Rev 2132 |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include "eeprom.h"
#include "analog.h"
#include "controlMixer.h"
#include "timer0.h"
#include "output.h"
#ifdef DO_PROFILE
volatile uint32_t global10kHzClock = 0;
volatile int32_t profileTimers[NUM_PROFILE_TIMERS];
volatile int32_t runningProfileTimers[NUM_PROFILE_TIMERS];
#endif
volatile uint32_t globalMillisClock = 0;
volatile uint8_t runFlightControl = 0;
volatile uint16_t beepTime = 0;
volatile uint16_t beepModulation = BEEP_MODULATION_NONE;
/*****************************************************
* Initialize Timer 0
*****************************************************/
// timer 0 is used for the PWM generation to control the offset voltage at the air pressure sensor
// Its overflow interrupt routine is used to generate the beep signal and the flight control motor update rate
void timer0_init(void) {
uint8_t sreg = SREG;
// disable all interrupts before reconfiguration
cli();
// Configure speaker port as output.
if (boardRelease == 10) { // Speaker at PD2
DDRD |= (1 << DDD2);
PORTD &= ~(1 << PORTD2);
} else { // Speaker at PC7
DDRC |= (1 << DDC7);
PORTC &= ~(1 << PORTC7);
}
// set PB3 and PB4 as output for the PWM used as offset for the pressure sensor
DDRB |= (1 << DDB4) | (1 << DDB3);
PORTB &= ~((1 << PORTB4) | (1 << PORTB3));
// Timer/Counter 0 Control Register A
// Waveform Generation Mode is Fast PWM (Bits WGM02 = 0, WGM01 = 1, WGM00 = 1)
// Clear OC0A on Compare Match, set OC0A at BOTTOM, noninverting PWM (Bits COM0A1 = 1, COM0A0 = 0)
// Clear OC0B on Compare Match, set OC0B at BOTTOM, (Bits COM0B1 = 1, COM0B0 = 0)
TCCR0A &= ~((1 << COM0A0) | (1 << COM0B0));
TCCR0A |= (1 << COM0A1) | (1 << COM0B1) | (1 << WGM01) | (1 << WGM00);
// Timer/Counter 0 Control Register B
// set clock divider for timer 0 to SYSCLOCK/8 = 20MHz/8 = 2.5MHz
// i.e. the timer increments from 0x00 to 0xFF with an update rate of 2.5 MHz
// hence the timer overflow interrupt frequency is 2.5 MHz/256 = 9.765 kHz
// divider 8 (Bits CS02 = 0, CS01 = 1, CS00 = 0)
TCCR0B &= ~((1 << FOC0A) | (1 << FOC0B) | (1 << WGM02));
TCCR0B = (TCCR0B & 0xF8) | (0 << CS02) | (1 << CS01) | (0 << CS00);
// initialize the Output Compare Register A & B used for PWM generation on port PB3 & PB4
OCR0A = 0; // for PB3
OCR0B = 120; // for PB4
// init Timer/Counter 0 Register
TCNT0 = 0;
// Timer/Counter 0 Interrupt Mask Register
// enable timer overflow interrupt only
TIMSK0 &= ~((1 << OCIE0B) | (1 << OCIE0A));
TIMSK0 |= (1 << TOIE0);
#ifdef DO_PROFILE
for (uint8_t i=0; i<NUM_PROFILE_TIMERS; i++) {
profileTimers[i] = 0;
}
#endif
SREG = sreg;
}
/*****************************************************/
/* Interrupt Routine of Timer 0 */
/*****************************************************/
ISR(TIMER0_OVF_vect) { // 9765.625 Hz
static uint8_t cnt_1ms = 1, cnt = 0;
uint8_t beeperOn = 0;
#ifdef DO_PROFILE
global10kHzClock++;
#endif
if (!cnt--) { // every 10th run (9.765625kHz/10 = 976.5625Hz)
cnt = 9;
cnt_1ms ^= 1;
if (!cnt_1ms) {
runFlightControl = 1; // every 2nd run (976.5625 Hz/2 = 488.28125 Hz)
}
globalMillisClock++; // increment millisecond counter
}
// beeper on if duration is not over
if (beepTime) {
beepTime--; // decrement BeepTime
if (beepTime & beepModulation)
beeperOn = 1;
else
beeperOn = 0;
} else { // beeper off if duration is over
beeperOn = 0;
beepModulation = BEEP_MODULATION_NONE;
}
if (beeperOn) {
// set speaker port to high.
if (boardRelease == 10)
PORTD |= (1 << PORTD2); // Speaker at PD2
else
PORTC |= (1 << PORTC7); // Speaker at PC7
} else { // beeper is off
// set speaker port to low
if (boardRelease == 10)
PORTD &= ~(1 << PORTD2);// Speaker at PD2
else
PORTC &= ~(1 << PORTC7);// Speaker at PC7
}
#ifdef USE_MK3MAG
// update compass value if this option is enabled in the settings
if (staticParams.bitConfig & CFG_COMPASS_ENABLED) {
MK3MAG_periodicTask(); // read out mk3mag pwm
}
#endif
}
// -----------------------------------------------------------------------
uint16_t setDelay(uint16_t t) {
return (globalMillisClock + t - 1);
}
// -----------------------------------------------------------------------
int8_t checkDelay(uint16_t t) {
return (((t - globalMillisClock) & 0x8000) >> 8); // check sign bit
}
// -----------------------------------------------------------------------
void delay_ms(uint16_t w) {
uint16_t t_stop = setDelay(w);
while (!checkDelay(t_stop))
wdt_reset();
}
// -----------------------------------------------------------------------
void delay_ms_with_adc_measurement(uint16_t w, uint8_t stop) {
uint16_t t_stop;
t_stop = setDelay(w);
while (!checkDelay(t_stop)) {
wdt_reset();
if (analogDataReady) {
analog_update();
startAnalogConversionCycle();
}
}
if (stop) {
// Wait for new samples to get prepared but do not restart AD conversion after that!
// Caller MUST to that.
while (!analogDataReady) wdt_reset();
}
}
#ifdef DO_PROFILE
void startProfileTimer(uint8_t timer) {
runningProfileTimers[timer] = global10kHzClock++;
}
void stopProfileTimer(uint8_t timer) {
int32_t t = global10kHzClock++ - runningProfileTimers[timer];
profileTimers[timer] += t;
}
void debugProfileTimers(uint8_t index) {
for (uint8_t i=0; i<NUM_PROFILE_TIMERS; i++) {
uint16_t tenths = profileTimers[i] / 1000L;
debugOut.analog[i+index] = tenths;
}
uint16_t tenths = global10kHzClock / 1000L;
debugOut.analog[index + NUM_PROFILE_TIMERS] = tenths;
}
#endif;