Subversion Repositories FlightCtrl

Rev

Rev 1771 | Rev 1812 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed

#include "main.h"
#define MULTIPLYER 4

volatile unsigned int CountMilliseconds = 0;
volatile static unsigned int tim_main;
volatile unsigned char UpdateMotor = 0;
volatile unsigned int cntKompass = 0;
volatile unsigned int beeptime = 0;
volatile unsigned char SendSPI = 0, ServoActive = 0, CalculateServoSignals = 1;
uint16_t RemainingPulse = 0;
volatile int16_t ServoNickOffset = (255 / 2) * MULTIPLYER * 16; // initial value near center positon
volatile int16_t ServoRollOffset = (255 / 2) * MULTIPLYER * 16; // initial value near center positon

unsigned int BeepMuster = 0xffff;

volatile int16_t        ServoNickValue = 0;
volatile int16_t        ServoRollValue = 0;


enum {
  STOP             = 0,
  CK               = 1,
  CK8              = 2,
  CK64             = 3,
  CK256            = 4,
  CK1024           = 5,
  T0_FALLING_EDGE  = 6,
  T0_RISING_EDGE   = 7
};


ISR(TIMER0_OVF_vect)    // 9,7kHz
{
   static unsigned char cnt_1ms = 1,cnt = 0, compass_active = 0;
   unsigned char pieper_ein = 0;
   if(SendSPI) SendSPI--;
   if(SpektrumTimer) SpektrumTimer--;
   if(!cnt--)
    {
     cnt = 9;
     CountMilliseconds++;
     cnt_1ms++;
     cnt_1ms %= 2;

     if(!cnt_1ms) UpdateMotor = 1;
         if(!(PINC & 0x10)) compass_active = 1;

     if(beeptime)
        {
        if(beeptime > 10) beeptime -= 10; else beeptime = 0;
        if(beeptime & BeepMuster)
         {
          pieper_ein = 1;
         }
         else pieper_ein = 0;
        }
     else
      {
       pieper_ein = 0;
       BeepMuster = 0xffff;
      }
     if(pieper_ein)
        {
          if(PlatinenVersion == 10) PORTD |= (1<<2); // Speaker an PORTD.2
          else                      PORTC |= (1<<7); // Speaker an PORTC.7
        }
     else
        {
         if(PlatinenVersion == 10) PORTD &= ~(1<<2);
         else                      PORTC &= ~(1<<7);
        }
        }
 if(compass_active && !NaviDataOkay && EE_Parameter.GlobalConfig & CFG_KOMPASS_AKTIV)
 {
  if(PINC & 0x10)
   {
        if(++cntKompass > 1000) compass_active = 0;
   }
  else
   {
    if((cntKompass) && (cntKompass < 362))
    {
     cntKompass += cntKompass / 41;
     if(cntKompass > 10) KompassValue = cntKompass - 10; else KompassValue = 0;
     KompassRichtung = ((540 + KompassValue - KompassStartwert) % 360) - 180;
    }
    cntKompass = 0;
   }
 }
}


// -----------------------------------------------------------------------
unsigned int SetDelay (unsigned int t)
{
//  TIMSK0 &= ~_BV(TOIE0);
  return(CountMilliseconds + t + 1);
//  TIMSK0 |= _BV(TOIE0);
}

// -----------------------------------------------------------------------
char CheckDelay(unsigned int t)
{
//  TIMSK0 &= ~_BV(TOIE0);
  return(((t - CountMilliseconds) & 0x8000) >> 9);
//  TIMSK0 |= _BV(TOIE0);
}

// -----------------------------------------------------------------------
void Delay_ms(unsigned int w)
{
 unsigned int akt;
 akt = SetDelay(w);
 while (!CheckDelay(akt));
}

void Delay_ms_Mess(unsigned int w)
{
 unsigned int akt;
 akt = SetDelay(w);
 while (!CheckDelay(akt)) if(AdReady) {AdReady = 0; ANALOG_ON;}
}

/*****************************************************/
/*              Initialize Timer 2                   */
/*****************************************************/
// The timer 2 is used to generate the PWM at PD7 (J7)
// to control a camera servo for nick compensation.
void TIMER2_Init(void)
{
        uint8_t sreg = SREG;

        // disable all interrupts before reconfiguration
        cli();

        PORTD &= ~(1<<PORTD7);  // set PD7 to low

        DDRC  |= (1<<DDC6);     // set PC6 as output (Reset for HEF4017)
    HEF4017R_ON;
        // Timer/Counter 2 Control Register A

        // Timer Mode is FastPWM with timer reload at OCR2A (Bits: WGM22 = 1, WGM21 = 1, WGM20 = 1)
    // PD7: Normal port operation, OC2A disconnected, (Bits: COM2A1 = 0, COM2A0 = 0)
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
        TCCR2A &= ~((1<<COM2A1)|(1<<COM2A0)|(1<<COM2B1)|(1<<COM2B0));
    TCCR2A |= (1<<WGM21)|(1<<WGM20);

    // Timer/Counter 2 Control Register B

        // Set clock divider for timer 2 to SYSKLOCK/32 = 20MHz / 32 = 625 kHz
        // The timer increments from 0x00 to 0xFF with an update rate of 625 kHz or 1.6 us
        // hence the timer overflow interrupt frequency is 625 kHz / 256 = 2.44 kHz or 0.4096 ms

    // divider 32 (Bits: CS022 = 0, CS21 = 1, CS20 = 1)
        TCCR2B &= ~((1<<FOC2A)|(1<<FOC2B)|(1<<CS22));
    TCCR2B |= (1<<CS21)|(1<<CS20)|(1<<WGM22);

        // Initialize the Timer/Counter 2 Register
    TCNT2 = 0;

        // Initialize the Output Compare Register A used for PWM generation on port PD7.
        OCR2A = 255;
        TCCR2A |= (1<<COM2A1); // set or clear at compare match depends on value of COM2A0

        // Timer/Counter 2 Interrupt Mask Register
        // Enable timer output compare match A Interrupt only
        TIMSK2 &= ~((1<<OCIE2B)|(1<<TOIE2));
        TIMSK2 |= (1<<OCIE2A);

    SREG = sreg;
}

//----------------------------
void Timer_Init(void)
{
    tim_main = SetDelay(10);
    TCCR0B = CK8;
    TCCR0A = (1<<COM0A1)|(1<<COM0B1)|3;//fast PWM
    OCR0A =  0;
    OCR0B = 180;
    TCNT0 = (unsigned char)-TIMER_RELOAD_VALUE;  // reload
    //OCR1  = 0x00;
    TIMSK0 |= _BV(TOIE0);
}


/*****************************************************/
/*              Control Servo Position               */
/*****************************************************/


void CalculateServo(void)
{
 signed char cosinus, sinus;
 signed long nick, roll;

        cosinus = sintab[EE_Parameter.CamOrientation + 6];
        sinus = sintab[EE_Parameter.CamOrientation];

  if(CalculateServoSignals == 1)
   {
                nick = (cosinus * IntegralNick) / 128L - (sinus * IntegralRoll) / 128L;
                nick = ((long)EE_Parameter.ServoNickComp * nick) / 512L;
                ServoNickOffset += ((int16_t)Parameter_ServoNickControl * (MULTIPLYER*16) - ServoNickOffset) / EE_Parameter.ServoManualControlSpeed;
                ServoNickValue = ServoNickOffset / 16; // offset (Range from 0 to 255 * 3 = 765)
                if(EE_Parameter.ServoCompInvert & 0x01)
                {       // inverting movement of servo
                        ServoNickValue += nick;//(int16_t)( ( (int32_t)EE_Parameter.ServoNickComp * nick) / (256L) );
                }
                else
                {       // non inverting movement of servo
                        ServoNickValue -= nick;
                }
                // limit servo value to its parameter range definition
                if(ServoNickValue < ((int16_t)EE_Parameter.ServoNickMin * MULTIPLYER) )
                {
                        ServoNickValue = (int16_t)EE_Parameter.ServoNickMin * MULTIPLYER;
                }
                else
                if(ServoNickValue > ((int16_t)EE_Parameter.ServoNickMax * MULTIPLYER) )
                {
                        ServoNickValue = (int16_t)EE_Parameter.ServoNickMax * MULTIPLYER;
                }
                if(PlatinenVersion < 20) CalculateServoSignals = 0; else CalculateServoSignals++;
        }
        else
        {
        roll = (cosinus * IntegralRoll) / 128L + (sinus * IntegralNick) / 128L;
        roll = ((long)EE_Parameter.ServoRollComp * roll) / 512L;
                ServoRollOffset += ((int16_t)Parameter_ServoRollControl * (MULTIPLYER*16) - ServoRollOffset) / EE_Parameter.ServoManualControlSpeed;
                ServoRollValue = ServoRollOffset/16; // offset (Range from 0 to 255 * 3 = 765)
                if(EE_Parameter.ServoCompInvert & 0x02)
                {       // inverting movement of servo
                        ServoRollValue += roll;
                }
                else
                {       // non inverting movement of servo
                        ServoRollValue -= roll;
                }
                // limit servo value to its parameter range definition
                if(ServoRollValue < ((int16_t)EE_Parameter.ServoRollMin * MULTIPLYER) )
                {
                        ServoRollValue = (int16_t)EE_Parameter.ServoRollMin * MULTIPLYER;
                }
                else
                if(ServoRollValue > ((int16_t)EE_Parameter.ServoRollMax * MULTIPLYER) )
                {
                        ServoRollValue = (int16_t)EE_Parameter.ServoRollMax * MULTIPLYER;
                }
                CalculateServoSignals = 0;
        }
}

ISR(TIMER2_COMPA_vect)
{
        // frame len 22.5 ms = 14063 * 1.6 us
        // stop pulse: 0.3 ms = 188 * 1.6 us
        // min servo pulse: 0.6 ms =  375 * 1.6 us
        // max servo pulse: 2.4 ms = 1500 * 1.6 us
        // resolution: 1500 - 375 = 1125 steps

        #define IRS_RUNTIME 127
        #define PPM_STOPPULSE 188
    #define PPM_FRAMELEN (1757 * EE_Parameter.ServoNickRefresh)
        #define MINSERVOPULSE 375
        #define MAXSERVOPULSE 1500
        #define SERVORANGE (MAXSERVOPULSE - MINSERVOPULSE)

        static uint8_t  PulseOutput = 0;
        static uint16_t ServoFrameTime = 0;
        static uint8_t  ServoIndex = 0;


        if(PlatinenVersion < 20)
        {
                //---------------------------
                // Nick servo state machine
                //---------------------------
                if(!PulseOutput) // pulse output complete
                {
                        if(TCCR2A & (1<<COM2A0)) // we had a low pulse
                        {
                                TCCR2A &= ~(1<<COM2A0);// make a high pulse
                                RemainingPulse  = MINSERVOPULSE + SERVORANGE/2; // center position ~ 1.5ms
                                RemainingPulse += ServoNickValue - (256 / 2) * MULTIPLYER; // shift ServoNickValue to center position
                                // range servo pulse width
                                if(RemainingPulse > MAXSERVOPULSE )                     RemainingPulse = MAXSERVOPULSE; // upper servo pulse limit
                                else if(RemainingPulse < MINSERVOPULSE )        RemainingPulse = MINSERVOPULSE; // lower servo pulse limit
                                // accumulate time for correct update rate
                                ServoFrameTime = RemainingPulse;
                        }
                        else // we had a high pulse
                        {
                                TCCR2A |= (1<<COM2A0); // make a low pulse
                                RemainingPulse = PPM_FRAMELEN - ServoFrameTime;
                                CalculateServoSignals = 1;
                        }
                        // set pulse output active
                        PulseOutput = 1;
                }
        } // EOF Nick servo state machine
        else
        {
                //-----------------------------------------------------
                // PPM state machine, onboard demultiplexed by HEF4017
                //-----------------------------------------------------
                if(!PulseOutput) // pulse output complete
                {
                        if(TCCR2A & (1<<COM2A0)) // we had a low pulse
                        {
                                TCCR2A &= ~(1<<COM2A0);// make a high pulse

                                if(ServoIndex == 0) // if we are at the sync gap
                                {
                                        RemainingPulse = PPM_FRAMELEN - ServoFrameTime; // generate sync gap by filling time to full frame time
                                        ServoFrameTime = 0; // reset servo frame time
                                        HEF4017R_ON; // enable HEF4017 reset
                                }
                                else // servo channels
                                {
                                        RemainingPulse  = MINSERVOPULSE + SERVORANGE/2; // center position ~ 1.5ms
                                        switch(ServoIndex) // map servo channels
                                        {
                                                case 1: // Nick Compensation Servo
                                                        RemainingPulse += ServoNickValue - (256 / 2) * MULTIPLYER; // shift ServoNickValue to center position
                                                        break;
                                         case 2: // Roll Compensation Servo
                                                        RemainingPulse += ServoRollValue - (256 / 2) * MULTIPLYER; // shift ServoNickValue to center position
                                                        break;
                                         case 3:
                                                        RemainingPulse += ((int16_t)Parameter_Servo3 * MULTIPLYER) - (256 / 2) * MULTIPLYER;
                                                        break;
                                         case 4:
                                                        RemainingPulse += ((int16_t)Parameter_Servo4 * MULTIPLYER) - (256 / 2) * MULTIPLYER;
                                                        break;
                                         case 5:
                                                        RemainingPulse += ((int16_t)Parameter_Servo5 * MULTIPLYER) - (256 / 2) * MULTIPLYER;
                                                        break;
                                                default: // other servo channels
                                                        RemainingPulse += 2 * PPM_in[ServoIndex]; // add channel value, factor of 2 because timer 1 increments 3.2µs
                                                        break;
                                        }
                                        // range servo pulse width
                                        if(RemainingPulse > MAXSERVOPULSE )                     RemainingPulse = MAXSERVOPULSE; // upper servo pulse limit
                                        else if(RemainingPulse < MINSERVOPULSE )        RemainingPulse = MINSERVOPULSE; // lower servo pulse limit
                                        // substract stop pulse width
                                        RemainingPulse -= PPM_STOPPULSE;
                                        // accumulate time for correct sync gap
                                        ServoFrameTime += RemainingPulse;
                                }
                        }
                        else // we had a high pulse
                        {
                                TCCR2A |= (1<<COM2A0); // make a low pulse
                                // set pulsewidth to stop pulse width
                                RemainingPulse = PPM_STOPPULSE;
                                // accumulate time for correct sync gap
                                ServoFrameTime += RemainingPulse;
                                if((ServoActive && SenderOkay > 50) || ServoActive == 2) HEF4017R_OFF; // disable HEF4017 reset
                                else HEF4017R_ON;
                                ServoIndex++; // change to next servo channel
                                if(ServoIndex > EE_Parameter.ServoNickRefresh)
                                  {
                                    CalculateServoSignals = 1;
                                        ServoIndex = 0; // reset to the sync gap
                                  }
                        }
                        // set pulse output active
                        PulseOutput = 1;
                }
        } // EOF PPM state machine

        // General pulse output generator
        if(RemainingPulse > (255 + IRS_RUNTIME))
        {
                OCR2A = 255;
                RemainingPulse -= 255;
        }
        else
        {
                if(RemainingPulse > 255) // this is the 2nd last part
                {
                        if((RemainingPulse - 255) < IRS_RUNTIME)
                        {
                                OCR2A = 255 - IRS_RUNTIME;
                                RemainingPulse -= 255 - IRS_RUNTIME;

                        }
                        else // last part > ISR_RUNTIME
                        {
                                OCR2A = 255;
                                RemainingPulse -= 255;
                        }
                }
                else // this is the last part
                {
                        OCR2A = RemainingPulse;
                        RemainingPulse = 0;
                        PulseOutput = 0; // trigger to stop pulse
                }
        } // EOF general pulse output generator
}