Rev 2099 |
Go to most recent revision |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <avr/pgmspace.h>
#include <stdarg.h>
#include <string.h>
#include "eeprom.h"
#include "timer0.h"
#include "uart0.h"
#include "rc.h"
#include "externalControl.h"
#include "output.h"
#include "attitude.h"
#ifdef USE_MK3MAG
#include "mk3mag.h"
#endif
#define FC_ADDRESS 1
#define NC_ADDRESS 2
#define MK3MAG_ADDRESS 3
#define FALSE 0
#define TRUE 1
//int8_t test __attribute__ ((section (".noinit")));
uint8_t request_VerInfo
= FALSE
;
uint8_t request_ExternalControl
= FALSE
;
uint8_t request_Display
= FALSE
;
uint8_t request_Display1
= FALSE
;
uint8_t request_DebugData
= FALSE
;
uint8_t request_Data3D
= FALSE
;
uint8_t request_DebugLabel
= 255;
uint8_t request_PPMChannels
= FALSE
;
uint8_t request_OutputTest
= FALSE
;
uint8_t request_variables
= FALSE
;
uint8_t DisplayLine
= 0;
volatile uint8_t txd_buffer
[TXD_BUFFER_LEN
];
volatile uint8_t rxd_buffer_locked
= FALSE
;
volatile uint8_t rxd_buffer
[RXD_BUFFER_LEN
];
volatile uint8_t txd_complete
= TRUE
;
volatile uint8_t ReceivedBytes
= 0;
volatile uint8_t *pRxData
= 0;
volatile uint8_t RxDataLen
= 0;
uint8_t outputTestActive
= 0;
uint8_t outputTest
[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
uint8_t ConfirmFrame
;
typedef struct {
int16_t Heading
;
}__attribute__
((packed
)) Heading_t
;
DebugOut_t DebugOut
;
Data3D_t Data3D
;
UART_VersionInfo_t UART_VersionInfo
;
uint16_t DebugData_Timer
;
uint16_t Data3D_Timer
;
uint16_t DebugData_Interval
= 500; // in 1ms
uint16_t Data3D_Interval
= 0; // in 1ms
#ifdef USE_MK3MAG
int16_t Compass_Timer
;
#endif
// keep lables in flash to save 512 bytes of sram space
const prog_uint8_t ANALOG_LABEL
[32][16] = {
//1234567890123456
"AnglePitch ", //0
"AngleRoll ",
"AngleYaw ",
"GyroPitch(PID) ",
"GyroRoll(PID) ",
"GyroYaw ", //5
"GyroFactorPitch ",
"GyroFactorRoll ",
"GyroFactorYaw ",
"GyroDPitch ",
"GyroDRoll ",//10
"GyroDYaw ",
"Pitch Term ",
"Roll Term ",
"Throttle Term ",
"Yaw Term ", //15
"0th O Corr pitch",
"0th O Corr roll ",
"ControlIntePitch",
"ControlInteRoll ",
"UBat ", //20
"hoverThrottle ",
"IPartPitch ", // OK
"IPartRoll ",
"S3 (THROTTLE) ",
"S4 (RUDDER) ", // OK //25
"ControlYaw ",
"Airpress. Range ", // OK
"DriftCompPitch ",
"DriftCompRoll ",
"AirpressFiltered", // MISSING //30
"AirpressADC " };
/****************************************************************/
/* Initialization of the USART0 */
/****************************************************************/
void usart0_Init
(void) {
uint8_t sreg
= SREG
;
uint16_t ubrr
= (uint16_t) ((uint32_t) SYSCLK
/ (8 * USART0_BAUD
) - 1);
// disable all interrupts before configuration
cli
();
// disable RX-Interrupt
UCSR0B
&= ~
(1 << RXCIE0
);
// disable TX-Interrupt
UCSR0B
&= ~
(1 << TXCIE0
);
// set direction of RXD0 and TXD0 pins
// set RXD0 (PD0) as an input pin
PORTD
|= (1 << PORTD0
);
DDRD
&= ~
(1 << DDD0
);
// set TXD0 (PD1) as an output pin
PORTD
|= (1 << PORTD1
);
DDRD
|= (1 << DDD1
);
// USART0 Baud Rate Register
// set clock divider
UBRR0H
= (uint8_t) (ubrr
>> 8);
UBRR0L
= (uint8_t) ubrr
;
// USART0 Control and Status Register A, B, C
// enable double speed operation in
UCSR0A
|= (1 << U2X0
);
// enable receiver and transmitter in
UCSR0B
= (1 << TXEN0
) | (1 << RXEN0
);
// set asynchronous mode
UCSR0C
&= ~
(1 << UMSEL01
);
UCSR0C
&= ~
(1 << UMSEL00
);
// no parity
UCSR0C
&= ~
(1 << UPM01
);
UCSR0C
&= ~
(1 << UPM00
);
// 1 stop bit
UCSR0C
&= ~
(1 << USBS0
);
// 8-bit
UCSR0B
&= ~
(1 << UCSZ02
);
UCSR0C
|= (1 << UCSZ01
);
UCSR0C
|= (1 << UCSZ00
);
// flush receive buffer
while (UCSR0A
& (1 << RXC0
))
UDR0
;
// enable interrupts at the end
// enable RX-Interrupt
UCSR0B
|= (1 << RXCIE0
);
// enable TX-Interrupt
UCSR0B
|= (1 << TXCIE0
);
// initialize the debug timer
DebugData_Timer
= setDelay
(DebugData_Interval
);
// unlock rxd_buffer
rxd_buffer_locked
= FALSE
;
pRxData
= 0;
RxDataLen
= 0;
// no bytes to send
txd_complete
= TRUE
;
UART_VersionInfo.
SWMajor = VERSION_MAJOR
;
UART_VersionInfo.
SWMinor = VERSION_MINOR
;
UART_VersionInfo.
SWPatch = VERSION_PATCH
;
UART_VersionInfo.
ProtoMajor = VERSION_SERIAL_MAJOR
;
UART_VersionInfo.
ProtoMinor = VERSION_SERIAL_MINOR
;
// restore global interrupt flags
SREG
= sreg
;
}
/****************************************************************/
/* USART0 transmitter ISR */
/****************************************************************/
ISR
(USART0_TX_vect
)
{
static uint16_t ptr_txd_buffer
= 0;
uint8_t tmp_tx
;
if (!txd_complete
) { // transmission not completed
ptr_txd_buffer
++; // die [0] wurde schon gesendet
tmp_tx
= txd_buffer
[ptr_txd_buffer
];
// if terminating character or end of txd buffer was reached
if ((tmp_tx
== '\r') || (ptr_txd_buffer
== TXD_BUFFER_LEN
)) {
ptr_txd_buffer
= 0; // reset txd pointer
txd_complete
= 1; // stop transmission
}
UDR0
= tmp_tx
; // send current byte will trigger this ISR again
}
// transmission completed
else
ptr_txd_buffer
= 0;
}
/****************************************************************/
/* USART0 receiver ISR */
/****************************************************************/
ISR
(USART0_RX_vect
)
{
static uint16_t crc
;
static uint8_t ptr_rxd_buffer
= 0;
uint8_t crc1
, crc2
;
uint8_t c
;
c
= UDR0
; // catch the received byte
if (rxd_buffer_locked
)
return; // if rxd buffer is locked immediately return
// the rxd buffer is unlocked
if ((ptr_rxd_buffer
== 0) && (c
== '#')) { // if rxd buffer is empty and syncronisation character is received
rxd_buffer
[ptr_rxd_buffer
++] = c
; // copy 1st byte to buffer
crc
= c
; // init crc
}
#if 0
else if (ptr_rxd_buffer
== 1) { // handle address
rxd_buffer
[ptr_rxd_buffer
++] = c
; // copy byte to rxd buffer
crc
+= c
; // update crc
}
#endif
else if (ptr_rxd_buffer
< RXD_BUFFER_LEN
) { // collect incomming bytes
if (c
!= '\r') { // no termination character
rxd_buffer
[ptr_rxd_buffer
++] = c
; // copy byte to rxd buffer
crc
+= c
; // update crc
} else { // termination character was received
// the last 2 bytes are no subject for checksum calculation
// they are the checksum itself
crc
-= rxd_buffer
[ptr_rxd_buffer
- 2];
crc
-= rxd_buffer
[ptr_rxd_buffer
- 1];
// calculate checksum from transmitted data
crc
%= 4096;
crc1
= '=' + crc
/ 64;
crc2
= '=' + crc
% 64;
// compare checksum to transmitted checksum bytes
if ((crc1
== rxd_buffer
[ptr_rxd_buffer
- 2]) && (crc2
== rxd_buffer
[ptr_rxd_buffer
- 1])) {
// checksum valid
rxd_buffer
[ptr_rxd_buffer
] = '\r'; // set termination character
ReceivedBytes
= ptr_rxd_buffer
+ 1;// store number of received bytes
rxd_buffer_locked
= TRUE
; // lock the rxd buffer
// if 2nd byte is an 'R' enable watchdog that will result in an reset
if (rxd_buffer
[2] == 'R') {
wdt_enable
(WDTO_250MS
);
} // Reset-Commando
} else { // checksum invalid
rxd_buffer_locked
= FALSE
; // unlock rxd buffer
}
ptr_rxd_buffer
= 0; // reset rxd buffer pointer
}
} else { // rxd buffer overrun
ptr_rxd_buffer
= 0; // reset rxd buffer
rxd_buffer_locked
= FALSE
; // unlock rxd buffer
}
}
// --------------------------------------------------------------------------
void AddCRC
(uint16_t datalen
) {
uint16_t tmpCRC
= 0, i
;
for (i
= 0; i
< datalen
; i
++) {
tmpCRC
+= txd_buffer
[i
];
}
tmpCRC
%= 4096;
txd_buffer
[i
++] = '=' + tmpCRC
/ 64;
txd_buffer
[i
++] = '=' + tmpCRC
% 64;
txd_buffer
[i
++] = '\r';
txd_complete
= FALSE
;
UDR0
= txd_buffer
[0]; // initiates the transmittion (continued in the TXD ISR)
}
// --------------------------------------------------------------------------
// application example:
// SendOutData('A', FC_ADDRESS, 2, (uint8_t *)&request_DebugLabel, sizeof(request_DebugLabel), label, 16);
/*
void SendOutData(uint8_t cmd, uint8_t addr, uint8_t numofbuffers, ...) { // uint8_t *pdata, uint8_t len, ...
va_list ap;
uint16_t txd_bufferIndex = 0;
uint8_t *currentBuffer;
uint8_t currentBufferIndex;
uint16_t lengthOfCurrentBuffer;
uint8_t shift = 0;
txd_buffer[txd_bufferIndex++] = '#'; // Start character
txd_buffer[txd_bufferIndex++] = 'a' + addr; // Address (a=0; b=1,...)
txd_buffer[txd_bufferIndex++] = cmd; // Command
va_start(ap, numofbuffers);
while(numofbuffers) {
currentBuffer = va_arg(ap, uint8_t*);
lengthOfCurrentBuffer = va_arg(ap, int);
currentBufferIndex = 0;
// Encode data: 3 bytes of data are encoded into 4 bytes,
// where the 2 most significant bits are both 0.
while(currentBufferIndex != lengthOfCurrentBuffer) {
if (!shift) txd_buffer[txd_bufferIndex] = 0;
txd_buffer[txd_bufferIndex] |= currentBuffer[currentBufferIndex] >> (shift + 2);
txd_buffer[++txd_bufferIndex] = (currentBuffer[currentBufferIndex] << (4 - shift)) & 0b00111111;
shift += 2;
if (shift == 6) { shift=0; txd_bufferIndex++; }
currentBufferIndex++;
}
}
// If the number of data bytes was not divisible by 3, stuff
// with 0 pseudodata until length is again divisible by 3.
if (shift == 2) {
// We need to stuff with zero bytes at the end.
txd_buffer[txd_bufferIndex] &= 0b00110000;
txd_buffer[++txd_bufferIndex] = 0;
shift = 4;
}
if (shift == 4) {
// We need to stuff with zero bytes at the end.
txd_buffer[txd_bufferIndex++] &= 0b00111100;
txd_buffer[txd_bufferIndex] = 0;
}
va_end(ap);
AddCRC(pt); // add checksum after data block and initates the transmission
}
*/
void SendOutData
(uint8_t cmd
, uint8_t addr
, uint8_t numofbuffers
, ...
) { // uint8_t *pdata, uint8_t len, ...
va_list ap
;
uint16_t pt
= 0;
uint8_t a
, b
, c
;
uint8_t ptr
= 0;
uint8_t *pdata
= 0;
int len
= 0;
txd_buffer
[pt
++] = '#'; // Start character
txd_buffer
[pt
++] = 'a' + addr
; // Address (a=0; b=1,...)
txd_buffer
[pt
++] = cmd
; // Command
va_start(ap
, numofbuffers
);
if (numofbuffers
) {
pdata
= va_arg(ap
, uint8_t*);
len
= va_arg(ap
, int);
ptr
= 0;
numofbuffers
--;
}
while (len
) {
if (len
) {
a
= pdata
[ptr
++];
len
--;
if ((!len
) && numofbuffers
) {
pdata
= va_arg(ap
, uint8_t*);
len
= va_arg(ap
, int);
ptr
= 0;
numofbuffers
--;
}
} else
a
= 0;
if (len
) {
b
= pdata
[ptr
++];
len
--;
if ((!len
) && numofbuffers
) {
pdata
= va_arg(ap
, uint8_t*);
len
= va_arg(ap
, int);
ptr
= 0;
numofbuffers
--;
}
} else
b
= 0;
if (len
) {
c
= pdata
[ptr
++];
len
--;
if ((!len
) && numofbuffers
) {
pdata
= va_arg(ap
, uint8_t*);
len
= va_arg(ap
, int);
ptr
= 0;
numofbuffers
--;
}
} else
c
= 0;
txd_buffer
[pt
++] = '=' + (a
>> 2);
txd_buffer
[pt
++] = '=' + (((a
& 0x03) << 4) | ((b
& 0xf0) >> 4));
txd_buffer
[pt
++] = '=' + (((b
& 0x0f) << 2) | ((c
& 0xc0) >> 6));
txd_buffer
[pt
++] = '=' + (c
& 0x3f);
}
va_end(ap
);
AddCRC
(pt
); // add checksum after data block and initates the transmission
}
// --------------------------------------------------------------------------
void Decode64
(void) {
uint8_t a
, b
, c
, d
;
uint8_t x
, y
, z
;
uint8_t ptrIn
= 3;
uint8_t ptrOut
= 3;
uint8_t len
= ReceivedBytes
- 6;
while (len
) {
a
= rxd_buffer
[ptrIn
++] - '=';
b
= rxd_buffer
[ptrIn
++] - '=';
c
= rxd_buffer
[ptrIn
++] - '=';
d
= rxd_buffer
[ptrIn
++] - '=';
//if(ptrIn > ReceivedBytes - 3) break;
x
= (a
<< 2) | (b
>> 4);
y
= ((b
& 0x0f) << 4) | (c
>> 2);
z
= ((c
& 0x03) << 6) | d
;
if (len
--)
rxd_buffer
[ptrOut
++] = x
;
else
break;
if (len
--)
rxd_buffer
[ptrOut
++] = y
;
else
break;
if (len
--)
rxd_buffer
[ptrOut
++] = z
;
else
break;
}
pRxData
= &rxd_buffer
[3];
RxDataLen
= ptrOut
- 3;
}
// --------------------------------------------------------------------------
void usart0_ProcessRxData
(void) {
// We control the outputTestActive var from here: Count it down.
if (outputTestActive
)
outputTestActive
--;
// if data in the rxd buffer are not locked immediately return
if (!rxd_buffer_locked
)
return;
uint8_t tempchar1
, tempchar2
;
Decode64
(); // decode data block in rxd_buffer
switch (rxd_buffer
[1] - 'a') {
case FC_ADDRESS
:
switch (rxd_buffer
[2]) {
#ifdef USE_MK3MAG
case 'K':// compass value
compassHeading
= ((Heading_t
*)pRxData
)->Heading
;
// compassOffCourse = ((540 + compassHeading - compassCourse) % 360) - 180;
break;
#endif
case 't': // motor test
if (RxDataLen
> 20) {
memcpy(&outputTest
[0], (uint8_t*) pRxData
, sizeof(outputTest
));
} else {
memcpy(&outputTest
[0], (uint8_t*) pRxData
, 4);
}
outputTestActive
= 255;
externalControlActive
= 255;
break;
case 'n':// "Get Mixer Table
while (!txd_complete
)
; // wait for previous frame to be sent
SendOutData
('N', FC_ADDRESS
, 1, (uint8_t *) &Mixer
, sizeof(Mixer
));
break;
case 'm':// "Set Mixer Table
if (pRxData
[0] == EEMIXER_REVISION
) {
memcpy(&Mixer
, (uint8_t*) pRxData
, sizeof(Mixer
));
MixerTable_WriteToEEProm
();
while (!txd_complete
)
; // wait for previous frame to be sent
tempchar1
= 1;
} else {
tempchar1
= 0;
}
SendOutData
('M', FC_ADDRESS
, 1, &tempchar1
, 1);
break;
case 'p': // get PPM channels
request_PPMChannels
= TRUE
;
break;
case 'q':// request settings
if (pRxData
[0] == 0xFF) {
pRxData
[0] = GetParamByte
(PID_ACTIVE_SET
);
}
// limit settings range
if (pRxData
[0] < 1)
pRxData
[0] = 1; // limit to 1
else if (pRxData
[0] > 5)
pRxData
[0] = 5; // limit to 5
// load requested parameter set
ParamSet_ReadFromEEProm
(pRxData
[0]);
tempchar1
= pRxData
[0];
tempchar2
= EEPARAM_REVISION
;
while (!txd_complete
)
; // wait for previous frame to be sent
SendOutData
('Q', FC_ADDRESS
, 3, &tempchar1
, sizeof(tempchar1
),
&tempchar2
, sizeof(tempchar2
), (uint8_t *) &staticParams
,
sizeof(staticParams
));
break;
case 's': // save settings
if (!(MKFlags
& MKFLAG_MOTOR_RUN
)) // save settings only if motors are off
{
if ((1 <= pRxData
[0]) && (pRxData
[0] <= 5) && (pRxData
[1]
== EEPARAM_REVISION
)) // check for setting to be in range and version of settings
{
memcpy(&staticParams
, (uint8_t*) &pRxData
[2], sizeof(staticParams
));
ParamSet_WriteToEEProm
(pRxData
[0]);
tempchar1
= getActiveParamSet
();
beepNumber
(tempchar1
);
} else {
tempchar1
= 0; //indicate bad data
}
while (!txd_complete
)
; // wait for previous frame to be sent
SendOutData
('S', FC_ADDRESS
, 1, &tempchar1
, sizeof(tempchar1
));
}
break;
default:
//unsupported command received
break;
} // case FC_ADDRESS:
default: // any Slave Address
switch (rxd_buffer
[2]) {
case 'a':// request for labels of the analog debug outputs
request_DebugLabel
= pRxData
[0];
if (request_DebugLabel
> 31)
request_DebugLabel
= 31;
externalControlActive
= 255;
break;
case 'b': // submit extern control
memcpy(&externalControl
, (uint8_t*) pRxData
, sizeof(externalControl
));
ConfirmFrame
= externalControl.
frame;
externalControlActive
= 255;
break;
case 'h':// request for display columns
externalControlActive
= 255;
request_Display
= TRUE
;
break;
case 'l':// request for display columns
externalControlActive
= 255;
request_Display1
= TRUE
;
break;
case 'v': // request for version and board release
request_VerInfo
= TRUE
;
break;
case 'x':
request_variables
= TRUE
;
break;
case 'g':// get external control data
request_ExternalControl
= TRUE
;
break;
case 'd': // request for the debug data
DebugData_Interval
= (uint16_t) pRxData
[0] * 10;
if (DebugData_Interval
> 0)
request_DebugData
= TRUE
;
break;
case 'c': // request for the 3D data
Data3D_Interval
= (uint16_t) pRxData
[0] * 10;
if (Data3D_Interval
> 0)
request_Data3D
= TRUE
;
break;
default:
//unsupported command received
break;
}
break; // default:
}
// unlock the rxd buffer after processing
pRxData
= 0;
RxDataLen
= 0;
rxd_buffer_locked
= FALSE
;
}
/************************************************************************/
/* Routine für die Serielle Ausgabe */
/************************************************************************/
int16_t uart_putchar
(int8_t c
) {
if (c
== '\n')
uart_putchar
('\r');
// wait until previous character was send
loop_until_bit_is_set
(UCSR0A
, UDRE0
);
// send character
UDR0
= c
;
return (0);
}
//---------------------------------------------------------------------------------------------
void usart0_TransmitTxData
(void) {
if (!txd_complete
)
return;
if (request_VerInfo
&& txd_complete
) {
SendOutData
('V', FC_ADDRESS
, 1, (uint8_t *) &UART_VersionInfo
,
sizeof(UART_VersionInfo
));
request_VerInfo
= FALSE
;
}
if (request_Display
&& txd_complete
) {
//LCD_PrintMenu();
SendOutData
('H', FC_ADDRESS
, 0);
DisplayLine
++;
if (DisplayLine
>= 4)
DisplayLine
= 0;
request_Display
= FALSE
;
}
if (request_Display1
&& txd_complete
) {
// LCD_PrintMenu();
SendOutData
('L', FC_ADDRESS
, 0);
request_Display1
= FALSE
;
}
if (request_DebugLabel
!= 0xFF) { // Texte für die Analogdaten
uint8_t label
[16]; // local sram buffer
memcpy_P
(label
, ANALOG_LABEL
[request_DebugLabel
], 16); // read lable from flash to sram buffer
SendOutData
('A', FC_ADDRESS
, 2, (uint8_t *) &request_DebugLabel
,
sizeof(request_DebugLabel
), label
, 16);
request_DebugLabel
= 0xFF;
}
if (ConfirmFrame
&& txd_complete
) { // Datensatz ohne CRC bestätigen
SendOutData
('B', FC_ADDRESS
, 1, (uint8_t*) &ConfirmFrame
,
sizeof(ConfirmFrame
));
ConfirmFrame
= 0;
}
if (((DebugData_Interval
&& checkDelay
(DebugData_Timer
)) || request_DebugData
)
&& txd_complete
) {
SendOutData
('D', FC_ADDRESS
, 1, (uint8_t *) &DebugOut
, sizeof(DebugOut
));
DebugData_Timer
= setDelay
(DebugData_Interval
);
request_DebugData
= FALSE
;
}
if (((Data3D_Interval
&& checkDelay
(Data3D_Timer
)) || request_Data3D
)
&& txd_complete
) {
SendOutData
('C', FC_ADDRESS
, 1, (uint8_t *) &Data3D
, sizeof(Data3D
));
Data3D.
AngleNick = (int16_t) ((10 * angle
[PITCH
])
/ GYRO_DEG_FACTOR_PITCHROLL
); // convert to multiple of 0.1°
Data3D.
AngleRoll = (int16_t) ((10 * angle
[ROLL
])
/ GYRO_DEG_FACTOR_PITCHROLL
); // convert to multiple of 0.1°
Data3D.
Heading = (int16_t) ((10 * yawGyroHeading
) / GYRO_DEG_FACTOR_YAW
); // convert to multiple of 0.1°
Data3D_Timer
= setDelay
(Data3D_Interval
);
request_Data3D
= FALSE
;
}
if (request_ExternalControl
&& txd_complete
) {
SendOutData
('G', FC_ADDRESS
, 1, (uint8_t *) &externalControl
,
sizeof(externalControl
));
request_ExternalControl
= FALSE
;
}
#ifdef USE_MK3MAG
if((checkDelay
(Compass_Timer
)) && txd_complete
) {
ToMk3Mag.
Attitude[0] = (int16_t)((10 * angle
[PITCH
]) / GYRO_DEG_FACTOR_PITCHROLL
); // approx. 0.1 deg
ToMk3Mag.
Attitude[1] = (int16_t)((10 * angle
[ROLL
]) / GYRO_DEG_FACTOR_PITCHROLL
); // approx. 0.1 deg
ToMk3Mag.
UserParam[0] = dynamicParams.
UserParams[0];
ToMk3Mag.
UserParam[1] = dynamicParams.
UserParams[1];
ToMk3Mag.
CalState = compassCalState
;
SendOutData
('w', MK3MAG_ADDRESS
, 1,(uint8_t *) &ToMk3Mag
,sizeof(ToMk3Mag
));
// the last state is 5 and should be send only once to avoid multiple flash writing
if(compassCalState
> 4) compassCalState
= 0;
Compass_Timer
= setDelay
(99);
}
#endif
if (request_OutputTest
&& txd_complete
) {
SendOutData
('T', FC_ADDRESS
, 0);
request_OutputTest
= FALSE
;
}
if (request_PPMChannels
&& txd_complete
) {
SendOutData
('P', FC_ADDRESS
, 1, (uint8_t *) &PPM_in
, sizeof(PPM_in
));
request_PPMChannels
= FALSE
;
}
if (request_variables
&& txd_complete
) {
SendOutData
('X', FC_ADDRESS
, 1, (uint8_t *) &variables
, sizeof(variables
));
request_variables
= FALSE
;
}
}