Subversion Repositories FlightCtrl

Rev

Blame | Last modification | View Log | RSS feed

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-

// Copyright 2010 Michael Smith, all rights reserved.

//      This library is free software; you can redistribute it and / or
//      modify it under the terms of the GNU Lesser General Public
//      License as published by the Free Software Foundation; either
//      version 2.1 of the License, or (at your option) any later version.

// Inspired by:
/****************************************
 * 3D Vector Classes
 * By Bill Perone (billperone@yahoo.com)
 */


//
// 3x3 matrix implementation.
//
// Note that the matrix is organised in row-normal form (the same as
// applies to array indexing).
//
// In addition to the template, this header defines the following types:
//
// Matrix3i             3x3 matrix of signed integers
// Matrix3ui    3x3 matrix of unsigned integers
// Matrix3l             3x3 matrix of signed longs
// Matrix3ul    3x3 matrix of unsigned longs
// Matrix3f             3x3 matrix of signed floats
//

#ifndef MATRIX3_H
#define MATRIX3_H

#include "Vector3.h"
#include "Constants.h"

// 3x3 matrix with elements of type T
template <typename T>
class Matrix3 {
public:

        // Vectors comprising the rows of the matrix
        Vector3<T>      a, b, c;

        // trivial ctor
        // note that the Vector3 ctor will zero the vector elements
        Matrix3<T>() {}

        // setting ctor
        Matrix3<T>(const Vector3<T> a0, const Vector3<T> b0, const Vector3<T> c0): a(a0), b(b0), c(c0) {}

        // setting ctor
        Matrix3<T>(const T ax, const T ay, const T az, const T bx, const T by, const T bz, const T cx, const T cy, const T cz): a(ax,ay,az), b(bx,by,bz), c(cx,cy,cz) {}

        // function call operator
        void operator () (const Vector3<T> a0, const Vector3<T> b0, const Vector3<T> c0)
        {       a = a0; b = b0; c = c0;  }

        // test for equality
        bool operator == (const Matrix3<T> &m)
        {       return (a==m.a && b==m.b && c==m.c);    }

        // test for inequality
        bool operator != (const Matrix3<T> &m)
        {       return (a!=m.a || b!=m.b || c!=m.c);    }

        // negation
        Matrix3<T> operator - (void) const
        {       return Matrix3<T>(-a,-b,-c);    }

        // addition
        Matrix3<T> operator + (const Matrix3<T> &m) const
        {   return Matrix3<T>(a+m.a, b+m.b, c+m.c);      }
        Matrix3<T> &operator += (const Matrix3<T> &m)
        {       return *this = *this + m;       }

        // subtraction
        Matrix3<T> operator - (const Matrix3<T> &m) const
        {   return Matrix3<T>(a-m.a, b-m.b, c-m.c);      }
        Matrix3<T> &operator -= (const Matrix3<T> &m)
        {       return *this = *this - m;       }

        // uniform scaling
        Matrix3<T> operator * (const T num) const
        {       return Matrix3<T>(a*num, b*num, c*num); }
        Matrix3<T> &operator *= (const T num)
        {       return *this = *this * num;     }
         Matrix3<T> operator / (const T num) const
        {       return Matrix3<T>(a/num, b/num, c/num); }
        Matrix3<T> &operator /= (const T num)
        {       return *this = *this / num;     }

        // multiplication by a vector
        Vector3<T> operator *(const Vector3<T> &v) const;

        // multiplication of transpose by a vector
        Vector3<T> mul_transpose(const Vector3<T> &v) const;

        // multiplication by another Matrix3<T>
        Matrix3<T> operator *(const Matrix3<T> &m) const;

        Matrix3<T> &operator *=(const Matrix3<T> &m)
        {       return *this = *this * m;       }

        // transpose the matrix
        Matrix3<T> transposed(void) const
        {
                return Matrix3<T>(Vector3<T>(a.x, b.x, c.x),
                                                  Vector3<T>(a.y, b.y, c.y),
                                                  Vector3<T>(a.z, b.z, c.z));
        }
        Matrix3<T> transpose(void)
        {       return *this = transposed();    }

        // zero the matrix
        void zero(void) {
                a.x = a.y = a.z = 0;
                b.x = b.y = b.z = 0;
                c.x = c.y = c.z = 0;
        }

        // setup the identity matrix
        void identity(void) {
                a.x = b.y = c.z = 1;
                a.y = a.z = 0;
                b.x = b.z = 0;
                c.x = c.y = 0;
        }

        // check if any elements are NAN
        bool is_nan(void)
                {   return a.is_nan() || b.is_nan() || c.is_nan(); }

        // fill in the matrix with a standard rotation
        void rotation(enum Rotation rotation);

    // create a rotation matrix from Euler angles
        void from_euler(float roll, float pitch, float yaw);

    // create eulers from a rotation matrix
        void to_euler(float *roll, float *pitch, float *yaw);

    // apply an additional rotation from a body frame gyro vector
    // to a rotation matrix.
        void rotate(const Vector3<T> &g);
};

typedef Matrix3<int16_t>                Matrix3i;
typedef Matrix3<uint16_t>               Matrix3ui;
typedef Matrix3<int32_t>                Matrix3l;
typedef Matrix3<uint32_t>               Matrix3ul;
typedef Matrix3<float>                  Matrix3f;

#endif // MATRIX3_H