Subversion Repositories FlightCtrl

Rev

Rev 1960 | Rev 1976 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed

// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) 04.2007 Holger Buss
// + Nur für den privaten Gebrauch
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
// + bzgl. der Nutzungsbedingungen aufzunehmen.
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
// + Verkauf von Luftbildaufnahmen, usw.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
// + eindeutig als Ursprung verlinkt werden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// +     from this software without specific prior written permission.
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// +     for non-commercial use (directly or indirectly)
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// +     with our written permission
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
// +     clearly linked as origin
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// +  POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

#include <stdlib.h>
#include <avr/io.h>
#include "eeprom.h"
#include "flight.h"
#include "output.h"

// Only for debug. Remove.
//#include "analog.h"
//#include "rc.h"

// Necessary for external control and motor test
#include "uart0.h"
#include "twimaster.h"
#include "attitude.h"
#include "controlMixer.h"
#include "commands.h"
#ifdef USE_MK3MAG
#include "gps.h"
#endif

#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}

/*
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
 */

// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;

uint8_t gyroPFactor, gyroIFactor; // the PD factors for the attitude control
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control

// Some integral weight constant...
uint16_t Ki = 10300 / 33;

/************************************************************************/
/*  Filter for motor value smoothing (necessary???)                     */
/************************************************************************/
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
  switch (dynamicParams.motorSmoothing) {
  case 0:
    return newvalue;
  case 1:
    return (oldvalue + newvalue) / 2;
  case 2:
    if (newvalue > oldvalue)
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
    else
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
  case 3:
    if (newvalue < oldvalue)
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
    else
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
  default:
    return newvalue;
  }
}

/************************************************************************/
/*  Neutral Readings                                                    */
/************************************************************************/
void flight_setNeutral() {
  MKFlags |= MKFLAG_CALIBRATE;
  // not really used here any more.
  /*
  dynamicParams.KalmanK = -1;
  dynamicParams.KalmanMaxDrift = 0;
  dynamicParams.KalmanMaxFusion = 32;
  */

  controlMixer_initVariables();
}

void setFlightParameters(uint8_t _Ki, uint8_t _gyroPFactor,
    uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
  Ki = 10300 / _Ki;
  gyroPFactor = _gyroPFactor;
  gyroIFactor = _gyroIFactor;
  yawPFactor = _yawPFactor;
  yawIFactor = _yawIFactor;
}

void setNormalFlightParameters(void) {
  setFlightParameters(
                      dynamicParams.IFactor,
                      dynamicParams.gyroP,
                      staticParams.bitConfig & CFG_HEADING_HOLD ? 0 : dynamicParams.gyroI,
                      dynamicParams.gyroP,
                      dynamicParams.yawIFactor
                      );
}

void setStableFlightParameters(void) {
  setFlightParameters(33, 90, 120, 90, 120);
}

/************************************************************************/
/*  Main Flight Control                                                 */
/************************************************************************/
void flight_control(void) {
  int16_t tmp_int;
  // Mixer Fractions that are combined for Motor Control
  int16_t yawTerm, throttleTerm, term[2];

  // PID controller variables
  int16_t PDPart[2], PDPartYaw, PPart[2];
  static int32_t IPart[2] = { 0, 0 };
  //  static int32_t yawControlRate = 0;

  // Removed. Too complicated, and apparently not necessary with MEMS gyros anyway.
  // static int32_t IntegralGyroPitchError = 0, IntegralGyroRollError = 0;
  // static int32_t CorrectionPitch, CorrectionRoll;

  static uint16_t emergencyFlightTime;
  static int8_t debugDataTimer = 1;

  // High resolution motor values for smoothing of PID motor outputs
  static int16_t motorFilters[MAX_MOTORS];

  uint8_t i, axis;

  // Fire the main flight attitude calculation, including integration of angles.
  // We want that to kick as early as possible, not to delay new AD sampling further.
  calculateFlightAttitude();
  controlMixer_update();
  throttleTerm = controls[CONTROL_THROTTLE];

  // This check removed. Is done on a per-motor basis, after output matrix multiplication.
  if (throttleTerm < staticParams.minThrottle + 10)
    throttleTerm = staticParams.minThrottle + 10;
  else if (throttleTerm > staticParams.maxThrottle - 20)
    throttleTerm = (staticParams.maxThrottle - 20);

  /************************************************************************/
  /* RC-signal is bad                                                     */
  /* This part could be abstracted, as having yet another control input   */
  /* to the control mixer: An emergency autopilot control.                */
  /************************************************************************/

  if (controlMixer_getSignalQuality() <= SIGNAL_BAD) { // the rc-frame signal is not reveived or noisy
    beepRCAlarm();

    if (emergencyFlightTime) {
      // continue emergency flight
      emergencyFlightTime--;
      if (isFlying > 256) {
        // We're probably still flying. Descend slowly.
        throttleTerm = staticParams.emergencyThrottle; // Set emergency throttle
        MKFlags |= (MKFLAG_EMERGENCY_FLIGHT); // Set flag for emergency landing
        setStableFlightParameters();
      } else {
        MKFlags &= ~(MKFLAG_MOTOR_RUN); // Probably not flying, and bad R/C signal. Kill motors.
      }
    } else {
      // end emergency flight (just cut the motors???)
      MKFlags &= ~(MKFLAG_MOTOR_RUN | MKFLAG_EMERGENCY_FLIGHT);
    }
  } else {
    // signal is acceptable
    if (controlMixer_getSignalQuality() > SIGNAL_BAD) {
      // Reset emergency landing control variables.
      MKFlags &= ~(MKFLAG_EMERGENCY_FLIGHT); // clear flag for emergency landing
      // The time is in whole seconds.
      emergencyFlightTime = (uint16_t) staticParams.emergencyFlightDuration * 488;
    }

    // If some throttle is given, and the motor-run flag is on, increase the probability that we are flying.
    if (throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
      // increment flight-time counter until overflow.
      if (isFlying != 0xFFFF)
        isFlying++;
    } else
    /*
     * When standing on the ground, do not apply I controls and zero the yaw stick.
     * Probably to avoid integration effects that will cause the copter to spin
     * or flip when taking off.
     */

      if (isFlying < 256) {
        IPart[PITCH] = IPart[ROLL] = 0;
        // TODO: Don't stomp on other modules' variables!!!
        // controlYaw = 0;
        PDPartYaw = 0; // instead.
        if (isFlying == 250) {
          // HC_setGround();
          updateCompassCourse = 1;
          yawAngleDiff = 0;
        }
      } else {
        // Set fly flag. TODO: Hmmm what can we trust - the isFlying counter or the flag?
        // Answer: The counter. The flag is not read from anywhere anyway... except the NC maybe.
        MKFlags |= (MKFLAG_FLY);
      }
   
    commands_handleCommands();
    setNormalFlightParameters();
  } // end else (not bad signal case)
 
  /************************************************************************/
  /*  Yawing                                                              */
  /************************************************************************/
  if (abs(controls[CONTROL_YAW]) > 4 * staticParams.stickYawP) { // yaw stick is activated
    ignoreCompassTimer = 1000;
    if (!(staticParams.bitConfig & CFG_COMPASS_FIX)) {
      updateCompassCourse = 1;
    }
  }

  // yawControlRate = controlYaw;
  // Trim drift of yawAngleDiff with controlYaw.
  // TODO: We want NO feedback of control related stuff to the attitude related stuff.
  // This seems to be used as: Difference desired <--> real heading.
  yawAngleDiff -= controls[CONTROL_YAW];

  // limit the effect
  CHECK_MIN_MAX(yawAngleDiff, -50000, 50000);

  /************************************************************************/
  /* Compass is currently not supported.                                  */
  /************************************************************************/
  if (staticParams.bitConfig & (CFG_COMPASS_ACTIVE | CFG_GPS_ACTIVE)) {
    updateCompass();
  }

#if defined (USE_NAVICTRL)
  /************************************************************************/
  /* GPS is currently not supported.                                      */
  /************************************************************************/
  if(staticParams.GlobalConfig & CFG_GPS_ACTIVE) {
    GPS_Main();
    MKFlags &= ~(MKFLAG_CALIBRATE | MKFLAG_START);
  } else {
  }
#endif
  // end part 1: 750-800 usec.
  // start part 3: 350 - 400 usec.
#define SENSOR_LIMIT  (4096 * 4)
  /************************************************************************/

  /* Calculate control feedback from angle (gyro integral)                */
  /* and angular velocity (gyro signal)                                   */
  /************************************************************************/
  // The P-part is the P of the PID controller. That's the angle integrals (not rates).

  for (axis = PITCH; axis <= ROLL; axis++) {
    PPart[axis] = angle[axis] * gyroIFactor / (44000 / CONTROL_SCALING); // P-Part - Proportional to Integral
   
    /*
     * Now blend in the D-part - proportional to the Differential of the integral = the rate.
     * Read this as: PDPart = PPart + rate_PID * pfactor * CONTROL_SCALING
     * where pfactor is in [0..1].
     */

    PDPart[axis] = PPart[axis] + (int32_t) ((int32_t) rate_PID[axis] * gyroPFactor / (256L / CONTROL_SCALING)) + (differential[axis]
                                                                                         * (int16_t) dynamicParams.gyroD) / 16;
   
    CHECK_MIN_MAX(PDPart[axis], -SENSOR_LIMIT, SENSOR_LIMIT);
  }

  PDPartYaw = (int32_t) (yawRate * 2 * (int32_t) yawPFactor) / (256L
      / CONTROL_SCALING) + (int32_t) (yawAngleDiff * yawIFactor) / (2 * (44000
      / CONTROL_SCALING));

  // limit control feedback
  CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);

  /*
   * Compose throttle term.
   * If a Bl-Ctrl is missing, prevent takeoff.
   */

  if (missingMotor) {
    // if we are in the lift off condition. Hmmmmmm when is throttleTerm == 0 anyway???
    if (isFlying > 1 && isFlying < 50 && throttleTerm > 0)
      isFlying = 1; // keep within lift off condition
    throttleTerm = staticParams.minThrottle; // reduce gas to min to avoid lift of
  }

  // Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
  throttleTerm *= CONTROL_SCALING;

  /*
   * Compose yaw term.
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
   * However, at low throttle the yaw term is limited to a fixed value,
   * and at high throttle it is limited by the throttle reserve (the difference
   * between current throttle and maximum throttle).
   */

#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
  yawTerm = PDPartYaw - controls[CONTROL_YAW] * CONTROL_SCALING;
  // Limit yawTerm
  debugOut.digital[0] &= ~DEBUG_CLIP;
  if (throttleTerm > MIN_YAWGAS) {
    if (yawTerm < -throttleTerm / 2) {
      debugOut.digital[0] |= DEBUG_CLIP;
      yawTerm = -throttleTerm / 2;
    } else if (yawTerm > throttleTerm / 2) {
      debugOut.digital[0] |= DEBUG_CLIP;
      yawTerm = throttleTerm / 2;
    }
    //CHECK_MIN_MAX(yawTerm, - (throttleTerm / 2), (throttleTerm / 2));
  } else {
    if (yawTerm < -MIN_YAWGAS / 2) {
      debugOut.digital[0] |= DEBUG_CLIP;
      yawTerm = -MIN_YAWGAS / 2;
    } else if (yawTerm > MIN_YAWGAS / 2) {
      debugOut.digital[0] |= DEBUG_CLIP;
      yawTerm = MIN_YAWGAS / 2;
    }
    //CHECK_MIN_MAX(yawTerm, - (MIN_YAWGAS / 2), (MIN_YAWGAS / 2));
  }

  // FIXME: Throttle may exceed maxThrottle (there is no check no more).
  tmp_int = staticParams.maxThrottle * CONTROL_SCALING;
  if (yawTerm < -(tmp_int - throttleTerm)) {
    yawTerm = -(tmp_int - throttleTerm);
    debugOut.digital[0] |= DEBUG_CLIP;
  } else if (yawTerm > (tmp_int - throttleTerm)) {
    yawTerm = (tmp_int - throttleTerm);
    debugOut.digital[0] |= DEBUG_CLIP;
  }

  // CHECK_MIN_MAX(yawTerm, -(tmp_int - throttleTerm), (tmp_int - throttleTerm));
  debugOut.digital[1] &= ~DEBUG_CLIP;
  for (axis = PITCH; axis <= ROLL; axis++) {
    /*
     * Compose pitch and roll terms. This is finally where the sticks come into play.
     */

    if (gyroIFactor) {
      // Integration mode: Integrate (angle - stick) = the difference between angle and stick pos.
      // That means: Holding the stick a little forward will, at constant flight attitude, cause this to grow (decline??) over time.
      // TODO: Find out why this seems to be proportional to stick position - not integrating it at all.
      IPart[axis] += PPart[axis] - controls[axis]; // Integrate difference between P part (the angle) and the stick pos.
    } else {
      // "HH" mode: Integrate (rate - stick) = the difference between rotation rate and stick pos.
      // To keep up with a full stick PDPart should be about 156...
      IPart[axis] += PDPart[axis] - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
    }

    tmp_int = (int32_t) ((int32_t) dynamicParams.dynamicStability
        * (int32_t) (throttleTerm + abs(yawTerm) / 2)) / 64;

    // TODO: From which planet comes the 16000?
    CHECK_MIN_MAX(IPart[axis], -(CONTROL_SCALING * 16000L), (CONTROL_SCALING * 16000L));
    // Add (P, D) parts minus stick pos. to the scaled-down I part.
    term[axis] = PDPart[axis] - controls[axis] + IPart[axis] / Ki; // PID-controller for pitch

    /*
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
     * (max. pitch or roll term is the throttle value).
     * TODO: Why a growing function of yaw?
     */

    if (term[axis] < -tmp_int) {
      debugOut.digital[1] |= DEBUG_CLIP;
    } else if (term[axis] > tmp_int) {
      debugOut.digital[1] |= DEBUG_CLIP;
    }
    CHECK_MIN_MAX(term[axis], -tmp_int, tmp_int);
  }

  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  // Universal Mixer
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  debugOut.analog[12] = term[PITCH];
  debugOut.analog[13] = term[ROLL];
  debugOut.analog[14] = yawTerm;
  debugOut.analog[15] = throttleTerm;

  for (i = 0; i < MAX_MOTORS; i++) {
    int32_t tmp;
    uint8_t throttle;

    tmp = (int32_t)throttleTerm * mixerMatrix.motor[i][MIX_THROTTLE];
    tmp += (int32_t)term[PITCH] * mixerMatrix.motor[i][MIX_PITCH];
    tmp += (int32_t)term[ROLL] * mixerMatrix.motor[i][MIX_ROLL];
    tmp += (int32_t)yawTerm * mixerMatrix.motor[i][MIX_YAW];
    tmp = tmp >> 6;
    motorFilters[i] = motorFilter(tmp, motorFilters[i]);
    // Now we scale back down to a 0..255 range.
    tmp = motorFilters[i] / MOTOR_SCALING;

    // So this was the THIRD time a throttle was limited. But should the limitation
    // apply to the common throttle signal (the one used for setting the "power" of
    // all motors together) or should it limit the throttle set for each motor,
    // including mix components of pitch, roll and yaw? I think only the common
    // throttle should be limited.
    // --> WRONG. This caused motors to stall completely in tight maneuvers.
    // Apply to individual signals instead.
    CHECK_MIN_MAX(tmp, 1, 255);
    throttle = tmp;

    if (i < 4) debugOut.analog[22 + i] = throttle;

    if ((MKFlags & MKFLAG_MOTOR_RUN) && mixerMatrix.motor[i][MIX_THROTTLE] > 0) {
      motor[i].SetPoint = throttle;
    } else if (motorTestActive) {
      motor[i].SetPoint = motorTest[i];
    } else {
      motor[i].SetPoint = 0;
    }
  }

  I2C_Start(TWI_STATE_MOTOR_TX);

  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  // Debugging
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  if (!(--debugDataTimer)) {
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
    debugOut.analog[0] = (10 * angle[PITCH]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
    debugOut.analog[1] = (10 * angle[ROLL]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
    debugOut.analog[2] = yawGyroHeading / GYRO_DEG_FACTOR_YAW;

    debugOut.analog[16] = gyroPFactor;
    debugOut.analog[17] = gyroIFactor;
    debugOut.analog[18] = dynamicParams.gyroD;
  }
}