// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) 04.2007 Holger Buss
// + Nur für den privaten Gebrauch
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
// + bzgl. der Nutzungsbedingungen aufzunehmen.
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
// + Verkauf von Luftbildaufnahmen, usw.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
// + eindeutig als Ursprung verlinkt werden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// + from this software without specific prior written permission.
// + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// + for non-commercial use (directly or indirectly)
// + Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// + with our written permission
// + * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
// + clearly linked as origin
// + * porting to systems other than hardware from www.mikrokopter.de is not allowed
// + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// + POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include <stdlib.h>
#include <avr/io.h>
#include "eeprom.h"
#include "flight.h"
#include "output.h"
// Only for debug. Remove.
//#include "analog.h"
//#include "rc.h"
// Necessary for external control and motor test
#include "uart0.h"
#include "twimaster.h"
#include "attitude.h"
#include "controlMixer.h"
#include "commands.h"
#ifdef USE_MK3MAG
#include "gps.h"
#endif
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
/*
* These are no longer maintained, just left at 0. The original implementation just summed the acc.
* value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
*/
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
uint8_t gyroPFactor
, gyroIFactor
; // the PD factors for the attitude control
uint8_t yawPFactor
, yawIFactor
; // the PD factors for the yaw control
// Some integral weight constant...
uint16_t Ki
= 10300 / 33;
/************************************************************************/
/* Filter for motor value smoothing (necessary???) */
/************************************************************************/
int16_t motorFilter
(int16_t newvalue
, int16_t oldvalue
) {
switch (dynamicParams.
motorSmoothing) {
case 0:
return newvalue
;
case 1:
return (oldvalue
+ newvalue
) / 2;
case 2:
if (newvalue
> oldvalue
)
return (1 * (int16_t) oldvalue
+ newvalue
) / 2; //mean of old and new
else
return newvalue
- (oldvalue
- newvalue
) * 1; // 2 * new - old
case 3:
if (newvalue
< oldvalue
)
return (1 * (int16_t) oldvalue
+ newvalue
) / 2; //mean of old and new
else
return newvalue
- (oldvalue
- newvalue
) * 1; // 2 * new - old
default:
return newvalue
;
}
}
/************************************************************************/
/* Neutral Readings */
/************************************************************************/
void flight_setNeutral
() {
MKFlags
|= MKFLAG_CALIBRATE
;
// not really used here any more.
/*
dynamicParams.KalmanK = -1;
dynamicParams.KalmanMaxDrift = 0;
dynamicParams.KalmanMaxFusion = 32;
*/
controlMixer_initVariables
();
}
void setFlightParameters
(uint8_t _Ki
, uint8_t _gyroPFactor
,
uint8_t _gyroIFactor
, uint8_t _yawPFactor
, uint8_t _yawIFactor
) {
Ki
= 10300 / _Ki
;
gyroPFactor
= _gyroPFactor
;
gyroIFactor
= _gyroIFactor
;
yawPFactor
= _yawPFactor
;
yawIFactor
= _yawIFactor
;
}
void setNormalFlightParameters
(void) {
setFlightParameters
(
dynamicParams.
IFactor,
dynamicParams.
gyroP,
staticParams.
bitConfig & CFG_HEADING_HOLD
? 0 : dynamicParams.
gyroI,
dynamicParams.
gyroP,
dynamicParams.
yawIFactor
);
}
void setStableFlightParameters
(void) {
setFlightParameters
(33, 90, 120, 90, 120);
}
/************************************************************************/
/* Main Flight Control */
/************************************************************************/
void flight_control
(void) {
int16_t tmp_int
;
// Mixer Fractions that are combined for Motor Control
int16_t yawTerm
, throttleTerm
, term
[2];
// PID controller variables
int16_t PDPart
[2], PDPartYaw
, PPart
[2];
static int32_t IPart
[2] = { 0, 0 };
// static int32_t yawControlRate = 0;
// Removed. Too complicated, and apparently not necessary with MEMS gyros anyway.
// static int32_t IntegralGyroPitchError = 0, IntegralGyroRollError = 0;
// static int32_t CorrectionPitch, CorrectionRoll;
static uint16_t emergencyFlightTime
;
static int8_t debugDataTimer
= 1;
// High resolution motor values for smoothing of PID motor outputs
static int16_t motorFilters
[MAX_MOTORS
];
uint8_t i
, axis
;
// Fire the main flight attitude calculation, including integration of angles.
// We want that to kick as early as possible, not to delay new AD sampling further.
calculateFlightAttitude
();
controlMixer_update
();
throttleTerm
= controls
[CONTROL_THROTTLE
];
// This check removed. Is done on a per-motor basis, after output matrix multiplication.
if (throttleTerm
< staticParams.
minThrottle + 10)
throttleTerm
= staticParams.
minThrottle + 10;
else if (throttleTerm
> staticParams.
maxThrottle - 20)
throttleTerm
= (staticParams.
maxThrottle - 20);
/************************************************************************/
/* RC-signal is bad */
/* This part could be abstracted, as having yet another control input */
/* to the control mixer: An emergency autopilot control. */
/************************************************************************/
if (controlMixer_getSignalQuality
() <= SIGNAL_BAD
) { // the rc-frame signal is not reveived or noisy
beepRCAlarm
();
if (emergencyFlightTime
) {
// continue emergency flight
emergencyFlightTime
--;
if (isFlying
> 256) {
// We're probably still flying. Descend slowly.
throttleTerm
= staticParams.
emergencyThrottle; // Set emergency throttle
MKFlags
|= (MKFLAG_EMERGENCY_FLIGHT
); // Set flag for emergency landing
setStableFlightParameters
();
} else {
MKFlags
&= ~
(MKFLAG_MOTOR_RUN
); // Probably not flying, and bad R/C signal. Kill motors.
}
} else {
// end emergency flight (just cut the motors???)
MKFlags
&= ~
(MKFLAG_MOTOR_RUN
| MKFLAG_EMERGENCY_FLIGHT
);
}
} else {
// signal is acceptable
if (controlMixer_getSignalQuality
() > SIGNAL_BAD
) {
// Reset emergency landing control variables.
MKFlags
&= ~
(MKFLAG_EMERGENCY_FLIGHT
); // clear flag for emergency landing
// The time is in whole seconds.
emergencyFlightTime
= (uint16_t) staticParams.
emergencyFlightDuration * 488;
}
// If some throttle is given, and the motor-run flag is on, increase the probability that we are flying.
if (throttleTerm
> 40 && (MKFlags
& MKFLAG_MOTOR_RUN
)) {
// increment flight-time counter until overflow.
if (isFlying
!= 0xFFFF)
isFlying
++;
} else
/*
* When standing on the ground, do not apply I controls and zero the yaw stick.
* Probably to avoid integration effects that will cause the copter to spin
* or flip when taking off.
*/
if (isFlying
< 256) {
IPart
[PITCH
] = IPart
[ROLL
] = 0;
// TODO: Don't stomp on other modules' variables!!!
// controlYaw = 0;
PDPartYaw
= 0; // instead.
if (isFlying
== 250) {
// HC_setGround();
updateCompassCourse
= 1;
yawAngleDiff
= 0;
}
} else {
// Set fly flag. TODO: Hmmm what can we trust - the isFlying counter or the flag?
// Answer: The counter. The flag is not read from anywhere anyway... except the NC maybe.
MKFlags
|= (MKFLAG_FLY
);
}
commands_handleCommands
();
setNormalFlightParameters
();
} // end else (not bad signal case)
/************************************************************************/
/* Yawing */
/************************************************************************/
if (abs(controls
[CONTROL_YAW
]) > 4 * staticParams.
stickYawP) { // yaw stick is activated
ignoreCompassTimer
= 1000;
if (!(staticParams.
bitConfig & CFG_COMPASS_FIX
)) {
updateCompassCourse
= 1;
}
}
// yawControlRate = controlYaw;
// Trim drift of yawAngleDiff with controlYaw.
// TODO: We want NO feedback of control related stuff to the attitude related stuff.
// This seems to be used as: Difference desired <--> real heading.
yawAngleDiff
-= controls
[CONTROL_YAW
];
// limit the effect
CHECK_MIN_MAX
(yawAngleDiff
, -50000, 50000);
/************************************************************************/
/* Compass is currently not supported. */
/************************************************************************/
if (staticParams.
bitConfig & (CFG_COMPASS_ACTIVE
| CFG_GPS_ACTIVE
)) {
updateCompass
();
}
#if defined (USE_NAVICTRL)
/************************************************************************/
/* GPS is currently not supported. */
/************************************************************************/
if(staticParams.
GlobalConfig & CFG_GPS_ACTIVE
) {
GPS_Main
();
MKFlags
&= ~
(MKFLAG_CALIBRATE
| MKFLAG_START
);
} else {
}
#endif
// end part 1: 750-800 usec.
// start part 3: 350 - 400 usec.
#define SENSOR_LIMIT (4096 * 4)
/************************************************************************/
/* Calculate control feedback from angle (gyro integral) */
/* and angular velocity (gyro signal) */
/************************************************************************/
// The P-part is the P of the PID controller. That's the angle integrals (not rates).
for (axis
= PITCH
; axis
<= ROLL
; axis
++) {
PPart
[axis
] = angle
[axis
] * gyroIFactor
/ (44000 / CONTROL_SCALING
); // P-Part - Proportional to Integral
/*
* Now blend in the D-part - proportional to the Differential of the integral = the rate.
* Read this as: PDPart = PPart + rate_PID * pfactor * CONTROL_SCALING
* where pfactor is in [0..1].
*/
PDPart
[axis
] = PPart
[axis
] + (int32_t) ((int32_t) rate_PID
[axis
] * gyroPFactor
/ (256L / CONTROL_SCALING
)) + (differential
[axis
]
* (int16_t) dynamicParams.
gyroD) / 16;
CHECK_MIN_MAX
(PDPart
[axis
], -SENSOR_LIMIT
, SENSOR_LIMIT
);
}
PDPartYaw
= (int32_t) (yawRate
* 2 * (int32_t) yawPFactor
) / (256L
/ CONTROL_SCALING
) + (int32_t) (yawAngleDiff
* yawIFactor
) / (2 * (44000
/ CONTROL_SCALING
));
// limit control feedback
CHECK_MIN_MAX
(PDPartYaw
, -SENSOR_LIMIT
, SENSOR_LIMIT
);
/*
* Compose throttle term.
* If a Bl-Ctrl is missing, prevent takeoff.
*/
if (missingMotor
) {
// if we are in the lift off condition. Hmmmmmm when is throttleTerm == 0 anyway???
if (isFlying
> 1 && isFlying
< 50 && throttleTerm
> 0)
isFlying
= 1; // keep within lift off condition
throttleTerm
= staticParams.
minThrottle; // reduce gas to min to avoid lift of
}
// Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
throttleTerm
*= CONTROL_SCALING
;
/*
* Compose yaw term.
* The yaw term is limited: Absolute value is max. = the throttle term / 2.
* However, at low throttle the yaw term is limited to a fixed value,
* and at high throttle it is limited by the throttle reserve (the difference
* between current throttle and maximum throttle).
*/
#define MIN_YAWGAS (40 * CONTROL_SCALING) // yaw also below this gas value
yawTerm
= PDPartYaw
- controls
[CONTROL_YAW
] * CONTROL_SCALING
;
// Limit yawTerm
debugOut.
digital[0] &= ~DEBUG_CLIP
;
if (throttleTerm
> MIN_YAWGAS
) {
if (yawTerm
< -throttleTerm
/ 2) {
debugOut.
digital[0] |= DEBUG_CLIP
;
yawTerm
= -throttleTerm
/ 2;
} else if (yawTerm
> throttleTerm
/ 2) {
debugOut.
digital[0] |= DEBUG_CLIP
;
yawTerm
= throttleTerm
/ 2;
}
//CHECK_MIN_MAX(yawTerm, - (throttleTerm / 2), (throttleTerm / 2));
} else {
if (yawTerm
< -MIN_YAWGAS
/ 2) {
debugOut.
digital[0] |= DEBUG_CLIP
;
yawTerm
= -MIN_YAWGAS
/ 2;
} else if (yawTerm
> MIN_YAWGAS
/ 2) {
debugOut.
digital[0] |= DEBUG_CLIP
;
yawTerm
= MIN_YAWGAS
/ 2;
}
//CHECK_MIN_MAX(yawTerm, - (MIN_YAWGAS / 2), (MIN_YAWGAS / 2));
}
// FIXME: Throttle may exceed maxThrottle (there is no check no more).
tmp_int
= staticParams.
maxThrottle * CONTROL_SCALING
;
if (yawTerm
< -(tmp_int
- throttleTerm
)) {
yawTerm
= -(tmp_int
- throttleTerm
);
debugOut.
digital[0] |= DEBUG_CLIP
;
} else if (yawTerm
> (tmp_int
- throttleTerm
)) {
yawTerm
= (tmp_int
- throttleTerm
);
debugOut.
digital[0] |= DEBUG_CLIP
;
}
// CHECK_MIN_MAX(yawTerm, -(tmp_int - throttleTerm), (tmp_int - throttleTerm));
debugOut.
digital[1] &= ~DEBUG_CLIP
;
for (axis
= PITCH
; axis
<= ROLL
; axis
++) {
/*
* Compose pitch and roll terms. This is finally where the sticks come into play.
*/
if (gyroIFactor
) {
// Integration mode: Integrate (angle - stick) = the difference between angle and stick pos.
// That means: Holding the stick a little forward will, at constant flight attitude, cause this to grow (decline??) over time.
// TODO: Find out why this seems to be proportional to stick position - not integrating it at all.
IPart
[axis
] += PPart
[axis
] - controls
[axis
]; // Integrate difference between P part (the angle) and the stick pos.
} else {
// "HH" mode: Integrate (rate - stick) = the difference between rotation rate and stick pos.
// To keep up with a full stick PDPart should be about 156...
IPart
[axis
] += PDPart
[axis
] - controls
[axis
]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
}
tmp_int
= (int32_t) ((int32_t) dynamicParams.
dynamicStability
* (int32_t) (throttleTerm
+ abs(yawTerm
) / 2)) / 64;
// TODO: From which planet comes the 16000?
CHECK_MIN_MAX
(IPart
[axis
], -(CONTROL_SCALING
* 16000L), (CONTROL_SCALING
* 16000L));
// Add (P, D) parts minus stick pos. to the scaled-down I part.
term
[axis
] = PDPart
[axis
] - controls
[axis
] + IPart
[axis
] / Ki
; // PID-controller for pitch
/*
* Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
* The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
* (max. pitch or roll term is the throttle value).
* TODO: Why a growing function of yaw?
*/
if (term
[axis
] < -tmp_int
) {
debugOut.
digital[1] |= DEBUG_CLIP
;
} else if (term
[axis
] > tmp_int
) {
debugOut.
digital[1] |= DEBUG_CLIP
;
}
CHECK_MIN_MAX
(term
[axis
], -tmp_int
, tmp_int
);
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Universal Mixer
// Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
debugOut.
analog[3] = rate_ATT
[PITCH
];
debugOut.
analog[4] = rate_ATT
[ROLL
];
debugOut.
analog[5] = yawRate
;
debugOut.
analog[6] = filteredAcc
[PITCH
];
debugOut.
analog[7] = filteredAcc
[ROLL
];
debugOut.
analog[8] = filteredAcc
[Z
];
debugOut.
analog[12] = term
[PITCH
];
debugOut.
analog[13] = term
[ROLL
];
debugOut.
analog[14] = yawTerm
;
debugOut.
analog[15] = throttleTerm
;
for (i
= 0; i
< MAX_MOTORS
; i
++) {
int32_t tmp
;
uint8_t throttle
;
tmp
= (int32_t)throttleTerm
* mixerMatrix.
motor[i
][MIX_THROTTLE
];
tmp
+= (int32_t)term
[PITCH
] * mixerMatrix.
motor[i
][MIX_PITCH
];
tmp
+= (int32_t)term
[ROLL
] * mixerMatrix.
motor[i
][MIX_ROLL
];
tmp
+= (int32_t)yawTerm
* mixerMatrix.
motor[i
][MIX_YAW
];
tmp
= tmp
>> 6;
motorFilters
[i
] = motorFilter
(tmp
, motorFilters
[i
]);
// Now we scale back down to a 0..255 range.
tmp
= motorFilters
[i
] / MOTOR_SCALING
;
// So this was the THIRD time a throttle was limited. But should the limitation
// apply to the common throttle signal (the one used for setting the "power" of
// all motors together) or should it limit the throttle set for each motor,
// including mix components of pitch, roll and yaw? I think only the common
// throttle should be limited.
// --> WRONG. This caused motors to stall completely in tight maneuvers.
// Apply to individual signals instead.
CHECK_MIN_MAX
(tmp
, 1, 255);
throttle
= tmp
;
if (i
< 4) debugOut.
analog[22 + i
] = throttle
;
if ((MKFlags
& MKFLAG_MOTOR_RUN
) && mixerMatrix.
motor[i
][MIX_THROTTLE
] > 0) {
motor
[i
].
SetPoint = throttle
;
} else if (motorTestActive
) {
motor
[i
].
SetPoint = motorTest
[i
];
} else {
motor
[i
].
SetPoint = 0;
}
}
I2C_Start
(TWI_STATE_MOTOR_TX
);
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Debugging
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if (!(--debugDataTimer
)) {
debugDataTimer
= 24; // update debug outputs at 488 / 24 = 20.3 Hz.
debugOut.
analog[0] = (10 * angle
[PITCH
]) / GYRO_DEG_FACTOR_PITCHROLL
; // in 0.1 deg
debugOut.
analog[1] = (10 * angle
[ROLL
]) / GYRO_DEG_FACTOR_PITCHROLL
; // in 0.1 deg
debugOut.
analog[2] = yawGyroHeading
/ GYRO_DEG_FACTOR_YAW
;
debugOut.
analog[16] = gyroPFactor
;
}
}