Rev 1926 |
Rev 2099 |
Go to most recent revision |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/************************************************************************/
/* Flight Attitude */
/************************************************************************/
#include <stdlib.h>
#include <avr/io.h>
#include "attitude.h"
#include "dongfangMath.h"
// For scope debugging only!
#include "rc.h"
// where our main data flow comes from.
#include "analog.h"
#include "configuration.h"
#include "output.h"
// Some calculations are performed depending on some stick related things.
#include "controlMixer.h"
// For Servo_On / Off
// #include "timer2.h"
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
/*
* Gyro readings, as read from the analog module. It would have been nice to flow
* them around between the different calculations as a struct or array (doing
* things functionally without side effects) but this is shorter and probably
* faster too.
* The variables are overwritten at each attitude calculation invocation - the values
* are not preserved or reused.
*/
int16_t rate_ATT[2], yawRate;
// With different (less) filtering
int16_t rate_PID[2];
int16_t differential[3];
/*
* Gyro integrals. These are the rotation angles of the airframe compared to the
* horizontal plane, yaw relative to yaw at start. Not really used for anything else
* than diagnostics.
*/
int32_t angle[3];
/*
* Error integrals. Stick is always positive. Gyro is configurable positive or negative.
* These represent the deviation of the attitude angle from the desired on each axis.
*/
int32_t error[3];
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
int16_t correctionSum[2] = { 0, 0 };
// For NaviCTRL use.
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
/*
* Experiment: Compensating for dynamic-induced gyro biasing.
*/
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
// int16_t dynamicCalCount;
/************************************************************************
* Set inclination angles from the acc. sensor data.
* If acc. sensors are not used, set to zero.
* TODO: One could use inverse sine to calculate the angles more
* accurately, but since: 1) the angles are rather small at times when
* it makes sense to set the integrals (standing on ground, or flying at
* constant speed, and 2) at small angles a, sin(a) ~= constant * a,
* it is hardly worth the trouble.
************************************************************************/
int32_t getAngleEstimateFromAcc(uint8_t axis) {
return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
}
void setStaticAttitudeAngles(void) {
#ifdef ATTITUDE_USE_ACC_SENSORS
angle[PITCH] = getAngleEstimateFromAcc(PITCH);
angle[ROLL] = getAngleEstimateFromAcc(ROLL);
#else
angle[PITCH] = angle[ROLL] = 0;
#endif
}
/************************************************************************
* Neutral Readings
************************************************************************/
void attitude_setNeutral(void) {
// Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
driftComp[PITCH] = driftComp[ROLL];
correctionSum[PITCH] = correctionSum[ROLL] = 0;
// Calibrate hardware.
analog_calibrate();
// reset gyro integrals to acc guessing
setStaticAttitudeAngles();
// Inititialize YawGyroIntegral value with current compass heading
angle[YAW] = 0;
// Servo_On(); //enable servo output
}
/************************************************************************
* Get sensor data from the analog module, and release the ADC
* TODO: Ultimately, the analog module could do this (instead of dumping
* the values into variables).
* The rate variable end up in a range of about [-1024, 1023].
*************************************************************************/
void getAnalogData(void) {
uint8_t axis;
for (axis = PITCH; axis <= ROLL; axis++) {
rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
differential[axis] = gyroD[axis];
averageAcc[axis] += acc[axis];
}
differential[YAW] = gyroD[YAW];
averageAccCount++;
yawRate = yawGyro + driftCompYaw;
// We are done reading variables from the analog module.
// Interrupt-driven sensor reading may restart.
analogDataReady = 0;
analog_start();
}
void integrate(void) {
// First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
uint8_t axis;
// TODO: Multiply on a factor on control. Wont work without...
if (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE) {
error[PITCH] += control[CONTROL_ELEVATOR] + (staticParams.ControlSigns & 1 ? rate_ATT[PITCH] : -rate_ATT[PITCH]);
error[ROLL] += control[CONTROL_AILERONS] + (staticParams.ControlSigns & 2 ? rate_ATT[ROLL] : -rate_ATT[ROLL]);
error[YAW] += control[CONTROL_RUDDER] + (staticParams.ControlSigns & 4 ? yawRate : -yawRate);
angle[PITCH] += rate_ATT[PITCH];
angle[ROLL] += control[CONTROL_AILERONS] + (staticParams.ControlSigns & 2 ? rate_ATT[ROLL] : -rate_ATT[ROLL]);
angle[YAW] += control[CONTROL_RUDDER] + (staticParams.ControlSigns & 4 ? yawRate : -yawRate);
} else {
error[PITCH] += control[CONTROL_ELEVATOR] + (staticParams.ControlSigns & 1 ? rate_ATT[PITCH] : -rate_ATT[PITCH]);
error[ROLL] += control[CONTROL_AILERONS] + (staticParams.ControlSigns & 2 ? rate_ATT[ROLL] : -rate_ATT[ROLL]);
error[YAW] += control[CONTROL_RUDDER] + (staticParams.ControlSigns & 4 ? yawRate : -yawRate);
angle[PITCH] += rate_ATT[PITCH];
angle[ROLL] += control[CONTROL_AILERONS] + (staticParams.ControlSigns & 2 ? rate_ATT[ROLL] : -rate_ATT[ROLL]);
angle[YAW] += control[CONTROL_RUDDER] + (staticParams.ControlSigns & 4 ? yawRate : -yawRate);
}
// TODO: Configurable.
#define ERRORLIMIT 1000
for (axis=PITCH; axis<=YAW; axis++) {
if (error[axis] > ERRORLIMIT) {
error[axis] = ERRORLIMIT;
} else if (angle[axis] <= -ERRORLIMIT) {
angle[axis] = -ERRORLIMIT;
}
}
/*
* Pitch axis integration and range boundary wrap.
*/
for (axis = PITCH; axis <= ROLL; axis++) {
angle[axis] += rate_ATT[axis];
if (angle[axis] > PITCHROLLOVER180) {
angle[axis] -= PITCHROLLOVER360;
} else if (angle[axis] <= -PITCHROLLOVER180) {
angle[axis] += PITCHROLLOVER360;
}
}
/*
* Yaw
* Calculate yaw gyro integral (~ to rotation angle)
* Limit yawGyroHeading proportional to 0 deg to 360 deg
*/
if (angle[YAW] >= YAWOVER360) {
angle[YAW] -= YAWOVER360; // 360 deg. wrap
} else if (angle[YAW] < 0) {
angle[YAW] += YAWOVER360;
}
}
/************************************************************************
* A kind of 0'th order integral correction, that corrects the integrals
* directly. This is the "gyroAccFactor" stuff in the original code.
* There is (there) also a drift compensation
* - it corrects the differential of the integral = the gyro offsets.
* That should only be necessary with drifty gyros like ENC-03.
************************************************************************/
void correctIntegralsByAcc0thOrder(void) {
// TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
// are less than ....., or reintroduce Kalman.
// Well actually the Z axis acc. check is not so silly.
uint8_t axis;
int32_t temp;
if (acc[Z] >= -staticParams.accCorrectionZAccLimit && acc[Z]
<= dynamicParams.UserParams[7]) {
DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
uint8_t debugFullWeight = 1;
int32_t accDerived;
if ((control[YAW] < -64) || (control[YAW] > 64)) { // reduce further if yaw stick is active
permilleAcc /= 2;
debugFullWeight = 0;
}
if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
permilleAcc /= 2;
debugFullWeight = 0;
}
if (debugFullWeight)
DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
else
DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
/*
* Add to each sum: The amount by which the angle is changed just below.
*/
for (axis = PITCH; axis <= ROLL; axis++) {
accDerived = getAngleEstimateFromAcc(axis);
// DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
// 1000 * the correction amount that will be added to the gyro angle in next line.
temp = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
+ (int32_t) permilleAcc * accDerived) / 1000L;
correctionSum[axis] += angle[axis] - temp;
}
} else {
DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
// DebugOut.Analog[9] = 0;
// DebugOut.Analog[10] = 0;
DebugOut.Analog[16] = 0;
DebugOut.Analog[17] = 0;
// experiment: Kill drift compensation updates when not flying smooth.
correctionSum[PITCH] = correctionSum[ROLL] = 0;
}
}
/************************************************************************
* This is an attempt to correct not the error in the angle integrals
* (that happens in correctIntegralsByAcc0thOrder above) but rather the
* cause of it: Gyro drift, vibration and rounding errors.
* All the corrections made in correctIntegralsByAcc0thOrder over
* DRIFTCORRECTION_TIME cycles are summed up. This number is
* then divided by DRIFTCORRECTION_TIME to get the approx.
* correction that should have been applied to each iteration to fix
* the error. This is then added to the dynamic offsets.
************************************************************************/
// 2 times / sec. = 488/2
#define DRIFTCORRECTION_TIME 256L
void driftCorrection(void) {
static int16_t timer = DRIFTCORRECTION_TIME;
int16_t deltaCorrection;
int16_t round;
uint8_t axis;
if (!--timer) {
timer = DRIFTCORRECTION_TIME;
for (axis = PITCH; axis <= ROLL; axis++) {
// Take the sum of corrections applied, add it to delta
if (correctionSum[axis] >=0)
round = DRIFTCORRECTION_TIME / 2;
else
round = -DRIFTCORRECTION_TIME / 2;
deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
// Add the delta to the compensation. So positive delta means, gyro should have higher value.
driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
// DebugOut.Analog[11 + axis] = correctionSum[axis];
DebugOut.Analog[16 + axis] = correctionSum[axis];
DebugOut.Analog[28 + axis] = driftComp[axis];
correctionSum[axis] = 0;
}
}
}
/************************************************************************
* Main procedure.
************************************************************************/
void calculateFlightAttitude(void) {
getAnalogData();
integrate();
DebugOut.Analog[3] = rate_PID[PITCH];
DebugOut.Analog[4] = rate_PID[ROLL];
DebugOut.Analog[5] = yawRate;
#ifdef ATTITUDE_USE_ACC_SENSORS
correctIntegralsByAcc0thOrder();
driftCorrection();
#endif
}