Rev 2073 | Rev 2075 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <avr/pgmspace.h>
#include <stdarg.h>
#include <string.h>
#include "eeprom.h"
#include "menu.h"
#include "timer0.h"
#include "uart0.h"
#include "rc.h"
#include "externalControl.h"
#include "output.h"
#include "attitude.h"
#include "commands.h"
#ifdef USE_DIRECT_GPS
#include "mk3mag.h"
#endif
#define FC_ADDRESS 1
#define NC_ADDRESS 2
#define MK3MAG_ADDRESS 3
#define FALSE 0
#define TRUE 1
uint8_t requestedDebugLabel = 255;
uint8_t request_verInfo = FALSE;
uint8_t request_externalControl = FALSE;
uint8_t request_display = FALSE;
uint8_t request_display1 = FALSE;
uint8_t request_debugData = FALSE;
uint8_t request_data3D = FALSE;
uint8_t request_PPMChannels = FALSE;
uint8_t request_motorTest = FALSE;
uint8_t request_variables = FALSE;
uint8_t request_OSD = FALSE;
/*
#define request_verInfo (1<<0)
#define request_externalControl (1<<1)
#define request_display (1<<3)
#define request_display1 (1<<4)
#define request_debugData (1<<5)
#define request_data3D (1<<6)
#define request_PPMChannels (1<<7)
#define request_motorTest (1<<8)
#define request_variables (1<<9)
#define request_OSD (1<<10)
*/
//uint16_t request = 0;
uint8_t displayLine = 0;
volatile uint8_t txd_buffer[TXD_BUFFER_LEN];
volatile uint8_t rxd_buffer_locked = FALSE;
volatile uint8_t rxd_buffer[RXD_BUFFER_LEN];
volatile uint8_t txd_complete = TRUE;
volatile uint8_t receivedBytes = 0;
volatile uint8_t *pRxData = 0;
volatile uint8_t rxDataLen = 0;
uint8_t motorTestActive = 0;
uint8_t motorTest[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
uint8_t confirmFrame;
typedef struct {
int16_t heading;
}__attribute__((packed)) Heading_t;
Data3D_t data3D;
uint16_t debugData_timer;
uint16_t data3D_timer;
uint16_t OSD_timer;
uint16_t debugData_interval = 0; // in 1ms
uint16_t data3D_interval = 0; // in 1ms
uint16_t OSD_interval = 0;
#ifdef USE_DIRECT_GPS
int16_t toMk3MagTimer;
#endif
// keep lables in flash to save 512 bytes of sram space
const prog_uint8_t ANALOG_LABEL[32][16] = {
//1234567890123456
"AnglePitch ", //0
"AngleRoll ",
"AngleYaw ",
"GyroPitch ",
"GyroRoll ",
"GyroYaw ", //5
"PitchTerm ",
"RollTerm ",
"ThrottleTerm ",
"YawTerm ",
"heightP ", //10
"heightI ",
"heightD ",
"heightErr/10 ",
"controlActivity ",
"accVector ", //15
"NaviMode ",
"NaviStatus ",
"NaviStickP ",
"NaviStickR ",
"control act wghd", //20
"acc vector wghd ",
"Height[dm] ",
"dHeight ",
"acc vector ",
"EFT ", //25
"naviPitch ",
"naviRoll ",
"i part contrib ",
"Acc Z ",
"Height D ", //30
"RCCommand "
};
/****************************************************************/
/* Initialization of the USART0 */
/****************************************************************/
void usart0_init(void) {
uint8_t sreg = SREG;
uint16_t ubrr = (uint16_t) ((uint32_t) SYSCLK / (8 * USART0_BAUD) - 1);
// disable all interrupts before configuration
cli();
// disable RX-Interrupt
UCSR0B &= ~(1 << RXCIE0);
// disable TX-Interrupt
UCSR0B &= ~(1 << TXCIE0);
// set direction of RXD0 and TXD0 pins
// set RXD0 (PD0) as an input pin
PORTD |= (1 << PORTD0);
DDRD &= ~(1 << DDD0);
// set TXD0 (PD1) as an output pin
PORTD |= (1 << PORTD1);
DDRD |= (1 << DDD1);
// USART0 Baud Rate Register
// set clock divider
UBRR0H = (uint8_t) (ubrr >> 8);
UBRR0L = (uint8_t) ubrr;
// USART0 Control and Status Register A, B, C
// enable double speed operation in
UCSR0A |= (1 << U2X0);
// enable receiver and transmitter in
UCSR0B = (1 << TXEN0) | (1 << RXEN0);
// set asynchronous mode
UCSR0C &= ~(1 << UMSEL01);
UCSR0C &= ~(1 << UMSEL00);
// no parity
UCSR0C &= ~(1 << UPM01);
UCSR0C &= ~(1 << UPM00);
// 1 stop bit
UCSR0C &= ~(1 << USBS0);
// 8-bit
UCSR0B &= ~(1 << UCSZ02);
UCSR0C |= (1 << UCSZ01);
UCSR0C |= (1 << UCSZ00);
// flush receive buffer
while (UCSR0A & (1 << RXC0))
UDR0;
// enable interrupts at the end
// enable RX-Interrupt
UCSR0B |= (1 << RXCIE0);
// enable TX-Interrupt
UCSR0B |= (1 << TXCIE0);
// initialize the debug timer
debugData_timer = setDelay(debugData_interval);
// unlock rxd_buffer
rxd_buffer_locked = FALSE;
pRxData = 0;
rxDataLen = 0;
// no bytes to send
txd_complete = TRUE;
#ifdef USE_DIRECT_GPS
toMk3MagTimer = setDelay(220);
#endif
versionInfo.SWMajor = VERSION_MAJOR;
versionInfo.SWMinor = VERSION_MINOR;
versionInfo.SWPatch = VERSION_PATCH;
versionInfo.protoMajor = VERSION_SERIAL_MAJOR;
versionInfo.protoMinor = VERSION_SERIAL_MINOR;
// restore global interrupt flags
SREG = sreg;
}
/****************************************************************/
/* USART0 transmitter ISR */
/****************************************************************/
ISR(USART0_TX_vect) {
static uint16_t ptr_txd_buffer = 0;
uint8_t tmp_tx;
if (!txd_complete) { // transmission not completed
ptr_txd_buffer++; // die [0] wurde schon gesendet
tmp_tx = txd_buffer[ptr_txd_buffer];
// if terminating character or end of txd buffer was reached
if ((tmp_tx == '\r') || (ptr_txd_buffer == TXD_BUFFER_LEN)) {
ptr_txd_buffer = 0; // reset txd pointer
txd_complete = 1; // stop transmission
}
UDR0 = tmp_tx; // send current byte will trigger this ISR again
}
// transmission completed
else
ptr_txd_buffer = 0;
}
/****************************************************************/
/* USART0 receiver ISR */
/****************************************************************/
ISR(USART0_RX_vect) {
static uint16_t checksum;
static uint8_t ptr_rxd_buffer = 0;
uint8_t checksum1, checksum2;
uint8_t c;
c = UDR0; // catch the received byte
if (rxd_buffer_locked)
return; // if rxd buffer is locked immediately return
// the rxd buffer is unlocked
if ((ptr_rxd_buffer == 0) && (c == '#')) { // if rxd buffer is empty and syncronisation character is received
rxd_buffer[ptr_rxd_buffer++] = c; // copy 1st byte to buffer
checksum = c; // init checksum
}
else if (ptr_rxd_buffer < RXD_BUFFER_LEN) { // collect incomming bytes
if (c != '\r') { // no termination character
rxd_buffer[ptr_rxd_buffer++] = c; // copy byte to rxd buffer
checksum += c; // update checksum
} else { // termination character was received
// the last 2 bytes are no subject for checksum calculation
// they are the checksum itself
checksum -= rxd_buffer[ptr_rxd_buffer - 2];
checksum -= rxd_buffer[ptr_rxd_buffer - 1];
// calculate checksum from transmitted data
checksum %= 4096;
checksum1 = '=' + checksum / 64;
checksum2 = '=' + checksum % 64;
// compare checksum to transmitted checksum bytes
if ((checksum1 == rxd_buffer[ptr_rxd_buffer - 2]) && (checksum2
== rxd_buffer[ptr_rxd_buffer - 1])) {
// checksum valid
rxd_buffer[ptr_rxd_buffer] = '\r'; // set termination character
receivedBytes = ptr_rxd_buffer + 1;// store number of received bytes
rxd_buffer_locked = TRUE; // lock the rxd buffer
// if 2nd byte is an 'R' enable watchdog that will result in an reset
if (rxd_buffer[2] == 'R') {
wdt_enable(WDTO_250MS);
} // Reset-Commando
} else { // checksum invalid
rxd_buffer_locked = FALSE; // unlock rxd buffer
}
ptr_rxd_buffer = 0; // reset rxd buffer pointer
}
} else { // rxd buffer overrun
ptr_rxd_buffer = 0; // reset rxd buffer
rxd_buffer_locked = FALSE; // unlock rxd buffer
}
}
// --------------------------------------------------------------------------
void addChecksum(uint16_t datalen) {
uint16_t tmpchecksum = 0, i;
for (i = 0; i < datalen; i++) {
tmpchecksum += txd_buffer[i];
}
tmpchecksum %= 4096;
txd_buffer[i++] = '=' + (tmpchecksum >> 6);
txd_buffer[i++] = '=' + (tmpchecksum & 0x3F);
txd_buffer[i++] = '\r';
txd_complete = FALSE;
UDR0 = txd_buffer[0]; // initiates the transmittion (continued in the TXD ISR)
}
// --------------------------------------------------------------------------
// application example:
// sendOutData('A', FC_ADDRESS, 2, (uint8_t *)&request_DebugLabel, sizeof(request_DebugLabel), label, 16);
/*
void sendOutData(uint8_t cmd, uint8_t addr, uint8_t numofbuffers, ...) { // uint8_t *pdata, uint8_t len, ...
va_list ap;
uint16_t txd_bufferIndex = 0;
uint8_t *currentBuffer;
uint8_t currentBufferIndex;
uint16_t lengthOfCurrentBuffer;
uint8_t shift = 0;
txd_buffer[txd_bufferIndex++] = '#'; // Start character
txd_buffer[txd_bufferIndex++] = 'a' + addr; // Address (a=0; b=1,...)
txd_buffer[txd_bufferIndex++] = cmd; // Command
va_start(ap, numofbuffers);
while(numofbuffers) {
currentBuffer = va_arg(ap, uint8_t*);
lengthOfCurrentBuffer = va_arg(ap, int);
currentBufferIndex = 0;
// Encode data: 3 bytes of data are encoded into 4 bytes,
// where the 2 most significant bits are both 0.
while(currentBufferIndex != lengthOfCurrentBuffer) {
if (!shift) txd_buffer[txd_bufferIndex] = 0;
txd_buffer[txd_bufferIndex] |= currentBuffer[currentBufferIndex] >> (shift + 2);
txd_buffer[++txd_bufferIndex] = (currentBuffer[currentBufferIndex] << (4 - shift)) & 0b00111111;
shift += 2;
if (shift == 6) { shift=0; txd_bufferIndex++; }
currentBufferIndex++;
}
}
// If the number of data bytes was not divisible by 3, stuff
// with 0 pseudodata until length is again divisible by 3.
if (shift == 2) {
// We need to stuff with zero bytes at the end.
txd_buffer[txd_bufferIndex] &= 0b00110000;
txd_buffer[++txd_bufferIndex] = 0;
shift = 4;
}
if (shift == 4) {
// We need to stuff with zero bytes at the end.
txd_buffer[txd_bufferIndex++] &= 0b00111100;
txd_buffer[txd_bufferIndex] = 0;
}
va_end(ap);
Addchecksum(pt); // add checksum after data block and initates the transmission
}
*/
void sendOutData(uint8_t cmd, uint8_t addr, uint8_t numofbuffers, ...) { // uint8_t *pdata, uint8_t len, ...
va_list ap;
uint16_t pt = 0;
uint8_t a, b, c;
uint8_t ptr = 0;
uint8_t *pdata = 0;
int len = 0;
txd_buffer[pt++] = '#'; // Start character
txd_buffer[pt++] = 'a' + addr; // Address (a=0; b=1,...)
txd_buffer[pt++] = cmd; // Command
va_start(ap, numofbuffers);
if (numofbuffers) {
pdata = va_arg(ap, uint8_t*);
len = va_arg(ap, int);
ptr = 0;
numofbuffers--;
}
while (len) {
if (len) {
a = pdata[ptr++];
len--;
if ((!len) && numofbuffers) {
pdata = va_arg(ap, uint8_t*);
len = va_arg(ap, int);
ptr = 0;
numofbuffers--;
}
} else
a = 0;
if (len) {
b = pdata[ptr++];
len--;
if ((!len) && numofbuffers) {
pdata = va_arg(ap, uint8_t*);
len = va_arg(ap, int);
ptr = 0;
numofbuffers--;
}
} else
b = 0;
if (len) {
c = pdata[ptr++];
len--;
if ((!len) && numofbuffers) {
pdata = va_arg(ap, uint8_t*);
len = va_arg(ap, int);
ptr = 0;
numofbuffers--;
}
} else
c = 0;
txd_buffer[pt++] = '=' + (a >> 2);
txd_buffer[pt++] = '=' + (((a & 0x03) << 4) | ((b & 0xf0) >> 4));
txd_buffer[pt++] = '=' + (((b & 0x0f) << 2) | ((c & 0xc0) >> 6));
txd_buffer[pt++] = '=' + (c & 0x3f);
}
va_end(ap);
addChecksum(pt); // add checksum after data block and initates the transmission
}
// --------------------------------------------------------------------------
void decode64(void) {
uint8_t a, b, c, d;
uint8_t x, y, z;
uint8_t ptrIn = 3;
uint8_t ptrOut = 3;
uint8_t len = receivedBytes - 6;
while (len) {
a = rxd_buffer[ptrIn++] - '=';
b = rxd_buffer[ptrIn++] - '=';
c = rxd_buffer[ptrIn++] - '=';
d = rxd_buffer[ptrIn++] - '=';
//if(ptrIn > ReceivedBytes - 3) break;
x = (a << 2) | (b >> 4);
y = ((b & 0x0f) << 4) | (c >> 2);
z = ((c & 0x03) << 6) | d;
if (len--)
rxd_buffer[ptrOut++] = x;
else
break;
if (len--)
rxd_buffer[ptrOut++] = y;
else
break;
if (len--)
rxd_buffer[ptrOut++] = z;
else
break;
}
pRxData = &rxd_buffer[3];
rxDataLen = ptrOut - 3;
}
// --------------------------------------------------------------------------
void usart0_processRxData(void) {
// We control the motorTestActive var from here: Count it down.
if (motorTestActive)
motorTestActive--;
// if data in the rxd buffer are not locked immediately return
if (!rxd_buffer_locked)
return;
uint8_t tempchar[3];
decode64(); // decode data block in rxd_buffer
switch (rxd_buffer[1] - 'a') {
case FC_ADDRESS:
switch (rxd_buffer[2]) {
#ifdef USE_DIRECT_GPS
case 'K':// compass value
// What is the point of this - the compass will overwrite this soon?
magneticHeading = ((Heading_t *)pRxData)->heading;
// compassOffCourse = ((540 + compassHeading - compassCourse) % 360) - 180;
break;
#endif
case 't': // motor test
if (rxDataLen > 20) {
memcpy(&motorTest[0], (uint8_t*) pRxData, sizeof(motorTest));
} else {
memcpy(&motorTest[0], (uint8_t*) pRxData, 4);
}
motorTestActive = 255;
externalControlActive = 255;
break;
case 'n':// "Get Mixer Table
while (!txd_complete)
; // wait for previous frame to be sent
sendOutData('N', FC_ADDRESS, 1, (uint8_t *) &mixerMatrix, sizeof(mixerMatrix));
break;
case 'm':// "Set Mixer Table
if (pRxData[0] == EEMIXER_REVISION) {
memcpy(&mixerMatrix, (uint8_t*) pRxData, sizeof(mixerMatrix));
mixerMatrix_writeToEEProm();
while (!txd_complete)
; // wait for previous frame to be sent
tempchar[0] = 1;
} else {
tempchar[0] = 0;
}
sendOutData('M', FC_ADDRESS, 1, &tempchar, 1);
break;
case 'p': // get PPM channels
request_PPMChannels = TRUE;
break;
case 'q':// request settings
if (pRxData[0] == 0xFF) {
pRxData[0] = getParamByte(PID_ACTIVE_SET);
}
// limit settings range
if (pRxData[0] < 1)
pRxData[0] = 1; // limit to 1
else if (pRxData[0] > 5)
pRxData[0] = 5; // limit to 5
// load requested parameter set
paramSet_readFromEEProm(pRxData[0]);
tempchar[0] = pRxData[0];
tempchar[1] = EEPARAM_REVISION;
tempchar[2] = sizeof(staticParams);
while (!txd_complete)
; // wait for previous frame to be sent
sendOutData('Q', FC_ADDRESS, 2, &tempchar, 3, (uint8_t *) &staticParams, sizeof(staticParams));
break;
case 's': // save settings
if (!(MKFlags & MKFLAG_MOTOR_RUN)) // save settings only if motors are off
{
if ((1 <= pRxData[0]) && (pRxData[0] <= 5) && (pRxData[1] == EEPARAM_REVISION) && (pRxData[2] == sizeof(staticParams))) // check for setting to be in range and version of settings
{
memcpy(&staticParams, (uint8_t*) &pRxData[3], sizeof(staticParams));
paramSet_writeToEEProm(pRxData[0]);
setActiveParamSet(pRxData[0]);
configuration_paramSetDidChange();
tempchar[0] = getActiveParamSet();
beepNumber(tempchar[0]);
} else {
tempchar[0] = 0; //indicate bad data
}
while (!txd_complete)
; // wait for previous frame to be sent
sendOutData('S', FC_ADDRESS, 1, &tempchar, 1);
}
break;
default:
//unsupported command received
break;
} // case FC_ADDRESS:
default: // any Slave Address
switch (rxd_buffer[2]) {
case 'a':// request for labels of the analog debug outputs
requestedDebugLabel = pRxData[0];
if (requestedDebugLabel > 31)
requestedDebugLabel = 31;
break;
case 'b': // submit extern control
memcpy(&externalControl, (uint8_t*) pRxData, sizeof(externalControl));
confirmFrame = externalControl.frame;
externalControlActive = 255;
break;
case 'h':// request for display columns
remoteKeys |= pRxData[0];
if (remoteKeys)
displayLine = 0;
request_display = TRUE;
break;
case 'l':// request for display columns
menuItem = pRxData[0];
request_display1 = TRUE;
break;
case 'o':// request for OSD data (FC style)
OSD_interval = (uint16_t) pRxData[0] * 10;
if (OSD_interval > 0)
request_OSD = TRUE;
break;
case 'v': // request for version and board release
request_verInfo = TRUE;
break;
case 'x':
request_variables = TRUE;
break;
case 'g':// get external control data
request_externalControl = TRUE;
break;
case 'd': // request for the debug data
debugData_interval = (uint16_t) pRxData[0] * 10;
if (debugData_interval > 0)
request_debugData = TRUE;
break;
case 'c': // request for the 3D data
data3D_interval = (uint16_t) pRxData[0] * 10;
if (data3D_interval > 0)
request_data3D = TRUE;
break;
default:
//unsupported command received
break;
}
break; // default:
}
// unlock the rxd buffer after processing
pRxData = 0;
rxDataLen = 0;
rxd_buffer_locked = FALSE;
}
/************************************************************************/
/* Routine f�r die Serielle Ausgabe */
/************************************************************************/
int16_t uart_putchar(int8_t c) {
if (c == '\n')
uart_putchar('\r');
// wait until previous character was send
loop_until_bit_is_set(UCSR0A, UDRE0);
// send character
UDR0 = c;
return (0);
}
//---------------------------------------------------------------------------------------------
void usart0_transmitTxData(void) {
if (!txd_complete)
return;
if (request_verInfo && txd_complete) {
sendOutData('V', FC_ADDRESS, 1, (uint8_t *) &versionInfo, sizeof(versionInfo));
request_verInfo = FALSE;
}
if (request_display && txd_complete) {
LCD_printMenu();
sendOutData('H', FC_ADDRESS, 2, &displayLine, sizeof(displayLine),
&displayBuff[displayLine * 20], 20);
displayLine++;
if (displayLine >= 4)
displayLine = 0;
request_display = FALSE;
}
if (request_display1 && txd_complete) {
LCD_printMenu();
sendOutData('L', FC_ADDRESS, 3, &menuItem, sizeof(menuItem), &maxMenuItem,
sizeof(maxMenuItem), displayBuff, sizeof(displayBuff));
request_display1 = FALSE;
}
if (requestedDebugLabel != 0xFF && txd_complete) { // Texte f�r die Analogdaten
uint8_t label[16]; // local sram buffer
memcpy_P(label, ANALOG_LABEL[requestedDebugLabel], 16); // read lable from flash to sram buffer
sendOutData('A', FC_ADDRESS, 2, (uint8_t *) &requestedDebugLabel,
sizeof(requestedDebugLabel), label, 16);
requestedDebugLabel = 0xFF;
}
if (confirmFrame && txd_complete) { // Datensatz ohne checksum best�tigen
sendOutData('B', FC_ADDRESS, 1, (uint8_t*) &confirmFrame, sizeof(confirmFrame));
confirmFrame = 0;
}
if (((debugData_interval && checkDelay(debugData_timer)) || request_debugData)
&& txd_complete) {
sendOutData('D', FC_ADDRESS, 1, (uint8_t *) &debugOut, sizeof(debugOut));
debugData_timer = setDelay(debugData_interval);
request_debugData = FALSE;
}
if (((data3D_interval && checkDelay(data3D_timer)) || request_data3D) && txd_complete) {
sendOutData('C', FC_ADDRESS, 1, (uint8_t *) &data3D, sizeof(data3D));
data3D.anglePitch = (int16_t) (attitude[PITCH] / (GYRO_DEG_FACTOR_PITCHROLL/10)); // convert to multiple of 0.1 deg
data3D.angleRoll = (int16_t) (attitude[ROLL] / (GYRO_DEG_FACTOR_PITCHROLL/10)); // convert to multiple of 0.1 deg
data3D.heading = (int16_t) (heading / (GYRO_DEG_FACTOR_YAW/10)); // convert to multiple of 0.1 deg
data3D_timer = setDelay(data3D_interval);
request_data3D = FALSE;
}
if (request_externalControl && txd_complete) {
sendOutData('G', FC_ADDRESS, 1, (uint8_t *) &externalControl,
sizeof(externalControl));
request_externalControl = FALSE;
}
#ifdef USE_DIRECT_GPS
if((checkDelay(toMk3MagTimer)) && txd_complete) {
toMk3Mag.attitude[0] = (int16_t)(attitude[PITCH] / (GYRO_DEG_FACTOR_PITCHROLL/10)); // approx. 0.1 deg
toMk3Mag.attitude[1] = (int16_t)(attitude[ROLL] / (GYRO_DEG_FACTOR_PITCHROLL/10)); // approx. 0.1 deg
toMk3Mag.userParam[0] = dynamicParams.userParams[0];
toMk3Mag.userParam[1] = dynamicParams.userParams[1];
toMk3Mag.calState = compassCalState;
sendOutData('w', MK3MAG_ADDRESS, 1,(uint8_t *) &toMk3Mag,sizeof(toMk3Mag));
// the last state is 5 and should be send only once to avoid multiple flash writing
if(compassCalState > 4) compassCalState = 0;
toMk3MagTimer = setDelay(99);
}
#endif
if (request_motorTest && txd_complete) {
sendOutData('T', FC_ADDRESS, 0);
request_motorTest = FALSE;
}
if (request_PPMChannels && txd_complete) {
sendOutData('P', FC_ADDRESS, 1, (uint8_t *) &PPM_in, sizeof(PPM_in));
request_PPMChannels = FALSE;
}
if (request_variables && txd_complete) {
sendOutData('X', FC_ADDRESS, 1, (uint8_t *) &variables, sizeof(variables));
request_variables = FALSE;
}
if (((OSD_interval && checkDelay(OSD_timer)) || request_OSD) && txd_complete) {
int32_t height = analog_getHeight();
data3D.anglePitch = (int16_t) (attitude[PITCH] / (GYRO_DEG_FACTOR_PITCHROLL/10)); // convert to multiple of 0.1 deg
data3D.angleRoll = (int16_t) (attitude[ROLL] / (GYRO_DEG_FACTOR_PITCHROLL/10)); // convert to multiple of 0.1 deg
data3D.heading = (int16_t) (heading / (GYRO_DEG_FACTOR_YAW/10)); // convert to multiple of 0.1 deg
sendOutData('O', FC_ADDRESS, 4, (uint8_t*)&data3D, sizeof(data3D), (uint8_t*)&GPSInfo, sizeof(GPSInfo), (uint8_t*)&height, sizeof(height), (uint8_t*)UBat, sizeof(UBat));
OSD_timer = setDelay(OSD_interval);
request_OSD = FALSE;
}
}