Rev 2102 |
Go to most recent revision |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
#include <stdlib.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include "rc.h"
#include "uart0.h"
#include "controlMixer.h"
#include "configuration.h"
#include "commands.h"
// The channel array is 1-based. The 0th entry is not used.
volatile int16_t PPM_in
[MAX_CHANNELS
];
volatile uint8_t NewPpmData
= 1;
volatile int16_t RC_Quality
= 0;
int16_t RC_PRTY
[4];
uint8_t lastRCCommand
= COMMAND_NONE
;
uint8_t commandTimer
= 0;
// Useless. Just trim on the R/C instead.
// int16_t stickOffsetPitch = 0, stickOffsetRoll = 0;
/***************************************************************
* 16bit timer 1 is used to decode the PPM-Signal
***************************************************************/
void RC_Init
(void) {
uint8_t sreg
= SREG
;
// disable all interrupts before reconfiguration
cli
();
// PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
DDRD
&= ~
(1 << DDD6
);
PORTD
|= (1 << PORTD6
);
// Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
// set as output
DDRD
|= (1 << DDD5
) | (1 << DDD4
) | (1 << DDD3
);
// low level
PORTD
&= ~
((1 << PORTD5
) | (1 << PORTD4
) | (1 << PORTD3
));
// PD3 can't be used if 2nd UART is activated
// because TXD1 is at that port
if (CPUType
!= ATMEGA644P
) {
DDRD
|= (1 << PORTD3
);
PORTD
&= ~
(1 << PORTD3
);
}
// Timer/Counter1 Control Register A, B, C
// Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
// Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
// Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
// Enable input capture noise cancler (bit: ICNC1=1)
// Trigger on positive edge of the input capture pin (bit: ICES1=1),
// Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2µs
// The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
TCCR1A
&= ~
((1 << COM1A1
) | (1 << COM1A0
) | (1 << COM1B1
) | (1 << COM1B0
)
| (1 << WGM11
) | (1 << WGM10
));
TCCR1B
&= ~
((1 << WGM13
) | (1 << WGM12
) | (1 << CS12
));
TCCR1B
|= (1 << CS11
) | (1 << CS10
) | (1 << ICES1
) | (1 << ICNC1
);
TCCR1C
&= ~
((1 << FOC1A
) | (1 << FOC1B
));
// Timer/Counter1 Interrupt Mask Register
// Enable Input Capture Interrupt (bit: ICIE1=1)
// Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
// Enable Overflow Interrupt (bit: TOIE1=0)
TIMSK1
&= ~
((1 << OCIE1B
) | (1 << OCIE1A
) | (1 << TOIE1
));
TIMSK1
|= (1 << ICIE1
);
RC_Quality
= 0;
SREG
= sreg
;
}
/********************************************************************/
/* Every time a positive edge is detected at PD6 */
/********************************************************************/
/* t-Frame
<----------------------------------------------------------------------->
____ ______ _____ ________ ______ sync gap ____
| | | | | | | | | | |
| | | | | | | | | | |
___| |_| |_| |_| |_.............| |________________|
<-----><-------><------><--------> <------> <---
t0 t1 t2 t4 tn t0
The PPM-Frame length is 22.5 ms.
Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
The maximum time delay of two events coding a chanel is ( 1.7 + 0.3) ms = 2 ms.
The minimum duration of all channels at minimum value is 8 * 1 ms = 8 ms.
The maximum duration of all channels at maximum value is 8 * 2 ms = 16 ms.
The remaining time of (22.5 - 8 ms) ms = 14.5 ms to (22.5 - 16 ms) ms = 6.5 ms is
the syncronization gap.
*/
ISR
(TIMER1_CAPT_vect
)
{ // typical rate of 1 ms to 2 ms
int16_t signal
= 0;
static int16_t index
;
static uint16_t oldICR1
= 0;
// 16bit Input Capture Register ICR1 contains the timer value TCNT1
// at the time the edge was detected
// calculate the time delay to the previous event time which is stored in oldICR1
// calculatiing the difference of the two uint16_t and converting the result to an int16_t
// implicit handles a timer overflow 65535 -> 0 the right way.
signal
= (uint16_t) ICR1
- oldICR1
;
oldICR1
= ICR1
;
//sync gap? (3.52 ms < signal < 25.6 ms)
if ((signal
> 1100) && (signal
< 8000)) {
// if a sync gap happens and there where at least 4 channels decoded before
// then the NewPpmData flag is reset indicating valid data in the PPM_in[] array.
if (index
>= 4) {
NewPpmData
= 0; // Null means NewData for the first 4 channels
}
// synchronize channel index
index
= 1;
} else { // within the PPM frame
if (index
< MAX_CHANNELS
- 1) { // PPM24 supports 12 channels
// check for valid signal length (0.8 ms < signal < 2.1984 ms)
// signal range is from 1.0ms/3.2us = 312.5 to 2.0ms/3.2us = 625
if ((signal
> 250) && (signal
< 687)) {
// shift signal to zero symmetric range -154 to 159
signal
-= 475; // offset of 1.4912 ms ??? (469 * 3.2µs = 1.5008 ms)
// Signal is now in the +/- 156 range (nominally).
if (abs(signal
- PPM_in
[index
]) < 6) {
if (RC_Quality
< 200)
RC_Quality
+= 10;
else
RC_Quality
= 200;
}
PPM_in
[index
] = signal
; // update channel value
}
index
++; // next channel
}
}
}
#define RCChannel(dimension) PPM_in[staticParams.ChannelAssignment[dimension]]
/*
* This must be called (as the only thing) for each control loop cycle (488 Hz).
*/
void RC_update
() {
if (RC_Quality
) {
RC_Quality
--;
if (NewPpmData
-- == 0) {
RC_PRTY
[CONTROL_ELEVATOR
] = RCChannel
(CH_ELEVATOR
) * staticParams.
StickElevatorP * 2/ 10;
RC_PRTY
[CONTROL_AILERONS
] = RCChannel
(CH_AILERONS
) * staticParams.
StickAileronsP * 2 / 10;
RC_PRTY
[CONTROL_THROTTLE
] = RCChannel
(CH_THROTTLE
) * 2 + 310;
if (RC_PRTY
[CONTROL_THROTTLE
] < 0)
RC_PRTY
[CONTROL_THROTTLE
] = 0; // Throttle is non negative.
RC_PRTY
[CONTROL_RUDDER
] = RCChannel
(CH_RUDDER
) * staticParams.
StickRudderP * 2 / 10;
}
} else { // Bad signal
RC_PRTY
[CONTROL_ELEVATOR
] = RC_PRTY
[CONTROL_AILERONS
] = RC_PRTY
[CONTROL_THROTTLE
]
= RC_PRTY
[CONTROL_RUDDER
] = 0;
}
}
/*
* Get Pitch, Roll, Throttle, Yaw values
*/
int16_t* RC_getEATR
(void) {
return RC_PRTY
;
}
/*
* Get other channel value
*/
int16_t RC_getVariable
(uint8_t varNum
) {
if (varNum
< 4)
// 0th variable is 5th channel (1-based) etc.
return RCChannel
(varNum
+ 4) + POT_OFFSET
;
/*
* Let's just say:
* The RC variable 4 is hardwired to channel 5
* The RC variable 5 is hardwired to channel 6
* The RC variable 6 is hardwired to channel 7
* The RC variable 7 is hardwired to channel 8
* Alternatively, one could bind them to channel (4 + varNum) - or whatever...
*/
return PPM_in
[varNum
+ 1] + POT_OFFSET
;
}
uint8_t RC_getSignalQuality
(void) {
if (RC_Quality
>= 160)
return SIGNAL_GOOD
;
if (RC_Quality
>= 140)
return SIGNAL_OK
;
if (RC_Quality
>= 120)
return SIGNAL_BAD
;
return SIGNAL_LOST
;
}
/*
* To should fired only when the right stick is in the center position.
* This will cause the value of pitch and roll stick to be adjusted
* to zero (not just to near zero, as per the assumption in rc.c
* about the rc signal. I had values about 50..70 with a Futaba
* R617 receiver.) This calibration is not strictly necessary, but
* for control logic that depends on the exact (non)center position
* of a stick, it may be useful.
*/
void RC_calibrate
(void) {
// Do nothing.
}
/*
if (staticParams.GlobalConfig & CFG_HEADING_HOLD) {
// In HH, it s OK to trim the R/C. The effect should not be conteracted here.
stickOffsetPitch = stickOffsetRoll = 0;
} else {
stickOffsetPitch = RCChannel(CH_PITCH) * staticParams.StickP;
stickOffsetRoll = RCChannel(CH_ROLL) * staticParams.StickP;
}
}
*/
uint8_t RC_getCommand
(void) {
// Noy impplemented - not from RC at least.
return COMMAND_NONE
;
}
/*
* Command arguments on R/C:
* 2--3--4
* | | +
* 1 0 5 ^ 0
* | | |
* 8--7--6
*
* + <--
* 0
*
* Not in any of these positions: 0
*/
uint8_t RC_getArgument
(void) {
return 0;
}
uint8_t RC_testCompassCalState
(void) {
return 0;
}
/*
* Abstract controls are not used at the moment.
t_control rc_control = {
RC_getPitch,
RC_getRoll,
RC_getYaw,
RC_getThrottle,
RC_getSignalQuality,
RC_calibrate
};
*/