Subversion Repositories FlightCtrl

Rev

Rev 1645 | Rev 1796 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed

// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) 04.2007 Holger Buss
// + Nur für den privaten Gebrauch
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten und nicht-kommerziellen Gebrauch zulässig ist.
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
// + bzgl. der Nutzungsbedingungen aufzunehmen.
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
// + Verkauf von Luftbildaufnahmen, usw.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
// + eindeutig als Ursprung verlinkt und genannt werden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// +     from this software without specific prior written permission.
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// +     for non-commercial use (directly or indirectly)
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// +     with our written permission
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
// +     clearly linked as origin
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// +  POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

#include <stdlib.h>
#include <avr/io.h>
#include "eeprom.h"
#include "flight.h"

// Only for debug. Remove.
//#include "analog.h"
//#include "rc.h"

// Necessary for external control and motor test
#include "uart0.h"
#include "twimaster.h"
#include "attitude.h"
#include "controlMixer.h"
#ifdef USE_MK3MAG
#include "gps.h"
#endif

#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}

/*
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
 */

// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;

// MK flags
uint16_t isFlying = 0;
volatile uint8_t MKFlags = 0;

uint8_t gyroPFactor, gyroIFactor;       // the PD factors for the attitude control
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control

// Some integral weight constant...
uint16_t Ki = 10300 / 33;
uint8_t RequiredMotors = 0;

// No support for altitude control right now.
// int16_t SetPointHeight = 0;

/************************************************************************/
/*  Filter for motor value smoothing (necessary???)                     */
/************************************************************************/
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
  switch(dynamicParams.UserParams[5]) {
  case 0:
    return newvalue;
  case 1:
    return (oldvalue + newvalue) / 2;  
  case 2:
    if(newvalue > oldvalue)
      return (1 * (int16_t)oldvalue + newvalue) / 2;  //mean of old and new
    else       
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
  case 3:
    if(newvalue < oldvalue)
      return (1 * (int16_t)oldvalue + newvalue) / 2;  //mean of old and new
    else       
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
  default: return newvalue;
  }
}

/************************************************************************/
/*  Neutral Readings                                                    */
/************************************************************************/
void flight_setNeutral() {
  // GPSStickPitch = 0;
  // GPSStickRoll = 0;

  MKFlags |= MKFLAG_CALIBRATE;

  // not really used here any more.
  dynamicParams.KalmanK = -1;
  dynamicParams.KalmanMaxDrift = 0;
  dynamicParams.KalmanMaxFusion = 32;

  controlMixer_initVariables();
}

/************************************************************************/
/*  Transmit Motor Data via I2C                                         */
/************************************************************************/
void sendMotorData(void) {
  uint8_t i;
  if(!(MKFlags & MKFLAG_MOTOR_RUN)) {
    // If pilot has not started the engines....
    MKFlags &= ~(MKFLAG_FLY | MKFLAG_START); // clear flag FLY and START if motors are off
    for(i = 0; i < MAX_MOTORS; i++) {
      // and if we are not in motor test mode, cut throttle on all motors.
      if(!motorTestActive) Motor[i].SetPoint = 0;
      else                 Motor[i].SetPoint = motorTest[i];
    }
    if(motorTestActive) motorTestActive--;
  }
 
  /*
  DebugOut.Analog[] = Motor[0].SetPoint; // Front
  DebugOut.Analog[] = Motor[1].SetPoint; // Rear
  DebugOut.Analog[] = Motor[3].SetPoint; // Left
  DebugOut.Analog[] = Motor[2].SetPoint; // Right
  */

  // Start I2C Interrupt Mode
  I2C_Start(TWI_STATE_MOTOR_TX);
}

void setFlightParameters(uint8_t _Ki, uint8_t _gyroPFactor, uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
  Ki = 10300 / _Ki;
  gyroPFactor = _gyroPFactor;
  gyroIFactor = _gyroIFactor;
  yawPFactor = _yawPFactor;
  yawIFactor = _yawIFactor;
}

void setNormalFlightParameters(void) {
  setFlightParameters(dynamicParams.IFactor + 1,
                      dynamicParams.GyroP + 10,
                      staticParams.GlobalConfig & CFG_HEADING_HOLD ? 0 : dynamicParams.GyroI,
                      dynamicParams.GyroP + 10,
                      dynamicParams.UserParams[6]
                      );
}

void setStableFlightParameters(void) {
  setFlightParameters(33, 90, 120, 90, 120);
}

void handleCommands(uint8_t command, uint8_t argument, uint8_t isCommandRepeated) {
    if(!(MKFlags & MKFLAG_MOTOR_RUN)) {
      if (command == COMMAND_GYROCAL && !isCommandRepeated) {
        // Run gyro calibration but do not repeat it.
        GRN_OFF;
       
        // TODO: out of here. Anyway, MKFLAG_MOTOR_RUN is cleared. Not enough?
        // isFlying = 0;
        // check roll/pitch stick position
        // if pitch stick is top or roll stick is left or right --> change parameter setting
        // according to roll/pitch stick position
               
        if (argument < 6) {
          // Gyro calinbration, with or without selecting a new parameter-set.
          if(argument > 0 && argument < 6) {
            // A valid parameter-set (1..5) was chosen - use it.
            setActiveParamSet(argument);
          }
          ParamSet_ReadFromEEProm(getActiveParamSet());
          attitude_setNeutral();
          flight_setNeutral();
          // Right stick is centered; calibrate it to zero (hmm strictly does not belong here).
          // If heading hold is active, do not do it. TODO: We also want to re-set old calibration.
          controlMixer_setNeutral(!argument);
          beepNumber(getActiveParamSet());
        } else if(staticParams.GlobalConfig & (CFG_COMPASS_ACTIVE | CFG_GPS_ACTIVE) && argument == 7) {
          // If right stick is centered and down
          compassCalState = 1;
          beep(1000);
        }
      }
     
      // save the ACC neutral setting to eeprom
      else  {
        if(command == COMMAND_ACCCAL && !isCommandRepeated) {
          // Run gyro and acc. meter calibration but do not repeat it.
          GRN_OFF;
          analog_calibrateAcc();
          attitude_setNeutral();
          flight_setNeutral();
          controlMixer_setNeutral(1); // Calibrate right stick neutral position.
          beepNumber(getActiveParamSet());
        }
      }
    } // end !MOTOR_RUN condition.
    if (command == COMMAND_START) {
      isFlying = 1; // TODO: Really????
      // if (!controlMixer_isCommandRepeated()) {
      // attitude_startDynamicCalibration(); // Try sense the effect of the motors on sensors.
      MKFlags |= (MKFLAG_MOTOR_RUN | MKFLAG_START); // set flag RUN and START. TODO: Is that START flag used at all???
      // } else { // Pilot is holding stick, ever after motor start. Continue to sense the effect of the motors on sensors.
      // attitude_continueDynamicCalibration();
      // setPointYaw = 0;
      // IPartPitch = 0;
      // IPartRoll = 0;
      // }
    } else if (command == COMMAND_STOP) {
      isFlying = 0;
      MKFlags &= ~(MKFLAG_MOTOR_RUN);
    }
}

/************************************************************************/
/*  Main Flight Control                                                 */
/************************************************************************/
void flight_control(void) {
  int16_t tmp_int;
    // Mixer Fractions that are combined for Motor Control
  int16_t yawTerm, throttleTerm, term[2];

  // PID controller variables
  int16_t PDPart[2], PDPartYaw, PPart[2];
  static int32_t IPart[2] = {0,0};
  static int32_t setPointYaw = 0;

  // Removed. Too complicated, and apparently not necessary with MEMS gyros anyway.
  // static int32_t IntegralGyroPitchError = 0, IntegralGyroRollError = 0;
  // static int32_t CorrectionPitch, CorrectionRoll;

  static uint16_t emergencyFlightTime;
  static int8_t debugDataTimer = 1;

  // High resolution motor values for smoothing of PID motor outputs
  static int16_t motorFilters[MAX_MOTORS];

  uint8_t i, axis;

  // Fire the main flight attitude calculation, including integration of angles.
  calculateFlightAttitude();
  GRN_ON;

  /*
   * TODO: update should: Set the stick variables if good signal, set them to zero if bad.
   * Set variables also.
   */

  controlMixer_update();

  throttleTerm = controlThrottle;
  if(throttleTerm < staticParams.MinThrottle + 10) throttleTerm = staticParams.MinThrottle + 10;

  /************************************************************************/
  /* RC-signal is bad                                                     */
  /* This part could be abstracted, as having yet another control input   */
  /* to the control mixer: An emergency autopilot control.                */
  /************************************************************************/
  if(controlMixer_getSignalQuality() <= SIGNAL_BAD) {           // the rc-frame signal is not reveived or noisy
    RED_ON;
    beepRCAlarm();
   
    if(emergencyFlightTime) {
      // continue emergency flight
      emergencyFlightTime--;
      if(isFlying > 1000) {                    
        // We're probably still flying. Descend slowly.
        throttleTerm = staticParams.EmergencyGas;  // Set emergency throttle
        MKFlags |= (MKFLAG_EMERGENCY_LANDING);     // Set flag for emergency landing
        setStableFlightParameters();
      } else {
        MKFlags &= ~(MKFLAG_MOTOR_RUN);            // Probably not flying, and bad R/C signal. Kill motors.
      }
    } else {
      // end emergency flight (just cut the motors???)
      MKFlags &= ~(MKFLAG_MOTOR_RUN | MKFLAG_EMERGENCY_LANDING);
    }
  } else {
    // signal is acceptable
    if(controlMixer_getSignalQuality() > SIGNAL_BAD) {
      // Reset emergency landing control variables.
      MKFlags &= ~(MKFLAG_EMERGENCY_LANDING);  // clear flag for emergency landing
      // The time is in whole seconds.
      emergencyFlightTime = staticParams.EmergencyGasDuration * 488;
    }

    // If some throttle is given, and the motor-run flag is on, increase the probability that we are flying.
    if(throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
      // increment flight-time counter until overflow.
      if(isFlying != 0xFFFF) isFlying++;
    } else
      /*
       * When standing on the ground, do not apply I controls and zero the yaw stick.
       * Probably to avoid integration effects that will cause the copter to spin
       * or flip when taking off.
       */

      if(isFlying < 256) {
            IPart[PITCH] = IPart[ROLL] = 0;
            // TODO: Don't stomp on other modules' variables!!!
            controlYaw = 0;
            if(isFlying == 250) {
              updateCompassCourse = 1;
              yawAngle = 0;
              setPointYaw = 0;
        }
      } else {
            // DebugOut.Digital[1] = 0;
            // Set fly flag. TODO: Hmmm what can we trust - the isFlying counter or the flag?
            // Answer: The counter. The flag is not read from anywhere anyway... except the NC maybe.
            MKFlags |= (MKFLAG_FLY);
      }
   
    /*
     * Get the current command (start/stop motors, calibrate), if any.
     */

    uint8_t command = controlMixer_getCommand();
    uint8_t repeated = controlMixer_isCommandRepeated();
    uint8_t argument = controlMixer_getArgument();

    handleCommands(command, argument, repeated);

    // if(controlMixer_getSignalQuality() >= SIGNAL_GOOD) {
    setNormalFlightParameters();
    // }
  } // end else (not bad signal case)
   
  /*
   * Looping the H&I way basically is just a matter of turning off attitude angle measurement
   * by integration (because 300 deg/s gyros are too slow) and turning down the throttle.
   * This is the throttle part.
   */

  if(looping) {
    if(throttleTerm > staticParams.LoopGasLimit) throttleTerm = staticParams.LoopGasLimit;
  }
 
  /************************************************************************/
  /*  Yawing                                                              */
  /************************************************************************/
  if(abs(controlYaw) > 4 * staticParams.StickYawP) { // yaw stick is activated
    badCompassHeading = 1000;
    if(!(staticParams.GlobalConfig & CFG_COMPASS_FIX)) {
      updateCompassCourse = 1;
    }
  }
 
  setPointYaw = controlYaw;

  // Trim drift of yawAngle with controlYaw.
  // TODO: We want NO feedback of control related stuff to the attitude related stuff.
  yawAngle -= controlYaw;
 
  // limit the effect
  CHECK_MIN_MAX(yawAngle, -50000, 50000)

    /************************************************************************/
    /* Compass is currently not supported.                                  */
    /************************************************************************/
    /*
      if(staticParams.GlobalConfig & (CFG_COMPASS_ACTIVE|CFG_GPS_ACTIVE)) {
      updateCompass();
      }
    */


#if defined (USE_MK3MAG)
    /************************************************************************/
    /* GPS is currently not supported.                                      */
    /************************************************************************/
    /*
      if(staticParams.GlobalConfig & CFG_GPS_ACTIVE) {
      GPS_Main();
      MKFlags &= ~(MKFLAG_CALIBRATE | MKFLAG_START);
      }
      else {
      // GPSStickPitch = 0;
      // GPSStickRoll = 0;
      }
    */

#endif

#define SENSOR_LIMIT  (4096 * 4)
   
    /************************************************************************/
    /* Calculate control feedback from angle (gyro integral)                */
    /* and angular velocity (gyro signal)                                   */
    /************************************************************************/
    // The P-part is the P of the PID controller. That's the angle integrals (not rates).
  for (axis=PITCH; axis<=ROLL; axis++) {
    if(looping & (1<<(4+axis))) {
      PPart[axis] = 0;
    } else { // TODO: Where do the 44000 come from???
      PPart[axis] = angle[axis] * gyroIFactor / (44000 / CONTROL_SCALING); // P-Part - Proportional to Integral
    }

    /*
     * Now blend in the D-part - proportional to the Differential of the integral = the rate.
     * Read this as: PDPart = PPart + rate_PID * pfactor * CONTROL_SCALING
     * where pfactor is in [0..1].
     */

    PDPart[axis] = PPart[axis] + (int32_t)((int32_t)rate_PID[axis] * gyroPFactor / (256L / CONTROL_SCALING))
      + (differential[axis] * (int16_t)dynamicParams.GyroD) / 16;

    CHECK_MIN_MAX(PDPart[axis], -SENSOR_LIMIT, SENSOR_LIMIT);
  }
 
  PDPartYaw = (int32_t)(yawRate * 2 * (int32_t)yawPFactor) / (256L / CONTROL_SCALING)
    + (int32_t)(yawAngle * yawIFactor) / (2 * (44000 / CONTROL_SCALING));
 
  // limit control feedback
  CHECK_MIN_MAX(PDPartYaw,  -SENSOR_LIMIT, SENSOR_LIMIT);
 
  /*
   * Compose throttle term.
   * If a Bl-Ctrl is missing, prevent takeoff.
   */

  if(missingMotor) {
    // if we are in the lift off condition. Hmmmmmm when is throttleTerm == 0 anyway???
    if((isFlying > 1) && (isFlying < 50) && (throttleTerm > 0))
      isFlying = 1; // keep within lift off condition
    throttleTerm = staticParams.MinThrottle; // reduce gas to min to avoid lift of
  }

  /*
   * Height control was here.
   */

  if(throttleTerm > staticParams.MaxThrottle - 20) throttleTerm = (staticParams.MaxThrottle - 20);
  throttleTerm *= CONTROL_SCALING;

  /*
   * Compose yaw term.
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
   * However, at low throttle the yaw term is limited to a fixed value,
   * and at high throttle it is limited by the throttle reserve (the difference
   * between current throttle and maximum throttle).
   */

#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
  yawTerm = PDPartYaw - setPointYaw * CONTROL_SCALING;
  // limit yawTerm
  if(throttleTerm > MIN_YAWGAS) {
    CHECK_MIN_MAX(yawTerm, - (throttleTerm / 2), (throttleTerm / 2));
  } else {
    CHECK_MIN_MAX(yawTerm, - (MIN_YAWGAS / 2), (MIN_YAWGAS / 2));
  }
 
  tmp_int = staticParams.MaxThrottle * CONTROL_SCALING;
  CHECK_MIN_MAX(yawTerm, -(tmp_int - throttleTerm), (tmp_int - throttleTerm));

  tmp_int = (int32_t)((int32_t)dynamicParams.DynamicStability * (int32_t)(throttleTerm + abs(yawTerm) / 2)) / 64;

  for (axis=PITCH; axis<=ROLL; axis++) {  
    /*
     * Compose pitch and roll terms. This is finally where the sticks come into play.
     */

    if(gyroIFactor) {
      // Integration mode: Integrate (angle - stick) = the difference between angle and stick pos.
      // That means: Holding the stick a little forward will, at constant flight attitude, cause this to grow (decline??) over time.
      // TODO: Find out why this seems to be proportional to stick position - not integrating it at all.
      IPart[axis] += PPart[axis] - control[axis]; // Integrate difference between P part (the angle) and the stick pos.
    } else {
      // "HH" mode: Integrate (rate - stick) = the difference between rotation rate and stick pos.
      // To keep up with a full stick PDPart should be about 156...
      IPart[axis] += PDPart[axis] - control[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
    }
   
    // TODO: From which planet comes the 16000?
    CHECK_MIN_MAX(IPart[axis], -(CONTROL_SCALING * 16000L), (CONTROL_SCALING * 16000L));
    // Add (P, D) parts minus stick pos. to the scaled-down I part.
    term[axis] = PDPart[axis] - control[axis] + IPart[axis] / Ki;    // PID-controller for pitch
   
    /*
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
     * (max. pitch or roll term is the throttle value).
     * TODO: Why a growing function of yaw?
     */

    CHECK_MIN_MAX(term[axis], -tmp_int, tmp_int);
  }

  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  // Universal Mixer
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  for(i = 0; i < MAX_MOTORS; i++) {
    int16_t tmp;
    if(Mixer.Motor[i][MIX_THROTTLE] > 0) { // If a motor has a zero throttle mix, it is not considered.
      tmp =  ((int32_t)throttleTerm * Mixer.Motor[i][MIX_THROTTLE]) / 64L;
      tmp += ((int32_t)term[PITCH]  * Mixer.Motor[i][MIX_PITCH])    / 64L;
      tmp += ((int32_t)term[ROLL]   * Mixer.Motor[i][MIX_ROLL])     / 64L;
      tmp += ((int32_t)yawTerm      * Mixer.Motor[i][MIX_YAW])      / 64L;
      motorFilters[i] = motorFilter(tmp, motorFilters[i]);
      tmp = motorFilters[i] / CONTROL_SCALING;
      CHECK_MIN_MAX(tmp, staticParams.MinThrottle, staticParams.MaxThrottle);
      Motor[i].SetPoint = tmp;
    }
    else Motor[i].SetPoint = 0;
  }

  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  // Debugging
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  if(!(--debugDataTimer)) {
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
    DebugOut.Analog[0]  = (10 * angle[PITCH]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
    DebugOut.Analog[1]  = (10 * angle[ROLL]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
    DebugOut.Analog[2]  = yawGyroHeading / GYRO_DEG_FACTOR_YAW;

    // DebugOut.Analog[9]  = setPointYaw;
    // DebugOut.Analog[10] = yawIFactor;
    // DebugOut.Analog[11] = gyroIFactor;
    // DebugOut.Analog[12] = RC_getVariable(0);
    // DebugOut.Analog[13] = dynamicParams.UserParams[0];
    // DebugOut.Analog[14] = RC_getVariable(4);
    // DebugOut.Analog[15] = dynamicParams.UserParams[4];
    /* DebugOut.Analog[11] = yawGyroHeading / GYRO_DEG_FACTOR_YAW; */

    // 12..15 are the controls.
    // DebugOut.Analog[16] = pitchAxisAcc;
    // DebugOut.Analog[17] = rollAxisAcc;
    DebugOut.Analog[18] = HIRES_GYRO_INTEGRATION_FACTOR;

    DebugOut.Analog[19] = throttleTerm;
    DebugOut.Analog[20] = term[PITCH];
    DebugOut.Analog[21] = term[ROLL];
    DebugOut.Analog[22] = yawTerm;

    DebugOut.Analog[23] = PPart[PITCH];     //
    DebugOut.Analog[24] = IPart[PITCH] /Ki; // meget meget lille.
    DebugOut.Analog[25] = PDPart[PITCH];    // omtrent lig ppart.

    DebugOut.Analog[26] = accNoisePeak[PITCH];
    DebugOut.Analog[27] = accNoisePeak[ROLL];

    DebugOut.Analog[30] = gyroNoisePeak[PITCH];
    DebugOut.Analog[31] = gyroNoisePeak[ROLL];
  }
}