Rev 2158 |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <util/delay.h>
#include <stdio.h>
#include "twimaster.h"
//#include "configuration.h"
//#include "controlMixer.h"
#include "analog.h"
volatile uint8_t twi_state
;
volatile uint8_t dac_channel
;
volatile uint8_t writeIndex
;
volatile uint8_t readIndex
;
volatile uint16_t I2CTimeout
= 100;
uint8_t missingMotor
;
MLBLC_t mkblcs
[MAX_I2CCHANNELS
];
uint8_t DACChannel
;
#define SCL_CLOCK 200000L
#define I2C_TIMEOUT 30000
/**************************************************
* Initialize I2C (TWI)
**************************************************/
void I2C_init
(void) {
uint8_t i
;
uint8_t sreg
= SREG
;
cli
();
// SDA is INPUT
DDRC
&= ~
(1 << DDC1
);
// SCL is output
DDRC
|= (1 << DDC0
);
// pull up SDA
PORTC
|= (1 << PORTC0
) | (1 << PORTC1
);
// TWI Status Register
// prescaler 1 (TWPS1 = 0, TWPS0 = 0)
TWSR
&= ~
((1 << TWPS1
) | (1 << TWPS0
));
// set TWI Bit Rate Register
TWBR
= ((F_CPU
/ SCL_CLOCK
) - 16) / 2;
twi_state
= TWI_STATE_MOTOR_TX
;
writeIndex
= 0;
readIndex
= 0;
for (i
= 0; i
< MAX_I2CCHANNELS
; i
++) {
mkblcs
[i
].
present = 0;
mkblcs
[i
].
maxPWM = 0;
}
SREG
= sreg
;
}
/****************************************
* Start I2C
****************************************/
void I2C_start
(uint8_t start_state
) {
twi_state
= start_state
;
// TWI Control Register
// clear TWI interrupt flag (TWINT=1)
// disable TWI Acknowledge Bit (TWEA = 0)
// enable TWI START Condition Bit (TWSTA = 1), MASTER
// disable TWI STOP Condition Bit (TWSTO = 0)
// disable TWI Write Collision Flag (TWWC = 0)
// enable i2c (TWEN = 1)
// enable TWI Interrupt (TWIE = 1)
TWCR
= (1 << TWINT
) | (1 << TWSTA
) | (1 << TWEN
) | (1 << TWIE
);
}
/****************************************
* Stop I2C
****************************************/
void I2C_stop
(uint8_t start_state
) {
twi_state
= start_state
;
// TWI Control Register
// clear TWI interrupt flag (TWINT=1)
// disable TWI Acknowledge Bit (TWEA = 0)
// diable TWI START Condition Bit (TWSTA = 1), no MASTER
// enable TWI STOP Condition Bit (TWSTO = 1)
// disable TWI Write Collision Flag (TWWC = 0)
// enable i2c (TWEN = 1)
// disable TWI Interrupt (TWIE = 0)
TWCR
= (1 << TWINT
) | (1 << TWSTO
) | (1 << TWEN
);
}
/****************************************
* Write to I2C
****************************************/
void I2C_writeByte
(int8_t byte
) {
// move byte to send into TWI Data Register
TWDR
= byte
;
// clear interrupt flag (TWINT = 1)
// enable i2c bus (TWEN = 1)
// enable interrupt (TWIE = 1)
TWCR
= (1 << TWINT
) | (1 << TWEN
) | (1 << TWIE
);
}
/****************************************
* Receive byte and send ACK
****************************************/
void I2C_receiveByte
(void) {
TWCR
= (1 << TWINT
) | (1 << TWEN
) | (1 << TWIE
) | (1 << TWEA
);
}
/****************************************
* I2C receive last byte and send no ACK
****************************************/
void I2C_receiveLastByte
(void) {
TWCR
= (1 << TWINT
) | (1 << TWEN
) | (1 << TWIE
);
}
/****************************************
* Reset I2C
****************************************/
void I2C_reset
(void) {
// stop i2c bus
I2C_stop
(TWI_STATE_MOTOR_TX
);
twi_state
= 0;
writeIndex
= TWDR
;
writeIndex
= 0;
readIndex
= 0;
TWCR
= (1 << TWINT
); // reset to original state incl. interrupt flag reset
TWAMR
= 0;
TWAR
= 0;
TWDR
= 0;
TWSR
= 0;
TWBR
= 0;
I2C_init
();
I2C_start
(TWI_STATE_MOTOR_TX
);
}
/****************************************
* I2C ISR
****************************************/
ISR
(TWI_vect
)
{
static uint8_t missing_motor
= 0;
switch (twi_state
++) { // First i2c_start from SendMotorData()
// Master Transmit
case 0: // TWI_STATE_MOTOR_TX
// skip motor if not used in mixer
while ((outputMixer
[writeIndex
].
outputType != OUTPUT_TYPE_MOTOR
) && (writeIndex
< MAX_I2CCHANNELS
))
writeIndex
++;
if (writeIndex
>= MAX_I2CCHANNELS
) { // writing finished, read now
writeIndex
= 0;
twi_state
= TWI_STATE_MOTOR_RX
;
I2C_writeByte
(0x53 + (readIndex
* 2)); // select slave adress in rx mode
} else
I2C_writeByte
(0x52 + (writeIndex
* 2)); // select slave adress in tx mode
break;
case 1: // Send Data to Slave
//I2C_writeByte(outputs[writeIndex]>>LOG_CONTROL_OUTPUT_SCALING); // transmit throttle value.
I2C_writeByte
(mkblcs
[writeIndex
].
throttle); // transmit throttle value.
break;
case 2: // repeat case 0+1 for all motors
if (TWSR
== TW_MT_DATA_NACK
) { // Data transmitted, NACK received
if (!missing_motor
)
missing_motor
= writeIndex
+ 1;
if (++mkblcs
[writeIndex
].
error == 0)
mkblcs
[writeIndex
].
error = 255; // increment error counter and handle overflow
}
I2C_stop
(TWI_STATE_MOTOR_TX
);
I2CTimeout
= 10;
writeIndex
++; // next motor
I2C_start
(TWI_STATE_MOTOR_TX
); // Repeated start -> switch slave or switch Master Transmit -> Master Receive
break;
// Master Receive Data
case 3:
if (TWSR
!= TW_MR_SLA_ACK
) { // SLA+R transmitted, if not ACK received
// no response from the addressed slave received
mkblcs
[readIndex
].
present = 0;
readIndex
++; // next motor
if (readIndex
>= MAX_I2CCHANNELS
)
readIndex
= 0; // restart reading of first motor if we have reached the last one
I2C_stop
(TWI_STATE_MOTOR_TX
);
} else {
mkblcs
[readIndex
].
present = ('1' - '-') + readIndex
;
I2C_receiveByte
(); //Transmit 1st byte
}
missingMotor
= missing_motor
;
missing_motor
= 0;
break;
case 4: //Read 1st byte and transmit 2nd Byte
mkblcs
[readIndex
].
current = TWDR
;
I2C_receiveLastByte
(); // nack
break;
case 5:
//Read 2nd byte
mkblcs
[readIndex
].
maxPWM = TWDR
;
readIndex
++; // next motor
if (readIndex
>= MAX_I2CCHANNELS
)
readIndex
= 0; // restart reading of first motor if we have reached the last one
I2C_stop
(TWI_STATE_MOTOR_TX
);
break;
// Writing ADC values.
case 7:
I2C_writeByte
(0x98); // Address the DAC
break;
case 8:
I2C_writeByte
(0x10 + (DACChannel
<< 1)); // Select DAC Channel (0x10 = A, 0x12 = B, 0x14 = C)
break;
case 9:
I2C_writeByte
(gyroAmplifierOffset.
offsets[DACChannel
]);
break;
case 10:
I2C_writeByte
(0x80); // 2nd byte for all channels is 0x80
break;
case 11:
I2C_stop
(TWI_STATE_MOTOR_TX
);
I2CTimeout
= 10;
// repeat case 7...10 until all DAC Channels are updated
if (DACChannel
< 2) {
DACChannel
++; // jump to next channel
I2C_start
(TWI_STATE_GYRO_OFFSET_TX
); // start transmission for next channel
} else {
DACChannel
= 0; // reset dac channel counter
}
break;
default:
I2C_stop
(TWI_STATE_MOTOR_TX
);
I2CTimeout
= 10;
writeIndex
= 0;
readIndex
= 0;
}
}
extern void twi_diagnostics
(void) {
// Check connected BL-Ctrls
uint8_t i
;
printf("\n\rFound BL-Ctrl: ");
for (i
=0; i
<MAX_I2CCHANNELS
; i
++) {
mkblcs
[i
].
throttle = 0;
}
I2C_start
(TWI_STATE_MOTOR_TX
);
_delay_ms
(2);
readIndex
= 0; // read the first I2C-Data
for (i
= 0; i
< MAX_I2CCHANNELS
; i
++) {
I2C_start
(TWI_STATE_MOTOR_TX
);
_delay_ms
(2);
if (mkblcs
[i
].
present)
printf("%d ",i
+1);
}
for (i
= 0; i
< MAX_I2CCHANNELS
; i
++) {
if (!mkblcs
[i
].
present && outputMixer
[i
].
outputType == OUTPUT_TYPE_MOTOR
)
printf("\n\r\n\r!! MISSING BL-CTRL: %d !!",i
+ 1);
mkblcs
[i
].
error = 0;
}
}