.h"
#include "timer0.h"
#include "uart0.h"
#include "rc.h"
#include "externalControl.h"
#include "output.h"
#include "attitude.h"
#include "commands.h"
#ifdef USE_DIRECT_GPS
#include "mk3mag.h"
#endif
#define FC_ADDRESS 1
#define NC_ADDRESS 2
#define MK3MAG_ADDRESS 3
#define FALSE 0
#define TRUE 1
uint8_t requestedDebugLabel
= 255;
uint8_t request_verInfo
= FALSE
;
uint8_t request_externalControl
= FALSE
;
uint8_t request_display
= FALSE
;
uint8_t request_display1
= FALSE
;
uint8_t request_debugData
= FALSE
;
uint8_t request_data3D
= FALSE
;
uint8_t request_PPMChannels
= FALSE
;
uint8_t request_motorTest
= FALSE
;
uint8_t request_variables
= FALSE
;
uint8_t request_OSD
= FALSE
;
/*
#define request_verInfo (1<<0)
#define request_externalControl (1<<1)
#define request_display (1<<3)
#define request_display1 (1<<4)
#define request_debugData (1<<5)
#define request_data3D (1<<6)
#define request_PPMChannels (1<<7)
#define request_motorTest (1<<8)
#define request_variables (1<<9)
#define request_OSD (1<<10)
*/
//uint16_t request = 0;
uint8_t displayLine
= 0;
volatile uint8_t txd_buffer
[TXD_BUFFER_LEN
];
volatile uint8_t rxd_buffer_locked
= FALSE
;
volatile uint8_t rxd_buffer
[RXD_BUFFER_LEN
];
volatile uint8_t txd_complete
= TRUE
;
volatile uint8_t receivedBytes
= 0;
volatile uint8_t *pRxData
= 0;
volatile uint8_t rxDataLen
= 0;
uint8_t motorTestActive
= 0;
uint8_t motorTest
[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
uint8_t confirmFrame
;
typedef struct {
int16_t heading
;
}__attribute__
((packed
)) Heading_t
;
Data3D_t data3D
;
uint16_t debugData_timer
;
uint16_t data3D_timer
;
uint16_t OSD_timer
;
uint16_t debugData_interval
= 0; // in 1ms
uint16_t data3D_interval
= 0; // in 1ms
uint16_t OSD_interval
= 0;
#ifdef USE_DIRECT_GPS
int16_t toMk3MagTimer
;
#endif
// keep lables in flash to save 512 bytes of sram space
const prog_uint8_t ANALOG_LABEL
[32][16] = {
//1234567890123456
"AnglePitch ", //0
"AngleRoll ",
"AngleYaw ",
"GyroPitch ",
"GyroRoll ",
"GyroYaw ", //5
"PitchTerm ",
"RollTerm ",
"ThrottleTerm ",
"YawTerm ",
"heightP ", //10
"heightI ",
"heightD ",
"gyroActivity ",
"ca ",
"GActivityDivider", //15
"NaviMode ",
"NaviStatus ",
"NaviStickP ",
"NaviStickR ",
"control act wghd", //20
"acc vector wghd ",
"Height[dm] ",
"dHeight ",
"acc vector ",
"EFT ", //25
"naviPitch ",
"naviRoll ",
"tolerance ",
"Gyro Act Cont. ",
"GPS altitude ", //30
"GPS vert accura "
};
/****************************************************************/
/* Initialization of the USART0 */
/****************************************************************/
void usart0_init
(void) {
uint8_t sreg
= SREG
;
uint16_t ubrr
= (uint16_t) ((uint32_t) SYSCLK
/ (8 * USART0_BAUD
) - 1);
// disable all interrupts before configuration
cli
();
// disable RX-Interrupt
UCSR0B
&= ~
(1 << RXCIE0
);
// disable TX-Interrupt
UCSR0B
&= ~
(1 << TXCIE0
);
// set direction of RXD0 and TXD0 pins
// set RXD0 (PD0) as an input pin
PORTD
|= (1 << PORTD0
);
DDRD
&= ~
(1 << DDD0
);
// set TXD0 (PD1) as an output pin
PORTD
|= (1 << PORTD1
);
DDRD
|= (1 << DDD1
);
// USART0 Baud Rate Register
// set clock divider
UBRR0H
= (uint8_t) (ubrr
>> 8);
UBRR0L
= (uint8_t) ubrr
;
// USART0 Control and Status Register A, B, C
// enable double speed operation in
UCSR0A
|= (1 << U2X0
);
// enable receiver and transmitter in
UCSR0B
= (1 << TXEN0
) | (1 << RXEN0
);
// set asynchronous mode
UCSR0C
&= ~
(1 << UMSEL01
);
UCSR0C
&= ~
(1 << UMSEL00
);
// no parity
UCSR0C
&= ~
(1 << UPM01
);
UCSR0C
&= ~
(1 << UPM00
);
// 1 stop bit
UCSR0C
&= ~
(1 << USBS0
);
// 8-bit
UCSR0B
&= ~
(1 << UCSZ02
);
UCSR0C
|= (1 << UCSZ01
);
UCSR0C
|= (1 << UCSZ00
);
// flush receive buffer
while (UCSR0A
& (1 << RXC0
))
UDR0
;
// enable interrupts at the end
// enable RX-Interrupt
UCSR0B
|= (1 << RXCIE0
);
// enable TX-Interrupt
UCSR0B
|= (1 << TXCIE0
);
// initialize the debug timer
debugData_timer
= setDelay
(debugData_interval
);
// unlock rxd_buffer
rxd_buffer_locked
= FALSE
;
pRxData
= 0;
rxDataLen
= 0;
// no bytes to send
txd_complete
= TRUE
;
#ifdef USE_DIRECT_GPS
toMk3MagTimer
= setDelay
(220);
#endif
versionInfo.
SWMajor = VERSION_MAJOR
;
versionInfo.
SWMinor = VERSION_MINOR
;
versionInfo.
SWPatch = VERSION_PATCH
;
versionInfo.
protoMajor = VERSION_SERIAL_MAJOR
;
versionInfo.
protoMinor = VERSION_SERIAL_MINOR
;
// restore global interrupt flags
SREG
= sreg
;
}
/****************************************************************/
/* USART0 transmitter ISR */
/****************************************************************/
ISR
(USART0_TX_vect
) {
static uint16_t ptr_txd_buffer
= 0;
uint8_t tmp_tx
;
if (!txd_complete
) { // transmission not completed
ptr_txd_buffer
++; // die [0] wurde schon gesendet
tmp_tx
= txd_buffer
[ptr_txd_buffer
];
// if terminating character or end of txd buffer was reached
if ((tmp_tx
== '\r') || (ptr_txd_buffer
== TXD_BUFFER_LEN
)) {
ptr_txd_buffer
= 0; // reset txd pointer
txd_complete
= 1; // stop transmission
}
UDR0
= tmp_tx
; // send current byte will trigger this ISR again
}
// transmission completed
else
ptr_txd_buffer
= 0;
}
/****************************************************************/
/* USART0 receiver ISR */
/****************************************************************/
ISR
(USART0_RX_vect
) {
static uint16_t checksum
;
static uint8_t ptr_rxd_buffer
= 0;
uint8_t checksum1
, checksum2
;
uint8_t c
;
c
= UDR0
; // catch the received byte
if (rxd_buffer_locked
)
return; // if rxd buffer is locked immediately return
// the rxd buffer is unlocked
if ((ptr_rxd_buffer
== 0) && (c
== '#')) { // if rxd buffer is empty and syncronisation character is received
rxd_buffer
[ptr_rxd_buffer
++] = c
; // copy 1st byte to buffer
checksum
= c
; // init checksum
}
else if (ptr_rxd_buffer
< RXD_BUFFER_LEN
) { // collect incomming bytes
if (c
!= '\r') { // no termination character
rxd_buffer
[ptr_rxd_buffer
++] = c
; // copy byte to rxd buffer
checksum
+= c
; // update checksum
} else { // termination character was received
// the last 2 bytes are no subject for checksum calculation
// they are the checksum itself
checksum
-= rxd_buffer
[ptr_rxd_buffer
- 2];
checksum
-= rxd_buffer
[ptr_rxd_buffer
- 1];
// calculate checksum from transmitted data
checksum
%= 4096;
checksum1
= '=' + checksum
/ 64;
checksum2
= '=' + checksum
% 64;
// compare checksum to transmitted checksum bytes
if ((checksum1
== rxd_buffer
[ptr_rxd_buffer
- 2]) && (checksum2
== rxd_buffer
[ptr_rxd_buffer
- 1])) {
// checksum valid
rxd_buffer
[ptr_rxd_buffer
] = '\r'; // set termination character
receivedBytes
= ptr_rxd_buffer
+ 1;// store number of received bytes
rxd_buffer_locked
= TRUE
; // lock the rxd buffer
// if 2nd byte is an 'R' enable watchdog that will result in an reset
if (rxd_buffer
[2] == 'R') {
wdt_enable
(WDTO_250MS
);
} // Reset-Commando
} else { // checksum invalid
rxd_buffer_locked
= FALSE
; // unlock rxd buffer
}
ptr_rxd_buffer
= 0; // reset rxd buffer pointer
}
} else { // rxd buffer overrun
ptr_rxd_buffer
= 0; // reset rxd buffer
rxd_buffer_locked
= FALSE
; // unlock rxd buffer
}
}
// --------------------------------------------------------------------------
void addChecksum
(uint16_t datalen
) {
uint16_t tmpchecksum
= 0, i
;
for (i
= 0; i
< datalen
; i
++) {
tmpchecksum
+= txd_buffer
[i
];
}
tmpchecksum
%= 4096;
txd_buffer
[i
++] = '=' + (tmpchecksum
>> 6);
txd_buffer
[i
++] = '=' + (tmpchecksum
& 0x3F);
txd_buffer
[i
++] = '\r';
txd_complete
= FALSE
;
UDR0
= txd_buffer
[0]; // initiates the transmittion (continued in the TXD ISR)
}
// --------------------------------------------------------------------------
// application example:
// sendOutData('A', FC_ADDRESS, 2, (uint8_t *)&request_DebugLabel, sizeof(request_DebugLabel), label, 16);
/*
void sendOutData(uint8_t cmd, uint8_t addr, uint8_t numofbuffers, ...) { // uint8_t *pdata, uint8_t len, ...
va_list ap;
uint16_t txd_bufferIndex = 0;
uint8_t *currentBuffer;
uint8_t currentBufferIndex;
uint16_t lengthOfCurrentBuffer;
uint8_t shift = 0;
txd_buffer[txd_bufferIndex++] = '#'; // Start character
txd_buffer[txd_bufferIndex++] = 'a' + addr; // Address (a=0; b=1,...)
txd_buffer[txd_bufferIndex++] = cmd; // Command
va_start(ap, numofbuffers);
while(numofbuffers) {
currentBuffer = va_arg(ap, uint8_t*);
lengthOfCurrentBuffer = va_arg(ap, int);
currentBufferIndex = 0;
// Encode data: 3 bytes of data are encoded into 4 bytes,
// where the 2 most significant bits are both 0.
while(currentBufferIndex != lengthOfCurrentBuffer) {
if (!shift) txd_buffer[txd_bufferIndex] = 0;
txd_buffer[txd_bufferIndex] |= currentBuffer[currentBufferIndex] >> (shift + 2);
txd_buffer[++txd_bufferIndex] = (currentBuffer[currentBufferIndex] << (4 - shift)) & 0b00111111;
shift += 2;
if (shift == 6) { shift=0; txd_bufferIndex++; }
currentBufferIndex++;
}
}
// If the number of data bytes was not divisible by 3, stuff
// with 0 pseudodata until length is again divisible by 3.
if (shift == 2) {
// We need to stuff with zero bytes at the end.
txd_buffer[txd_bufferIndex] &= 0b00110000;
txd_buffer[++txd_bufferIndex] = 0;
shift = 4;
}
if (shift == 4) {
// We need to stuff with zero bytes at the end.
txd_buffer[txd_bufferIndex++] &= 0b00111100;
txd_buffer[txd_bufferIndex] = 0;
}
va_end(ap);
Addchecksum(pt); // add checksum after data block and initates the transmission
}
*/
void sendOutData
(uint8_t cmd
, uint8_t addr
, uint8_t numofbuffers
, ...
) { // uint8_t *pdata, uint8_t len, ...
va_list ap
;
uint16_t pt
= 0;
uint8_t a
, b
, c
;
uint8_t ptr
= 0;
uint8_t *pdata
= 0;
int len
= 0;
txd_buffer
[pt
++] = '#'; // Start character
txd_buffer
[pt
++] = 'a' + addr
; // Address (a=0; b=1,...)
txd_buffer
[pt
++] = cmd
; // Command
va_start(ap
, numofbuffers
);
if (numofbuffers
) {
pdata
= va_arg(ap
, uint8_t*);
len
= va_arg(ap
, int);
ptr
= 0;
numofbuffers
--;
}
while (len
) {
if (len
) {
a
= pdata
[ptr
++];
len
--;
if ((!len
) && numofbuffers
) {
pdata
= va_arg(ap
, uint8_t*);
len
= va_arg(ap
, int);
ptr
= 0;
numofbuffers
--;
}
} else
a
= 0;
if (len
) {
b
= pdata
[ptr
++];
len
--;
if ((!len
) && numofbuffers
) {
pdata
= va_arg(ap
, uint8_t*);
len
= va_arg(ap
, int);
ptr
= 0;
numofbuffers
--;
}
} else
b
= 0;
if (len
) {
c
= pdata
[ptr
++];
len
--;
if ((!len
) && numofbuffers
) {
pdata
= va_arg(ap
, uint8_t*);
len
= va_arg(ap
, int);
ptr
= 0;
numofbuffers
--;
}
} else
c
= 0;
txd_buffer
[pt
++] = '=' + (a
>> 2);
txd_buffer
[pt
++] = '=' + (((a
& 0x03) << 4) | ((b
& 0xf0) >> 4));
txd_buffer
[pt
++] = '=' + (((b
& 0x0f) << 2) | ((c
& 0xc0) >> 6));
txd_buffer
[pt
++] = '=' + (c
& 0x3f);
}
va_end(ap
);
addChecksum
(pt
); // add checksum after data block and initates the transmission
}
// --------------------------------------------------------------------------
void decode64
(void) {
uint8_t a
, b
, c
, d
;
uint8_t x
, y
, z
;
uint8_t ptrIn
= 3;
uint8_t ptrOut
= 3;
uint8_t len
= receivedBytes
- 6;
while (len
) {
a
= rxd_buffer
[ptrIn
++] - '=';
b
= rxd_buffer
[ptrIn
++] - '=';
c
= rxd_buffer
[ptrIn
++] - '=';
d
= rxd_buffer
[ptrIn
++] - '=';
//if(ptrIn > ReceivedBytes - 3) break;
x
= (a
<< 2) | (b
>> 4);
y
= ((b
& 0x0f) << 4) | (c
>> 2);
z
= ((c
& 0x03) << 6) | d
;
if (len
--)
rxd_buffer
[ptrOut
++] = x
;
else
break;
if (len
--)
rxd_buffer
[ptrOut
++] = y
;
else
break;
if (len
--)
rxd_buffer
[ptrOut
++] = z
;
else
break;
}
pRxData
= &rxd_buffer
[3];
rxDataLen
= ptrOut
- 3;
}
// --------------------------------------------------------------------------
void usart0_processRxData
(void) {
// We control the motorTestActive var from here: Count it down.
if (motorTestActive
)
motorTestActive
--;
// if data in the rxd buffer are not locked immediately return
if (!rxd_buffer_locked
)
return;
uint8_t tempchar
[3];
decode64
(); // decode data block in rxd_buffer
switch (rxd_buffer
[1] - 'a') {
case FC_ADDRESS
:
switch (rxd_buffer
[2]) {
#ifdef USE_DIRECT_GPS
case 'K':// compass value
// What is the point of this - the compass will overwrite this soon?
magneticHeading
= ((Heading_t
*)pRxData
)->heading
;
// compassOffCourse = ((540 + compassHeading - compassCourse) % 360) - 180;
break;
#endif
case 't': // motor test
if (rxDataLen
> 20) {
memcpy(&motorTest
[0], (uint8_t*) pRxData
, sizeof(motorTest
));
} else {
memcpy(&motorTest
[0], (uint8_t*) pRxData
, 4);
}
motorTestActive
= 255;
externalControlActive
= 255;
break;
case 'n':// Read motor mixer
tempchar
[0] = EEMIXER_REVISION
;
tempchar
[1] = sizeof(MotorMixer_t
);
while (!txd_complete
)
; // wait for previous frame to be sent
sendOutData
('N', FC_ADDRESS
, 2, &tempchar
, 2, (uint8_t *)&motorMixer
, sizeof(motorMixer
));
break;
case 'm':// "Set Mixer Table
if (pRxData
[0] == EEMIXER_REVISION
&& (pRxData
[1] == sizeof(MotorMixer_t
))) {
memcpy(&motorMixer
, (uint8_t*)pRxData
[2], sizeof(motorMixer
));
motorMixer_writeToEEProm
();
while (!txd_complete
)
; // wait for previous frame to be sent
tempchar
[0] = 1;
} else {
tempchar
[0] = 0;
}
sendOutData
('M', FC_ADDRESS
, 1, &tempchar
, 1);
break;
case 'p': // get PPM channels
request_PPMChannels
= TRUE
;
break;
case 'i':// Read IMU configuration
tempchar
[0] = IMUCONFIG_REVISION
;
tempchar
[1] = sizeof(IMUConfig
);
while (!txd_complete
)
; // wait for previous frame to be sent
sendOutData
('I', FC_ADDRESS
, 2, &tempchar
, 2, (uint8_t *) &IMUConfig
, sizeof(IMUConfig
));
break;
case 'j':// Save IMU configuration
if (!(MKFlags
& MKFLAG_MOTOR_RUN
)) // save settings only if motors are off
{
if ((pRxData
[0] == IMUCONFIG_REVISION
) && (pRxData
[1] == sizeof(IMUConfig
))) {
memcpy(&IMUConfig
, (uint8_t*) &pRxData
[2], sizeof(IMUConfig
));
IMUConfig_writeToEEprom
();
tempchar
[0] = 1; //indicate ok data
} else {
tempchar
[0] = 0; //indicate bad data
}
while (!txd_complete
)
; // wait for previous frame to be sent
sendOutData
('J', FC_ADDRESS
, 1, &tempchar
, 1);
}
break;
case 'q':// request settings
if (pRxData
[0] == 0xFF) {
pRxData
[0] = getParamByte
(PID_ACTIVE_SET
);
}
// limit settings range
if (pRxData
[0] < 1)
pRxData
[0] = 1; // limit to 1
else if (pRxData
[0] > 5)
pRxData
[0] = 5; // limit to 5
// load requested parameter set
paramSet_readFromEEProm
(pRxData
[0]);
tempchar
[0] = pRxData
[0];
tempchar
[1] = EEPARAM_REVISION
;
tempchar
[2] = sizeof(staticParams
);
while (!txd_complete
)
; // wait for previous frame to be sent
sendOutData
('Q', FC_ADDRESS
, 2, &tempchar
, 3, (uint8_t *) &staticParams
, sizeof(staticParams
));
break;
case 's': // save settings
if (!(MKFlags
& MKFLAG_MOTOR_RUN
)) // save settings only if motors are off
{
if ((1 <= pRxData
[0]) && (pRxData
[0] <= 5) && (pRxData
[1] == EEPARAM_REVISION
) && (pRxData
[2] == sizeof(staticParams
))) // check for setting to be in range and version of settings
{
memcpy(&staticParams
, (uint8_t*) &pRxData
[3], sizeof(staticParams
));
paramSet_writeToEEProm
(pRxData
[0]);
setActiveParamSet
(pRxData
[0]);
configuration_paramSetDidChange
();
tempchar
[0] = getActiveParamSet
();
beepNumber
(tempchar
[0]);
} else {
tempchar
[0] = 0; //indicate bad data
}
while (!txd_complete
)
; // wait for previous frame to be sent
sendOutData
('S', FC_ADDRESS
, 1, &tempchar
, 1);
}
break;
default:
//unsupported command received
break;
} // case FC_ADDRESS:
default: // any Slave Address
switch (rxd_buffer
[2]) {
case 'a':// request for labels of the analog debug outputs
requestedDebugLabel
= pRxData
[0];
if (requestedDebugLabel
> 31)
requestedDebugLabel
= 31;
break;
case 'b': // submit extern control
memcpy(&externalControl
, (uint8_t*) pRxData
, sizeof(externalControl
));
confirmFrame
= externalControl.
frame;
externalControlActive
= 255;
break;
case 'h':// request for display columns
remoteKeys
|= pRxData
[0];
if (remoteKeys
)
displayLine
= 0;
request_display
= TRUE
;
break;
case 'l':// request for display columns
menuItem
= pRxData
[0];
request_display1
= TRUE
;
break;
case 'o':// request for OSD data (FC style)
OSD_interval
= (uint16_t) pRxData
[0] * 10;
if (OSD_interval
> 0)
request_OSD
= TRUE
;
break;
case 'v': // request for version and board release
request_verInfo
= TRUE
;
break;
case 'x':
request_variables
= TRUE
;
break;
case 'g':// get external control data
request_externalControl
= TRUE
;
break;
case 'd': // request for the debug data
debugData_interval
= (uint16_t) pRxData
[0] * 10;
if (debugData_interval
> 0)
request_debugData
= TRUE
;
break;
case 'c': // request for the 3D data
data3D_interval
= (uint16_t) pRxData
[0] * 10;
if (data3D_interval
> 0)
request_data3D
= TRUE
;
break;
default:
//unsupported command received
break;
}
break; // default:
}
// unlock the rxd buffer after processing
pRxData
= 0;
rxDataLen
= 0;
rxd_buffer_locked
= FALSE
;
}
/************************************************************************/
/* Routine f�r die Serielle Ausgabe */
/************************************************************************/
int16_t uart_putchar
(int8_t c
) {
if (c
== '\n')
uart_putchar
('\r');
// wait until previous character was send
loop_until_bit_is_set
(UCSR0A
, UDRE0
);
// send character
UDR0
= c
;
return (0);
}
//---------------------------------------------------------------------------------------------
void usart0_transmitTxData
(void) {
if (!txd_complete
)
return;
if (request_verInfo
&& txd_complete
) {
sendOutData
('V', FC_ADDRESS
, 1, (uint8_t *) &versionInfo
, sizeof(versionInfo
));
request_verInfo
= FALSE
;
}
if (request_display
&& txd_complete
) {
LCD_printMenu
();
sendOutData
('H', FC_ADDRESS
, 2, &displayLine
, sizeof(displayLine
),
&displayBuff
[displayLine
* 20], 20);
displayLine
++;
if (displayLine
>= 4)
displayLine
= 0;
request_display
= FALSE
;
}
if (request_display1
&& txd_complete
) {
LCD_printMenu
();
sendOutData
('L', FC_ADDRESS
, 3, &menuItem
, sizeof(menuItem
), &maxMenuItem
,
sizeof(maxMenuItem
), displayBuff
, sizeof(displayBuff
));
request_display1
= FALSE
;
}
if (requestedDebugLabel
!= 0xFF && txd_complete
) { // Texte f�r die Analogdaten
uint8_t label
[16]; // local sram buffer
memcpy_P
(label
, ANALOG_LABEL
[requestedDebugLabel
], 16); // read lable from flash to sram buffer
sendOutData
('A', FC_ADDRESS
, 2, (uint8_t *) &requestedDebugLabel
,
sizeof(requestedDebugLabel
), label
, 16);
requestedDebugLabel
= 0xFF;
}
if (confirmFrame
&& txd_complete
) { // Datensatz ohne checksum best�tigen
sendOutData
('B', FC_ADDRESS
, 1, (uint8_t*) &confirmFrame
, sizeof(confirmFrame
));
confirmFrame
= 0;
}
if (((debugData_interval
&& checkDelay
(debugData_timer
)) || request_debugData
)
&& txd_complete
) {
sendOutData
('D', FC_ADDRESS
, 1, (uint8_t *) &debugOut
, sizeof(debugOut
));
debugData_timer
= setDelay
(debugData_interval
);
request_debugData
= FALSE
;
}
if (((data3D_interval
&& checkDelay
(data3D_timer
)) || request_data3D
) && txd_complete
) {
sendOutData
('C', FC_ADDRESS
, 1, (uint8_t *) &data3D
, sizeof(data3D
));
data3D.
anglePitch = (int16_t) (attitude
[PITCH
] / (GYRO_DEG_FACTOR_PITCHROLL
/10)); // convert to multiple of 0.1 deg
data3D.
angleRoll = (int16_t) (attitude
[ROLL
] / (GYRO_DEG_FACTOR_PITCHROLL
/10)); // convert to multiple of 0.1 deg
data3D.
heading = (int16_t) (heading
/ (GYRO_DEG_FACTOR_YAW
/10)); // convert to multiple of 0.1 deg
data3D_timer
= setDelay
(data3D_interval
);
request_data3D
= FALSE
;
}
if (request_externalControl
&& txd_complete
) {
sendOutData
('G', FC_ADDRESS
, 1, (uint8_t *) &externalControl
,
sizeof(externalControl
));
request_externalControl
= FALSE
;
}
#ifdef USE_DIRECT_GPS
if((checkDelay
(toMk3MagTimer
)) && txd_complete
) {
toMk3Mag.
attitude[0] = (int16_t)(attitude
[PITCH
] / (GYRO_DEG_FACTOR_PITCHROLL
/10)); // approx. 0.1 deg
toMk3Mag.
attitude[1] = (int16_t)(attitude
[ROLL
] / (GYRO_DEG_FACTOR_PITCHROLL
/10)); // approx. 0.1 deg
toMk3Mag.
userParam[0] = dynamicParams.
userParams[0];
toMk3Mag.
userParam[1] = dynamicParams.
userParams[1];
toMk3Mag.
calState = compassCalState
;
sendOutData
('w', MK3MAG_ADDRESS
, 1,(uint8_t *) &toMk3Mag
,sizeof(toMk3Mag
));
// the last state is 5 and should be send only once to avoid multiple flash writing
if(compassCalState
> 4) compassCalState
= 0;
toMk3MagTimer
= setDelay
(99);
}
#endif
if (request_motorTest
&& txd_complete
) {
sendOutData
('T', FC_ADDRESS
, 0);
request_motorTest
= FALSE
;
}
if (request_PPMChannels
&& txd_complete
) {
sendOutData
('P', FC_ADDRESS
, 1, (uint8_t *) &PPM_in
, sizeof(PPM_in
));
request_PPMChannels
= FALSE
;
}
if (request_variables
&& txd_complete
) {
sendOutData
('X', FC_ADDRESS
, 1, (uint8_t *) &variables
, sizeof(variables
));
request_variables
= FALSE
;
}
if (((OSD_interval
&& checkDelay
(OSD_timer
)) || request_OSD
) && txd_complete
) {
int32_t height
= analog_getHeight
();
data3D.
anglePitch = (int16_t) (attitude
[PITCH
] / (GYRO_DEG_FACTOR_PITCHROLL
/10)); // convert to multiple of 0.1 deg
data3D.
angleRoll = (int16_t) (attitude
[ROLL
] / (GYRO_DEG_FACTOR_PITCHROLL
/10)); // convert to multiple of 0.1 deg
data3D.
heading = (int16_t) (heading
/ (GYRO_DEG_FACTOR_YAW
/10)); // convert to multiple of 0.1 deg
sendOutData
('O', FC_ADDRESS
, 4, (uint8_t*)&data3D
, sizeof(data3D
), (uint8_t*)&GPSInfo
, sizeof(GPSInfo
), (uint8_t*)&height
, sizeof(height
), (uint8_t*)UBat
, sizeof(UBat
));
OSD_timer
= setDelay
(OSD_interval
);
request_OSD
= FALSE
;
}
}