Rev 1994 |
Blame |
Last modification |
View Log
| RSS feed
/*#######################################################################################
Decodieren eines RC Summen Signals oder Spektrum Empfänger-Satellit
#######################################################################################*/
#include "Spektrum.h"
#include "main.h"
// Achtung: RECEIVER_SPEKTRUM_DX7EXP oder RECEIVER_SPEKTRUM_DX8EXP wird in der Main.h gesetzt
#ifndef WITHSPECTRUM /// MartinW
#warning : "### without SPECTRUM Code ###"
#endif
unsigned char SpektrumTimer
= 0;
#if defined (RECEIVER_SPEKTRUM_DX7EXP) || defined (RECEIVER_SPEKTRUM_DX8EXP)
unsigned char s_excnt
= 0; // Counter for Spektrum-Expander
unsigned char s_exparity
= 0; // Parity Bit for Spektrum-Expander
signed char s_exdata
[11]; // Data for Spektrum-Expander
#endif
//--------------------------------------------------------------//
//--------------------------------------------------------------//
/*
void SpektrumBinding(void)
{
unsigned int timerTimeout = SetDelay(10000); // Timeout 10 sec.
unsigned char connected = 0;
unsigned int delaycounter;
UCSR1B &= ~(1 << RXCIE1); // disable rx-interrupt
UCSR1B &= ~(1<<RXEN1); // disable Uart-Rx
PORTD &= ~(1 << PORTD2); // disable pull-up
printf("\n\rPlease connect Spektrum receiver for binding NOW...");
while(!CheckDelay(timerTimeout))
{
if (PIND & (1 << PORTD2)) { timerTimeout = SetDelay(90); connected = 1; break; }
}
if (connected)
{
printf("ok.\n\r");
DDRD |= (1 << DDD2); // Rx as output
while(!CheckDelay(timerTimeout)); // delay after startup of RX
for (delaycounter = 0; delaycounter < 100; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD &= ~(1 << PORTD2);
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD &= ~(1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD &= ~(1 << PORTD2);
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD &= ~(1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD &= ~(1 << PORTD2);
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD |= (1 << PORTD2);
for (delaycounter = 0; delaycounter < 10; delaycounter++) PORTD &= ~(1 << PORTD2);
for (delaycounter = 0; delaycounter < 400; delaycounter++) PORTD |= (1 << PORTD2);
}
else
{ printf("Timeout.\n\r");
}
DDRD &= ~(1 << DDD2); // RX as input
PORTD &= ~(1 << PORTD2);
SpektrumUartInit(); // init Uart again
}
*/
//############################################################################
// USART1 initialisation from killagreg
void SpektrumUartInit
(void)
//############################################################################
{
#ifdef WITHSPECTRUM /// MartinW main.h means no memsave
#warning : "### with left over Spectrum code ###"
// -- Start of USART1 initialisation for Spekturm seriell-mode
// USART1 Control and Status Register A, B, C and baud rate register
uint8_t sreg
= SREG
;
uint16_t ubrr
= (uint16_t) ((uint32_t) SYSCLK
/(8 * 115200) - 1);
// disable all interrupts before reconfiguration
cli
();
// disable RX-Interrupt
UCSR1B
&= ~
(1 << RXCIE1
);
// disable TX-Interrupt
UCSR1B
&= ~
(1 << TXCIE1
);
// disable DRE-Interrupt
UCSR1B
&= ~
(1 << UDRIE1
);
// set direction of RXD1 and TXD1 pins
// set RXD1 (PD2) as an input pin
PORTD
|= (1 << PORTD2
);
DDRD
&= ~
(1 << DDD2
);
// set TXD1 (PD3) as an output pin
PORTD
|= (1 << PORTD3
);
DDRD
|= (1 << DDD3
);
// USART0 Baud Rate Register
// set clock divider
UBRR1H
= (uint8_t)(ubrr
>>8);
UBRR1L
= (uint8_t)ubrr
;
// enable double speed operation
UCSR1A
|= (1 << U2X1
);
// enable receiver and transmitter
//UCSR1B = (1<<RXEN1)|(1<<TXEN1);
UCSR1B
= (1<<RXEN1
);
// set asynchronous mode
UCSR1C
&= ~
(1 << UMSEL11
);
UCSR1C
&= ~
(1 << UMSEL10
);
// no parity
UCSR1C
&= ~
(1 << UPM11
);
UCSR1C
&= ~
(1 << UPM10
);
// 1 stop bit
UCSR1C
&= ~
(1 << USBS1
);
// 8-bit
UCSR1B
&= ~
(1 << UCSZ12
);
UCSR1C
|= (1 << UCSZ11
);
UCSR1C
|= (1 << UCSZ10
);
// flush receive buffer explicit
while(UCSR1A
& (1<<RXC1
)) UDR1
;
// enable RX-interrupts at the end
UCSR1B
|= (1 << RXCIE1
);
// -- End of USART1 initialisation
// restore global interrupt flags
SREG
= sreg
;
#endif
return;
}
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) Rainer Walther
// + RC-routines from original MK rc.c (c) H&I
// + Useful infos from Walter: http://www.rcgroups.com/forums/showthread.php?t=714299&page=2
// + only for non-profit use
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//
// 20080808 rw Modified for Spektrum AR6100 (PPM)
// 20080823 rw Add Spektrum satellite receiver on USART1 (644P only)
// 20081213 rw Add support for Spektrum DS9 Air-Tx-Module (9 channels)
// Replace AR6100-coding with original composit-signal routines
//
// ---
// Entweder Summensignal ODER Spektrum-Receiver anschließen. Nicht beides gleichzeitig betreiben!
// Binding is not implemented. Bind with external Receiver.
// Servo output J3, J4, J5 not serviced
//
// Anschuß Spektrum Receiver
// Orange: 3V von der FC (keinesfalls an 5V anschließen!)
// Schwarz: GND
// Grau: RXD1 (Pin 3) auf 10-Pol FC-Stecker
//
// ---
// Satellite-Reciever connected on USART1:
//
// DX7/DX6i: One data-frame at 115200 baud every 22ms.
// DX7se: One data-frame at 115200 baud every 11ms.
// byte1: unknown
// byte2: unknown
// byte3: and byte4: channel data (FLT-Mode)
// byte5: and byte6: channel data (Roll)
// byte7: and byte8: channel data (Nick)
// byte9: and byte10: channel data (Gier)
// byte11: and byte12: channel data (Gear Switch)
// byte13: and byte14: channel data (Gas)
// byte15: and byte16: channel data (AUX2)
//
// DS9 (9 Channel): One data-frame at 115200 baud every 11ms, alternating frame 1/2 for CH1-7 / CH8-9
// 1st Frame:
// byte1: unknown
// byte2: unknown
// byte3: and byte4: channel data
// byte5: and byte6: channel data
// byte7: and byte8: channel data
// byte9: and byte10: channel data
// byte11: and byte12: channel data
// byte13: and byte14: channel data
// byte15: and byte16: channel data
// 2nd Frame:
// byte1: unknown
// byte2: unknown
// byte3: and byte4: channel data
// byte5: and byte6: channel data
// byte7: and byte8: 0xffff
// byte9: and byte10: 0xffff
// byte11: and byte12: 0xffff
// byte13: and byte14: 0xffff
// byte15: and byte16: 0xffff
//
// Each channel data (16 bit= 2byte, first msb, second lsb) is arranged as:
//
// Bits: F 0 C3 C2 C1 C0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
//
// 0 means a '0' bit
// F: 1 = indicates beginning of 2nd frame for CH8-9 (DS9 only)
// C3 to C0 is the channel number. 0 to 9 (4 bit, as assigned in the transmitter)
// D9 to D0 is the channel data (10 bit) 0xaa..0x200..0x356 for 100% transmitter-travel
//
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#define MIN_FRAMEGAP 68 // 7ms
#define MAX_BYTEGAP 3 // 310us
//############################################################################
// Wird im UART-Interrupt aufgerufen
//############################################################################
void SpektrumParser
(unsigned char c
)
{
#ifdef WITHSPECTRUM /// MartinW main.h means no memsave
#warning : "### with left over Spectrum code ###"
static unsigned char Sync
=0, FrameCnt
=0, ByteHigh
=0, ReSync
=1, Frame2
=0;
unsigned int Channel
, index
= 0;
signed int signal
= 0, tmp
;
int bCheckDelay
;
// c = UDR1; // get data byte
if(ReSync
== 1)
{
// wait for beginning of new frame
ReSync
= 0;
SpektrumTimer
= MIN_FRAMEGAP
;
FrameCnt
= 0;
Sync
= 0;
ByteHigh
= 0;
}
else
{
if(!SpektrumTimer
) bCheckDelay
= 1; else bCheckDelay
= 0;//CheckDelay(FrameTimer);
if ( Sync
== 0 )
{
if(bCheckDelay
)
{
// nach einer Pause von mind. 7ms erstes Sync-Character gefunden
// Zeichen ignorieren, da Bedeutung unbekannt
Sync
= 1;
FrameCnt
++;
SpektrumTimer
= MAX_BYTEGAP
;
}
else
{
// Zeichen kam vor Ablauf der 7ms Sync-Pause
// warten auf erstes Sync-Zeichen
SpektrumTimer
= MIN_FRAMEGAP
;
FrameCnt
= 0;
Sync
= 0;
ByteHigh
= 0;
}
}
else if((Sync
== 1) && !bCheckDelay
)
{
// zweites Sync-Character ignorieren, Bedeutung unbekannt
Sync
= 2;
FrameCnt
++;
SpektrumTimer
= MAX_BYTEGAP
;
}
else if((Sync
== 2) && !bCheckDelay
)
{
SpektrumTimer
= MAX_BYTEGAP
;
// Datenbyte high
ByteHigh
= c
;
if (FrameCnt
== 2)
{
// is 1st Byte of Channel-data
// Frame 1 with Channel 1-7 comming next
Frame2
= 0;
if(ByteHigh
& 0x80)
{
// DS9: Frame 2 with Channel 8-9 comming next
Frame2
= 1;
}
}
Sync
= 3;
FrameCnt
++;
}
else if((Sync
== 3) && !bCheckDelay
)
{
// Datenbyte low
// High-Byte for next channel comes next
SpektrumTimer
= MAX_BYTEGAP
;
Sync
= 2;
FrameCnt
++;
Channel
= ((unsigned int)ByteHigh
<< 8) | c
;
if(EE_Parameter.
Receiver == RECEIVER_SPEKTRUM
)
{
signal
= Channel
& 0x3ff;
signal
-= 0x200; // Offset, range 0x000..0x3ff?
signal
= signal
/3; // scaling to fit PPM resolution
index
= (ByteHigh
>> 2) & 0x0f;
}
else
if(EE_Parameter.
Receiver == RECEIVER_SPEKTRUM_HI_RES
)
{
signal
= Channel
& 0x7ff;
signal
-= 0x400; // Offset, range 0x000..0x7ff?
signal
= signal
/6; // scaling to fit PPM resolution
index
= (ByteHigh
>> 3) & 0x0f;
}
else
//if(EE_Parameter.Receiver == RECEIVER_SPEKTRUM_LOW_RES)
{
signal
= Channel
& 0x3ff;
signal
-= 360; // Offset, range 0x000..0x3ff?
signal
= signal
/2; // scaling to fit PPM resolution
index
= (ByteHigh
>> 2) & 0x0f;
}
index
++;
if(index
< 13)
{
// Stabiles Signal
#if defined (RECEIVER_SPEKTRUM_DX7EXP) || defined (RECEIVER_SPEKTRUM_DX8EXP)
if (index
== 2) index
= 4; // Analog channel reassigment (2 <-> 4) for logical numbering (1,2,3,4)
else if (index
== 4) index
= 2;
#endif
if(abs(signal
- PPM_in
[index
]) < 6)
{
if(SenderOkay
< 200) SenderOkay
+= 10;
else
{
SenderOkay
= 200;
TIMSK1
&= ~_BV
(ICIE1
); // disable PPM-Input
}
}
tmp
= (3 * (PPM_in
[index
]) + signal
) / 4;
if(tmp
> signal
+1) tmp
--; else
if(tmp
< signal
-1) tmp
++;
#ifdef RECEIVER_SPEKTRUM_DX7EXP
if(index
== 6) // FLIGHT-MODE - The channel used for our data uplink
{
if (signal
> 100) // SYNC received
{
if (s_exdata
[s_excnt
] == 125) s_exparity
= ~s_exparity
; // Bit = 1 -> Re-Invert parity bit
if ((s_excnt
== 6 && ((s_exparity
!= 0 && s_exdata
[s_excnt
] == -125) || (s_exparity
== 0 && s_exdata
[s_excnt
] == 125))) || (s_excnt
== 9 && ((s_exparity
== 0 && s_exdata
[s_excnt
] == -125) || (s_exparity
!= 0 && s_exdata
[s_excnt
] == 125)))) // Parity check
{
if (s_exdata
[1] == 125 && s_exdata
[2] == -125) PPM_in
[5] = -125; // Reconstruct tripole Flight-Mode value (CH5)
else if (s_exdata
[1] == -125 && s_exdata
[2] == -125) PPM_in
[5] = 0; // Reconstruct tripole Flight-Mode value (CH5)
else if (s_exdata
[1] == -125 && s_exdata
[2] == 125) PPM_in
[5] = 125; // Reconstruct tripole Flight-Mode value (CH5)
PPM_in
[6] = s_exdata
[3]; // Elevator (CH6)
PPM_in
[11] = s_exdata
[4]; // Aileron (CH11)
PPM_in
[12] = s_exdata
[5]; // Rudder (CH12)
if (s_excnt
== 9) // New Mode (12 Channels)
{
if (s_exdata
[7] == 125) PPM_in
[8] += 5; // Hover Pitch UP (CH8)
if (s_exdata
[8] == 125) PPM_in
[8] -= 5; // Hover Pitch DN (CH8)
if (PPM_in
[8] < -125) PPM_in
[8] = -125; // Range-Limit
else if (PPM_in
[8] > 125) PPM_in
[8] = 125; // Range-Limit
PPM_in
[10] = s_exdata
[6]; // AUX2 (CH10)
}
}
s_excnt
= 0; // Reset bitcounter
s_exparity
= 0; // Reset parity bit
}
if (signal
< 10) s_exdata
[++s_excnt
] = -125; // Bit = 0 -> value = -125 (min)
if (s_excnt
== 10) s_excnt
= 0; // Overflow protection
if (signal
< -100)
{
s_exdata
[s_excnt
] = 125; // Bit = 1 -> value = 125 (max)
s_exparity
= ~s_exparity
; // Bit = 1 -> Invert parity bit
}
}
#elif defined RECEIVER_SPEKTRUM_DX8EXP
if(index
== 6) // FLIGHT-MODE - The channel used for our data uplink
{
if (signal
> 100) // SYNC received
{
if (s_exdata
[s_excnt
] == 125) s_exparity
= ~s_exparity
; // Bit = 1 -> Re-Invert parity bit
if (s_excnt
== 9 && ((s_exparity
== 0 && s_exdata
[s_excnt
] == -125) || (s_exparity
!= 0 && s_exdata
[s_excnt
] == 125))) // Parity check
{
if (s_exdata
[1] == 125 && s_exdata
[2] == -125) PPM_in
[5] = -125; // Reconstruct tripole Flight-Mode value (CH5)
else if (s_exdata
[1] == -125 && s_exdata
[2] == -125) PPM_in
[5] = 0; // Reconstruct tripole Flight-Mode value (CH5)
else if (s_exdata
[1] == -125 && s_exdata
[2] == 125) PPM_in
[5] = 125; // Reconstruct tripole Flight-Mode value (CH5)
if (s_exdata
[3] == 125 && s_exdata
[6] == -125) PPM_in
[6] = 125; // Reconstruct tripole Elev D/R value (CH6)
else if (s_exdata
[3] == -125 && s_exdata
[6] == -125) PPM_in
[6] = 0; // Reconstruct tripole Elev D/R value (CH6)
else if (s_exdata
[3] == -125 && s_exdata
[6] == 125) PPM_in
[6] = -125; // Reconstruct tripole Elev D/R value (CH6)
if (s_exdata
[7] == 125 && s_exdata
[8] == -125) PPM_in
[9] = -125; // Reconstruct tripole AIL D/R value (CH9)
else if (s_exdata
[7] == -125 && s_exdata
[8] == -125) PPM_in
[9] = 0; // Reconstruct tripole AIL D/R value (CH9)
else if (s_exdata
[7] == -125 && s_exdata
[8] == 125) PPM_in
[9] = 125; // Reconstruct tripole AIL D/R value (CH9)
PPM_in
[10] = s_exdata
[5]; // Gear (CH10)
PPM_in
[12] = s_exdata
[4]; // Mix (CH12)
}
s_excnt
= 0; // Reset bitcounter
s_exparity
= 0; // Reset parity bit
}
if (signal
< 10) s_exdata
[++s_excnt
] = -125; // Bit = 0 -> value = -125 (min)
if (s_excnt
== 10) s_excnt
= 0; // Overflow protection
if (signal
< -100)
{
s_exdata
[s_excnt
] = 125; // Bit = 1 -> value = 125 (max)
s_exparity
= ~s_exparity
; // Bit = 1 -> Invert parity bit
}
}
#endif
if(SenderOkay
>= 180) PPM_diff
[index
] = ((tmp
- PPM_in
[index
]) / 3) * 3;
else PPM_diff
[index
] = 0;
#ifdef RECEIVER_SPEKTRUM_DX7EXP
if (index
< 5 ) PPM_in
[index
] = tmp
; // Update normal potis (CH1-4)
else if (index
== 5) PPM_in
[7] = signal
; // Gear (CH7)
else if (index
== 7) PPM_in
[9] = signal
; // Hover Throttle (CH9)
#elif defined RECEIVER_SPEKTRUM_DX8EXP
if (index
< 5 ) PPM_in
[index
] = tmp
; // Update normal potis (CH1-4)
else if (index
== 7) PPM_in
[7] = signal
; // R Trim (CH7)
else if (index
== 5) PPM_in
[8] = signal
; // AUX2 (CH8)
else if (index
== 8) PPM_in
[11] = signal
; // AUX3 (CH11)
#else
PPM_in
[index
] = tmp
;
#endif
}
else if(index
> 17) ReSync
= 1; // hier stimmt was nicht: neu synchronisieren
}
else
{
// hier stimmt was nicht: neu synchronisieren
ReSync
= 1;
FrameCnt
= 0;
Frame2
= 0;
// new frame next, nach fruehestens 7ms erwartet
SpektrumTimer
= MIN_FRAMEGAP
;
}
// 16 Bytes eingetroffen -> Komplett
if(FrameCnt
>= 16)
{
// Frame complete
if(Frame2
== 0)
{
// Null bedeutet: Neue Daten
// nur beim ersten Frame (CH 0-7) setzen
if(!ReSync
) NewPpmData
= 0;
}
FrameCnt
= 0;
Frame2
= 0;
Sync
= 0;
SpektrumTimer
= MIN_FRAMEGAP
;
}
}
#endif
}