#include <util/delay.h>
#include <stddef.h>
#include <string.h>
#include "configuration.h"
#include "sensors.h"
#include "rc.h"
#include "output.h"
#include "flight.h"
#include "debug.h"
int16_t variables
[VARIABLE_COUNT
];
ParamSet_t staticParams
;
ChannelMap_t channelMap
;
OutputMixer_t outputMixer
;
IMUConfig_t IMUConfig
;
volatile DynamicParams_t dynamicParams
;
uint8_t CPUType
;
uint8_t boardRelease
;
VersionInfo_t versionInfo
;
// MK flags. TODO: Replace by enum. State machine.
uint16_t isFlying
;
volatile uint8_t MKFlags
;
const MMXLATION XLATIONS
[] = {
{offsetof(ParamSet_t
, flightMode
), offsetof(DynamicParams_t
, flightMode
),0,255},
{offsetof(ParamSet_t
, levelCorrection
[0]), offsetof(DynamicParams_t
, levelCorrection
[0]),0,255},
{offsetof(ParamSet_t
, levelCorrection
[1]), offsetof(DynamicParams_t
, levelCorrection
[1]),0,255},
{offsetof(ParamSet_t
, attGyroP
), offsetof(DynamicParams_t
, attGyroP
),0,250},
{offsetof(ParamSet_t
, attGyroI
), offsetof(DynamicParams_t
, attGyroI
),0,250},
{offsetof(ParamSet_t
, attGyroD
), offsetof(DynamicParams_t
, attGyroD
),0,250},
{offsetof(ParamSet_t
, rateGyroP
), offsetof(DynamicParams_t
, rateGyroP
),0,250},
{offsetof(ParamSet_t
, rateGyroI
), offsetof(DynamicParams_t
, rateGyroI
),0,250},
{offsetof(ParamSet_t
, rateGyroD
), offsetof(DynamicParams_t
, rateGyroD
),0,250},
{offsetof(ParamSet_t
, yawGyroP
), offsetof(DynamicParams_t
, yawGyroP
),0,250},
{offsetof(ParamSet_t
, yawGyroI
), offsetof(DynamicParams_t
, yawGyroI
),0,250},
{offsetof(ParamSet_t
, yawGyroD
), offsetof(DynamicParams_t
, yawGyroD
),0,250},
{offsetof(ParamSet_t
, attitudeControl
), offsetof(DynamicParams_t
, attitudeControl
),0,255},
{offsetof(ParamSet_t
, externalControl
), offsetof(DynamicParams_t
, externalControl
),0,255},
{offsetof(ParamSet_t
, heightP
), offsetof(DynamicParams_t
, heightP
),0,255},
{offsetof(ParamSet_t
, heightI
), offsetof(DynamicParams_t
, heightI
),0,255},
{offsetof(ParamSet_t
, heightD
), offsetof(DynamicParams_t
, heightD
),0,255},
{offsetof(ParamSet_t
, heightSetting
), offsetof(DynamicParams_t
, heightSetting
),0,255},
{offsetof(ParamSet_t
, servoConfigurations
[0].
manualControl), offsetof(DynamicParams_t
, servoManualControl
[0]),0,255},
{offsetof(ParamSet_t
, servoConfigurations
[1].
manualControl), offsetof(DynamicParams_t
, servoManualControl
[1]),0,255},
{offsetof(ParamSet_t
, outputFlash
[0].
timing), offsetof(DynamicParams_t
, output0Timing
),0,255},
{offsetof(ParamSet_t
, outputFlash
[1].
timing), offsetof(DynamicParams_t
, output1Timing
),0,255},
{offsetof(ParamSet_t
, naviMode
), offsetof(DynamicParams_t
, naviMode
),0,255}};
uint8_t configuration_applyVariableToParam
(uint8_t src
, uint8_t min
, uint8_t max
) {
uint8_t result
;
if (src
>=(256-VARIABLE_COUNT
)) result
= variables
[src
-(256-VARIABLE_COUNT
)];
else result
= src
;
if (result
< min
) result
= min
;
else if (result
> max
) result
= max
;
return result
;
}
void configuration_fixVariableParams
(uint8_t variableNumber
) {
// If variable value is to great, limit it.
uint8_t value
= variables
[variableNumber
];
if (value
>= 256-VARIABLE_COUNT
)
value
= 256-VARIABLE_COUNT
- 1;
for (uint8_t i
=0; i
<sizeof(DynamicParams_t
); i
++) {
uint8_t* pointerToParam
=(uint8_t*)(&dynamicParams
+ i
);
if (*pointerToParam
== 256-VARIABLE_COUNT
+ variableNumber
) {
*pointerToParam
= value
;
}
}
}
void configuration_applyVariablesToParams
(void) {
uint8_t i
, src
;
uint8_t* pointerToTgt
;
for(i
=0; i
<sizeof(XLATIONS
)/sizeof(MMXLATION
); i
++) {
src
= *((uint8_t*)(&staticParams
) + XLATIONS
[i
].
sourceIdx);
pointerToTgt
= (uint8_t*)(&dynamicParams
) + XLATIONS
[i
].
targetIdx;
*pointerToTgt
= configuration_applyVariableToParam
(src
, XLATIONS
[i
].
min, XLATIONS
[i
].
max);
}
// User parameters are always variable.
for (i
=0; i
<sizeof(staticParams.
userParams); i
++) {
src
= *((uint8_t*)(&staticParams
) + offsetof(ParamSet_t
, userParams
) + i
);
pointerToTgt
= (uint8_t*)(&dynamicParams
) + offsetof(DynamicParams_t
, userParams
) + i
;
*pointerToTgt
= configuration_applyVariableToParam
(src
, 0, 255);
}
}
void setCPUType
(void) { // works only after reset or power on when the registers have default values
#if (MCU_TYPE==atmega644)
CPUType
=ATMEGA644
;
#else
if((UCSR1A
== 0x20) && (UCSR1C
== 0x06)) CPUType
= ATMEGA644P
; // initial Values for 644P after reset
else CPUType
= ATMEGA644
;
#endif
}
/*
* Automatic detection of hardware components is not supported in this development-oriented
* FC firmware. It would go against the point of it: To enable alternative hardware
* configurations with otherwise unsupported components. Instead, one should write
* custom code + adjust constants for the new hardware, and include the relevant code
* from the makefile.
* However - we still do detect the board release. Reason: Otherwise it would be too
* tedious to have to modify the code for how to turn on and off LEDs when deploying
* on different HW version....
*/
void setBoardRelease
(void) {
// the board release is coded via the pull up or down the 2 status LED
PORTB
&= ~
((1 << PORTB1
)|(1 << PORTB0
)); // set tristate
DDRB
&= ~
((1 << DDB0
)|(1 << DDB0
)); // set port direction as input
_delay_loop_2
(1000); // make some delay
switch( PINB
& ((1<<PINB1
)|(1<<PINB0
))) {
case 0x00:
boardRelease
= 10; // 1.0
break;
case 0x01:
boardRelease
= 11; // 1.1 or 1.2
break;
case 0x02:
boardRelease
= 20; // 2.0
break;
case 0x03:
boardRelease
= 13; // 1.3
break;
default:
break;
}
// set LED ports as output
DDRB
|= (1<<DDB1
)|(1<<DDB0
);
RED_OFF
;
GRN_OFF
;
}
void configuration_setNormalFlightMode
(void) {
FlightMode_t flight_flightMode
;
if (dynamicParams.
flightMode < 255/3)
flight_flightMode
= FM_RETURN_TO_LEVEL
;
else if (dynamicParams.
flightMode < 255*2/3)
flight_flightMode
= FM_HEADING_HOLD
;
else
flight_flightMode
= FM_RATE
;
flight_setMode
(flight_flightMode
);
debugOut.
analog[20] = flight_flightMode
;
}
void configuration_setFailsafeFlightMode
(void) {
flight_setMode
(FM_RETURN_TO_LEVEL
);
}
// Called after a change in configuration parameters, as a hook for modules to take over changes.
void configuration_paramSetDidChange
(void) {
// This should be OK to do here as long as we don't change parameters during emergency flight. We don't.
// No longer necessary.
// configuration_setNormalFlightMode();
flight_setParameters
();
output_setParameters
();
// Immediately load changes to output, and also signal the paramset change.
output_init
();
}
void setOtherDefaults
(void) {
// Height Control
staticParams.
airpressureFilterConstant = 8;
staticParams.
airpressureWindowLength = 8;
staticParams.
airpressureDWindowLength = 24;
staticParams.
airpressureAccZCorrection = 128+56;
staticParams.
heightP = 10;
staticParams.
heightD = 30;
staticParams.
heightSetting = 251;
staticParams.
heightControlMaxThrottleChange = 10;
// Control
staticParams.
flightMode = 248;
staticParams.
stickP = 8;
staticParams.
stickD = 0;
staticParams.
stickYawP = 8;
staticParams.
stickThrottleD = 4;
staticParams.
minThrottle = 8;
staticParams.
maxThrottle = 230;
staticParams.
externalControl = 0;
staticParams.
attitudeControl = 0;
staticParams.
dynamicStability = 80; // 0 means: Regulation only by decreasing throttle. 200: Only by increasing.
staticParams.
attGyroP = PID_NORMAL_VALUE
;
staticParams.
attGyroI = PID_NORMAL_VALUE
;
staticParams.
attGyroIMax = 0;
staticParams.
attGyroD = PID_NORMAL_VALUE
* 3/2;
staticParams.
rateGyroP = PID_NORMAL_VALUE
;
staticParams.
rateGyroI = PID_NORMAL_VALUE
;
staticParams.
rateGyroIMax = 0;
staticParams.
rateGyroD = PID_NORMAL_VALUE
;
staticParams.
yawGyroP = PID_NORMAL_VALUE
;
staticParams.
yawGyroI = PID_NORMAL_VALUE
;
staticParams.
yawGyroD = PID_NORMAL_VALUE
;
staticParams.
compassMode = 0;
staticParams.
compassYawCorrection = 64;
staticParams.
compassP = PID_NORMAL_VALUE
;
staticParams.
levelCorrection[0] = 249; // var1
staticParams.
levelCorrection[1] = 250; // var2
// Servos
staticParams.
servoCount = 8;
staticParams.
servoManualMaxSpeed = 10;
for (uint8_t i
=0; i
<2; i
++) {
staticParams.
servoConfigurations[i
].
manualControl = 128;
staticParams.
servoConfigurations[i
].
stabilizationFactor = 100;
staticParams.
servoConfigurations[i
].
flags = 0;
}
// Battery warning and emergency flight
staticParams.
batteryVoltageWarning = 101; // 3.7 each for 3S
staticParams.
emergencyThrottle = 35;
staticParams.
emergencyFlightDuration = 30;
// Outputs
staticParams.
outputFlash[0].
bitmask = 1; //0b01011111;
staticParams.
outputFlash[0].
timing = 15;
staticParams.
outputFlash[1].
bitmask = 3; //0b11110011;
staticParams.
outputFlash[1].
timing = 15;
staticParams.
outputDebugMask = DEBUG_INVERTED
;
staticParams.
outputFlags = /* OUTPUTFLAGS_FLASH_0_AT_BEEP | OUTPUTFLAGS_FLASH_1_AT_BEEP | */ OUTPUTFLAGS_USE_ONBOARD_LEDS
;
staticParams.
naviMode = 0; // free.
staticParams.
heightControlMaxIntegralIn = 125;
staticParams.
heightControlMaxIntegralOut = 75;
staticParams.
heightControlMaxThrottleChange = 75;
staticParams.
heightControlTestOscPeriod = 0;
staticParams.
heightControlTestOscAmplitude = 0;
}
/***************************************************/
/* Default Values for parameter set 1 */
/***************************************************/
void paramSet_default
(uint8_t setnumber
) {
setOtherDefaults
();
for (uint8_t i
=0; i
<8; i
++) {
staticParams.
userParams[i
] = i
;
}
staticParams.
bitConfig = 0;//CFG_GYRO_SATURATION_PREVENTION;
memcpy(staticParams.
name, "Default\0", 6);
}
void IMUConfig_default
(void) {
IMUConfig.
gyroPIDFilterConstant = 1;
IMUConfig.
gyroDWindowLength = 3;
// IMUConfig.gyroDFilterConstant = 1;
IMUConfig.
accFilterConstant = 10;
gyro_setDefaultParameters
();
}
/***************************************************/
/* Default Values for Mixer Table */
/***************************************************/
void outputMixer_default
(void) { // Quadro
uint8_t i
;
// clear mixer table (but preset throttle)
for (i
= 0; i
< NUM_OUTPUTS
; i
++) {
outputMixer
[i
].
flightControls[MIXER_SOURCE_THROTTLE
] = i
< 4 ? (1<<LOG_MOTOR_MIXER_UNIT
) : 0;
outputMixer
[i
].
flightControls[MIXER_SOURCE_PITCH
] = 0;
outputMixer
[i
].
flightControls[MIXER_SOURCE_ROLL
] = 0;
outputMixer
[i
].
flightControls[MIXER_SOURCE_YAW
] = 0;
outputMixer
[i
].
oppositeMotor = (uint8_t)-1;
outputMixer
[i
].
auxSource = (uint8_t)-1;
outputMixer
[i
].
outputType = i
< 4 ? OUTPUT_TYPE_MOTOR
: OUTPUT_TYPE_UNDEFINED
;
outputMixer
[i
].
minValue = i
< 4 ? 1 : 128;
outputMixer
[i
].
maxValue = i
< 4 ? 255 : 128;
}
// default = Quadro+
outputMixer
[0].
flightControls[MIXER_SOURCE_PITCH
] = -(1<<LOG_MOTOR_MIXER_UNIT
);
outputMixer
[0].
flightControls[MIXER_SOURCE_YAW
] = +(1<<LOG_MOTOR_MIXER_UNIT
);
outputMixer
[0].
oppositeMotor = 1;
outputMixer
[1].
flightControls[MIXER_SOURCE_PITCH
] = +(1<<LOG_MOTOR_MIXER_UNIT
);
outputMixer
[1].
flightControls[MIXER_SOURCE_YAW
] = +(1<<LOG_MOTOR_MIXER_UNIT
);
outputMixer
[1].
oppositeMotor = 0;
outputMixer
[2].
flightControls[MIXER_SOURCE_ROLL
] = +(1<<LOG_MOTOR_MIXER_UNIT
);
outputMixer
[2].
flightControls[MIXER_SOURCE_YAW
] = -(1<<LOG_MOTOR_MIXER_UNIT
);
outputMixer
[2].
oppositeMotor = 3;
outputMixer
[3].
flightControls[MIXER_SOURCE_ROLL
] = -(1<<LOG_MOTOR_MIXER_UNIT
);
outputMixer
[3].
flightControls[MIXER_SOURCE_YAW
] = -(1<<LOG_MOTOR_MIXER_UNIT
);
outputMixer
[3].
oppositeMotor = 2;
outputMixer
[8].
outputType = OUTPUT_TYPE_SERVO
;
outputMixer
[8].
auxSource = MIXER_SOURCE_AUX_RCCHANNEL
;
outputMixer
[8].
minValue = 40;
outputMixer
[8].
maxValue = 256-40;
outputMixer
[9].
outputType = OUTPUT_TYPE_SERVO
;
outputMixer
[9].
auxSource = MIXER_SOURCE_AUX_RCCHANNEL
+1;
outputMixer
[9].
minValue = 10;
outputMixer
[9].
maxValue = 256-10;
/*
// default = Quadro X
motorMixer.matrix[0][MIX_PITCH] = +(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[0][MIX_ROLL] = +(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[0][MIX_YAW] = +(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[0][MIX_OPPOSITE_MOTOR] = 1;
motorMixer.matrix[1][MIX_PITCH] = -(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[1][MIX_ROLL] = -(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[1][MIX_YAW] = +(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[1][MIX_OPPOSITE_MOTOR] = 0;
motorMixer.matrix[2][MIX_PITCH] = +(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[2][MIX_ROLL] = -(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[2][MIX_YAW] = -(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[2][MIX_OPPOSITE_MOTOR] = 3;
motorMixer.matrix[3][MIX_PITCH] = -(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[3][MIX_ROLL] = +(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[3][MIX_YAW] = -(1<<LOG_MOTOR_MIXER_SCALER);
motorMixer.matrix[3][MIX_OPPOSITE_MOTOR] = 2;
memcpy(motorMixer.name, "Quadro X\0", 9);
*/
}
/***************************************************/
/* Default Values for R/C Channels */
/***************************************************/
void channelMap_default
(void) {
channelMap.
RCPolarity = 0;
channelMap.
channels[CH_PITCH
] = 1;
channelMap.
channels[CH_ROLL
] = 0;
channelMap.
channels[CH_THROTTLE
] = 2;
channelMap.
channels[CH_YAW
] = 3;
channelMap.
channels[CH_VARIABLES
+ 0] = 4;
channelMap.
channels[CH_VARIABLES
+ 1] = 5;
channelMap.
channels[CH_VARIABLES
+ 2] = 6;
channelMap.
channels[CH_VARIABLES
+ 3] = 7;
}