Subversion Repositories FlightCtrl

Rev

Rev 726 | Blame | Last modification | View Log | RSS feed

/*#######################################################################################
Flight Control
#######################################################################################*/

// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) 04.2007 Holger Buss
// + Nur für den privaten Gebrauch
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
// + bzgl. der Nutzungsbedingungen aufzunehmen.
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
// + Verkauf von Luftbildaufnahmen, usw.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
// + eindeutig als Ursprung verlinkt werden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// +     from this software without specific prior written permission.
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// +     for non-commercial use (directly or indirectly)
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// +     with our written permission
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
// +     clearly linked as origin
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// +  POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include <stdlib.h>
#include <avr/io.h>

#include "main.h"
#include "eeprom.h"
#include "timer0.h"
#include "_Settings.h"
#include "analog.h"
#include "fc.h"
#include "gps.h"
#include "uart.h"
#include "rc.h"
#include "twimaster.h"
#include "mm3.h"


volatile unsigned int I2CTimeout = 100;
// gyro readings
volatile int16_t Reading_GyroPitch, Reading_GyroRoll, Reading_GyroYaw;
// gyro neutral readings
volatile int16_t AdNeutralPitch = 0, AdNeutralRoll = 0, AdNeutralYaw = 0;
volatile int16_t StartNeutralRoll = 0, StartNeutralPitch = 0;
// mean accelerations
volatile int16_t Mean_AccPitch, Mean_AccRoll, Mean_AccTop;

// neutral acceleration readings
volatile int16_t NeutralAccX=0, NeutralAccY=0;
volatile float NeutralAccZ = 0;

// attitude gyro integrals
volatile int32_t IntegralPitch = 0,IntegralPitch2 = 0;
volatile int32_t IntegralRoll = 0,IntegralRoll2 = 0;
volatile int32_t IntegralYaw = 0;
volatile int32_t Reading_IntegralGyroPitch = 0, Reading_IntegralGyroPitch2 = 0;
volatile int32_t Reading_IntegralGyroRoll = 0,  Reading_IntegralGyroRoll2 = 0;
volatile int32_t Reading_IntegralGyroYaw = 0,   Reading_IntegralGyroYaw2 = 0;
volatile int32_t MeanIntegralPitch;
volatile int32_t MeanIntegralRoll;

// attitude acceleration integrals
volatile int32_t IntegralAccPitch = 0, IntegralAccRoll = 0, IntegralAccZ = 0;
volatile int32_t Reading_Integral_Top = 0;

// compass course
volatile int16_t CompassHeading = 0;
volatile int16_t CompassCourse = 0;
volatile int16_t CompassOffCourse = 0;

// flags
uint8_t MotorsOn = 0;

int32_t TurnOver180Pitch = 250000L, TurnOver180Roll = 250000L;

float Gyro_P_Factor;
float Gyro_I_Factor;

volatile int16_t  DiffPitch, DiffRoll;

int16_t  Poti1 = 0, Poti2 = 0, Poti3 = 0, Poti4 = 0;

// setpoints for motors
volatile uint8_t Motor_Front, Motor_Rear, Motor_Right, Motor_Left;

// stick values derived by rc channels readings
int16_t StickPitch = 0, StickRoll = 0, StickYaw = 0, StickThrust = 0;
int16_t MaxStickPitch = 0, MaxStickRoll = 0, MaxStickYaw = 0;
// stick values derived by uart inputs
int16_t ExternStickPitch = 0, ExternStickRoll = 0, ExternStickYaw = 0, ExternHightValue = -20;




int16_t ReadingHight = 0;
int16_t SetPointHight = 0;

int16_t AttitudeCorrectionRoll = 0, AttitudeCorrectionPitch = 0;

float Ki =  FACTOR_I;

uint8_t Looping_Pitch = 0, Looping_Roll = 0;
uint8_t Looping_Left = 0, Looping_Right = 0, Looping_Down = 0, Looping_Top = 0;


fc_param_t FCParam = {48,251,16,58,64,150,150,2,10,0,0,0,0,0,0,0,0,100,70,0,0,100};


/************************************************************************/
/*  Creates numbeeps beeps at the speaker                               */
/************************************************************************/
void Beep(uint8_t numbeeps)
{
        while(numbeeps--)
        {
                if(MotorsOn) return; //auf keinen Fall im Flug!
                BeepTime = 100; // 0.1 second
                Delay_ms(250); // blocks 250 ms as pause to next beep,
                // this will block the flight control loop,
                // therefore do not use this funktion if motors are running
        }
}

/************************************************************************/
/*  Neutral Readings                                                    */
/************************************************************************/
void SetNeutral(void)
{
        NeutralAccX = 0;
        NeutralAccY = 0;
        NeutralAccZ = 0;
    AdNeutralPitch = 0;
        AdNeutralRoll = 0;
        AdNeutralYaw = 0;
    FCParam.Yaw_PosFeedback = 0;
    FCParam.Yaw_NegFeedback = 0;
    CalibMean();
    Delay_ms_Mess(100);
        CalibMean();
    if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL))  // Hight Control activated?
    {
                if((ReadingAirPressure > 950) || (ReadingAirPressure < 750)) SearchAirPressureOffset();
    }
        AdNeutralPitch = AdValueGyrPitch;
        AdNeutralRoll  = AdValueGyrRoll;
        AdNeutralYaw   = AdValueGyrYaw;
        StartNeutralRoll  = AdNeutralRoll;
        StartNeutralPitch = AdNeutralPitch;
    if(GetParamByte(PID_ACC_PITCH) > 4)
    {
                NeutralAccY = abs(Mean_AccRoll) / ACC_AMPLIFY;
                NeutralAccX = abs(Mean_AccPitch) / ACC_AMPLIFY;
                NeutralAccZ = Current_AccZ;
    }
    else
    {
                NeutralAccX = (int16_t)GetParamWord(PID_ACC_PITCH);
            NeutralAccY = (int16_t)GetParamWord(PID_ACC_ROLL);
            NeutralAccZ = (int16_t)GetParamWord(PID_ACC_Z);
    }
        Reading_IntegralGyroPitch = 0;
    Reading_IntegralGyroPitch2 = 0;
    Reading_IntegralGyroRoll = 0;
    Reading_IntegralGyroRoll2 = 0;
    Reading_IntegralGyroYaw = 0;
    Reading_GyroPitch = 0;
    Reading_GyroRoll = 0;
    Reading_GyroYaw = 0;
    StartAirPressure = AirPressure;
    HightD = 0;
    Reading_Integral_Top = 0;
    CompassCourse = CompassHeading;
    BeepTime = 50;
        TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
        TurnOver180Roll = (int32_t) ParamSet.AngleTurnOverRoll * 2500L;
    ExternHightValue = 0;
    GPS_Pitch = 0;
    GPS_Roll = 0;
}

/************************************************************************/
/*  Averaging Measurement Readings                                      */
/************************************************************************/
void Mean(void)
{
    static int32_t tmpl,tmpl2;

 // Get offset corrected gyro readings (~ to angular velocity)
    Reading_GyroYaw   = AdNeutralYaw    - AdValueGyrYaw;
    Reading_GyroRoll  = AdValueGyrRoll  - AdNeutralRoll;
    Reading_GyroPitch = AdValueGyrPitch - AdNeutralPitch;

        DebugOut.Analog[26] = Reading_GyroPitch;
        DebugOut.Analog[28] = Reading_GyroRoll;

// Acceleration Sensor
        // sliding average sensor readings
        Mean_AccPitch = ((int32_t)Mean_AccPitch * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccPitch))) / 2L;
        Mean_AccRoll  = ((int32_t)Mean_AccRoll * 1 + ((ACC_AMPLIFY * (int32_t)AdValueAccRoll))) / 2L;
        Mean_AccTop   = ((int32_t)Mean_AccTop * 1 + ((int32_t)AdValueAccTop)) / 2L;

        // sum sensor readings for later averaging
    IntegralAccPitch += ACC_AMPLIFY * AdValueAccPitch;
    IntegralAccRoll  += ACC_AMPLIFY * AdValueAccRoll;
    IntegralAccZ     += Current_AccZ - NeutralAccZ;

// Yaw
        // calculate yaw gyro intergral (~ to rotation angle)
    Reading_IntegralGyroYaw  += Reading_GyroYaw;
    Reading_IntegralGyroYaw2 += Reading_GyroYaw;
        // Coupling fraction
        if(!Looping_Pitch && !Looping_Roll && (ParamSet.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE))
        {
                tmpl = Reading_IntegralGyroPitch / 4096L;
                tmpl *= Reading_GyroYaw;
                tmpl *= FCParam.Yaw_PosFeedback;  //125
                tmpl /= 2048L;
                tmpl2 = Reading_IntegralGyroRoll / 4096L;
                tmpl2 *= Reading_GyroYaw;
                tmpl2 *= FCParam.Yaw_PosFeedback;
                tmpl2 /= 2048L;
        }
        else  tmpl = tmpl2 = 0;

// Roll
        Reading_GyroRoll += tmpl;
        Reading_GyroRoll += (tmpl2 * FCParam.Yaw_NegFeedback) / 512L; //109
        Reading_IntegralGyroRoll2 += Reading_GyroRoll;
        Reading_IntegralGyroRoll +=  Reading_GyroRoll - AttitudeCorrectionRoll;
        if(Reading_IntegralGyroRoll > TurnOver180Roll)
        {
                Reading_IntegralGyroRoll  = -(TurnOver180Roll - 10000L);
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
        }
        if(Reading_IntegralGyroRoll < -TurnOver180Roll)
        {
                Reading_IntegralGyroRoll =  (TurnOver180Roll - 10000L);
                Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;
        }
        if(AdValueGyrRoll < 15)   Reading_GyroRoll = -1000;
        if(AdValueGyrRoll <  7)   Reading_GyroRoll = -2000;
        if(BoardRelease == 10)
        {
                if(AdValueGyrRoll > 1010) Reading_GyroRoll = +1000;
                if(AdValueGyrRoll > 1017) Reading_GyroRoll = +2000;
        }
        else
        {
                if(AdValueGyrRoll > 2020) Reading_GyroRoll = +1000;
                if(AdValueGyrRoll > 2034) Reading_GyroRoll = +2000;
        }
// Pitch
        Reading_GyroPitch -= tmpl2;
        Reading_GyroPitch -= (tmpl*FCParam.Yaw_NegFeedback) / 512L;
        Reading_IntegralGyroPitch2 += Reading_GyroPitch;
        Reading_IntegralGyroPitch  += Reading_GyroPitch - AttitudeCorrectionPitch;
        if(Reading_IntegralGyroPitch > TurnOver180Pitch)
        {
         Reading_IntegralGyroPitch = -(TurnOver180Pitch - 10000L);
         Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
        }
        if(Reading_IntegralGyroPitch < -TurnOver180Pitch)
        {
         Reading_IntegralGyroPitch =  (TurnOver180Pitch - 10000L);
         Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
        }
        if(AdValueGyrPitch < 15)   Reading_GyroPitch = -1000;
        if(AdValueGyrPitch <  7)   Reading_GyroPitch = -2000;
        if(BoardRelease == 10)
        {
                if(AdValueGyrPitch > 1010) Reading_GyroPitch = +1000;
                if(AdValueGyrPitch > 1017) Reading_GyroPitch = +2000;
        }
        else
        {
                if(AdValueGyrPitch > 2020) Reading_GyroPitch = +1000;
                if(AdValueGyrPitch > 2034) Reading_GyroPitch = +2000;
        }

// start ADC
    ADC_Enable();

    IntegralYaw    = Reading_IntegralGyroYaw;
    IntegralPitch  = Reading_IntegralGyroPitch;
    IntegralRoll   = Reading_IntegralGyroRoll;
    IntegralPitch2 = Reading_IntegralGyroPitch2;
    IntegralRoll2  = Reading_IntegralGyroRoll2;

        if((ParamSet.GlobalConfig & CFG_ROTARY_RATE_LIMITER) && !Looping_Pitch && !Looping_Roll)
        {
                if(Reading_GyroPitch > 200)       Reading_GyroPitch += 4 * (Reading_GyroPitch - 200);
                else if(Reading_GyroPitch < -200) Reading_GyroPitch += 4 * (Reading_GyroPitch + 200);
                if(Reading_GyroRoll > 200)        Reading_GyroRoll  += 4 * (Reading_GyroRoll - 200);
                else if(Reading_GyroRoll < -200)  Reading_GyroRoll  += 4 * (Reading_GyroRoll + 200);
        }
        //update poti values by rc-signals
    if(Poti1 < PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110) Poti1++; else if(Poti1 > PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110 && Poti1) Poti1--;
    if(Poti2 < PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110) Poti2++; else if(Poti2 > PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110 && Poti2) Poti2--;
    if(Poti3 < PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110) Poti3++; else if(Poti3 > PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110 && Poti3) Poti3--;
    if(Poti4 < PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110) Poti4++; else if(Poti4 > PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110 && Poti4) Poti4--;
        //limit poti values
    if(Poti1 < 0) Poti1 = 0; else if(Poti1 > 255) Poti1 = 255;
    if(Poti2 < 0) Poti2 = 0; else if(Poti2 > 255) Poti2 = 255;
    if(Poti3 < 0) Poti3 = 0; else if(Poti3 > 255) Poti3 = 255;
    if(Poti4 < 0) Poti4 = 0; else if(Poti4 > 255) Poti4 = 255;
}

/************************************************************************/
/*  Averaging Measurement Readings  for Calibration                     */
/************************************************************************/
void CalibMean(void)
{
    // stop ADC to avoid changing values during calculation
        ADC_Disable();

        Reading_GyroPitch = AdValueGyrPitch;
        Reading_GyroRoll  = AdValueGyrRoll;
        Reading_GyroYaw   = AdValueGyrYaw;

        Mean_AccPitch = ACC_AMPLIFY * (int32_t)AdValueAccPitch;
        Mean_AccRoll  = ACC_AMPLIFY * (int32_t)AdValueAccRoll;
        Mean_AccTop   = (int32_t)AdValueAccTop;
    // start ADC
    ADC_Enable();
    //update poti values by rc-signals (why not +127?)
    if(Poti1 < PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110) Poti1++; else if(Poti1 > PPM_in[ParamSet.ChannelAssignment[CH_POTI1]] + 110 && Poti1) Poti1--;
    if(Poti2 < PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110) Poti2++; else if(Poti2 > PPM_in[ParamSet.ChannelAssignment[CH_POTI2]] + 110 && Poti2) Poti2--;
    if(Poti3 < PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110) Poti3++; else if(Poti3 > PPM_in[ParamSet.ChannelAssignment[CH_POTI3]] + 110 && Poti3) Poti3--;
    if(Poti4 < PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110) Poti4++; else if(Poti4 > PPM_in[ParamSet.ChannelAssignment[CH_POTI4]] + 110 && Poti4) Poti4--;
        //limit poti values
    if(Poti1 < 0) Poti1 = 0; else if(Poti1 > 255) Poti1 = 255;
    if(Poti2 < 0) Poti2 = 0; else if(Poti2 > 255) Poti2 = 255;
    if(Poti3 < 0) Poti3 = 0; else if(Poti3 > 255) Poti3 = 255;
    if(Poti4 < 0) Poti4 = 0; else if(Poti4 > 255) Poti4 = 255;

        TurnOver180Pitch = (int32_t) ParamSet.AngleTurnOverPitch * 2500L;
        TurnOver180Roll = (int32_t) ParamSet.AngleTurnOverRoll * 2500L;
}

/************************************************************************/
/*  Transmit Motor Data via I2C                                         */
/************************************************************************/
void SendMotorData(void)
{
    if(MOTOR_OFF || !MotorsOn)
    {
        Motor_Rear = 0;
        Motor_Front = 0;
        Motor_Right = 0;
        Motor_Left = 0;
        if(MotorTest[0]) Motor_Front = MotorTest[0];
        if(MotorTest[1]) Motor_Rear = MotorTest[1];
        if(MotorTest[2]) Motor_Left = MotorTest[2];
        if(MotorTest[3]) Motor_Right = MotorTest[3];
     }

    DebugOut.Analog[12] = Motor_Front;
    DebugOut.Analog[13] = Motor_Rear;
    DebugOut.Analog[14] = Motor_Left;
    DebugOut.Analog[15] = Motor_Right;

    //Start I2C Interrupt Mode
    twi_state = 0;
    motor = 0;
    I2C_Start();
}



/************************************************************************/
/*  Maps the parameter to poti values                                   */
/************************************************************************/
void ParameterMapping(void)
{

        #define CHK_POTI(b,a,min,max) { if(a > 250) { if(a == 251) b = Poti1; else if(a == 252) b = Poti2; else if(a == 253) b = Poti3; else if(a == 254) b = Poti4;} else b = a; if(b <= min) b = min; else if(b >= max) b = max;}
        CHK_POTI(FCParam.MaxHight,ParamSet.MaxHight,0,255);
        CHK_POTI(FCParam.Hight_D,ParamSet.Hight_D,0,100);
        CHK_POTI(FCParam.Hight_P,ParamSet.Hight_P,0,100);
        CHK_POTI(FCParam.Hight_ACC_Effect,ParamSet.Hight_ACC_Effect,0,255);
        CHK_POTI(FCParam.CompassYawEffect,ParamSet.CompassYawEffect,0,255);
        CHK_POTI(FCParam.Gyro_P,ParamSet.Gyro_P,10,255);
        CHK_POTI(FCParam.Gyro_I,ParamSet.Gyro_I,0,255);
        CHK_POTI(FCParam.I_Factor,ParamSet.I_Factor,0,255);
        CHK_POTI(FCParam.UserParam1,ParamSet.UserParam1,0,255);
        CHK_POTI(FCParam.UserParam2,ParamSet.UserParam2,0,255);
        CHK_POTI(FCParam.UserParam3,ParamSet.UserParam3,0,255);
        CHK_POTI(FCParam.UserParam4,ParamSet.UserParam4,0,255);
        CHK_POTI(FCParam.UserParam5,ParamSet.UserParam5,0,255);
        CHK_POTI(FCParam.UserParam6,ParamSet.UserParam6,0,255);
        CHK_POTI(FCParam.UserParam7,ParamSet.UserParam7,0,255);
        CHK_POTI(FCParam.UserParam8,ParamSet.UserParam8,0,255);
        CHK_POTI(FCParam.ServoPitchControl,ParamSet.ServoPitchControl,0,255);
        CHK_POTI(FCParam.LoopThrustLimit,ParamSet.LoopThrustLimit,0,255);
        CHK_POTI(FCParam.Yaw_PosFeedback,ParamSet.Yaw_PosFeedback,0,255);
        CHK_POTI(FCParam.Yaw_NegFeedback,ParamSet.Yaw_NegFeedback,0,255);
        CHK_POTI(FCParam.DynamicStability,ParamSet.DynamicStability,0,255);

        Ki = (float) FCParam.I_Factor * FACTOR_I;
}


/************************************************************************/
/*  MotorControl                                                        */
/************************************************************************/
void MotorControl(void)
{
         int16_t MotorValue, pd_result, h, tmp_int;
         int16_t YawMixFraction, ThrustMixFraction;
     static int32_t SumPitch = 0, SumRoll = 0;
     static int32_t SetPointYaw = 0;
     static int32_t IntegralErrorPitch = 0;
     static int32_t IntegralErrorRoll = 0;
         static uint16_t RcLostTimer;
         static uint8_t delay_neutral = 0, delay_startmotors = 0, delay_stopmotors = 0;
         static uint16_t Modell_Is_Flying = 0;
         static uint8_t EmergencyLanding = 0;
         static uint8_t HightControlActive = 0;
     static int16_t HightControlThrust = 0;
     static int8_t TimerDebugOut = 0;
     static int8_t StoreNewCompassCourse = 0;
     static int32_t CorrectionPitch, CorrectionRoll;

        Mean();

    GRN_ON;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// determine thrust value
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        ThrustMixFraction = StickThrust;
    if(ThrustMixFraction < 0) ThrustMixFraction = 0;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// RC-signal is bad
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// SenderOkay is incremented at good rc-level, i.e. if the ppm-signal deviation
// of a channel to previous frame is less than 1% the SenderOkay is incremented by 10.
// Typicaly within a frame of 8 channels (22.5ms) the SenderOkay is incremented by 8 * 10 = 80
// The decremtation of 1 in the mainloop is done every 2 ms, i.e. within a time of one rc frame
// the main loop is running 11 times that decrements the SenderOkay by 11.
if(SenderOkay < 100)  // the rc-frame signal is not reveived or noisy
        {
                if(!PcAccess) // if also no PC-Access via UART
                {
                        if(BeepModulation == 0xFFFF)
                        {
                         BeepTime = 15000; // 1.5 seconds
                         BeepModulation = 0x0C00;
                        }
                }
                if(RcLostTimer) RcLostTimer--; // decremtent timer after rc sigal lost
                else // rc lost countdown finished
                {
                  MotorsOn = 0; // stop all motors
                  EmergencyLanding = 0; // emergency landing is over
                }
                ROT_ON; // set red led
                if(Modell_Is_Flying > 2000)  // wahrscheinlich in der Luft --> langsam absenken
                {
                        ThrustMixFraction = ParamSet.EmergencyThrust; // set emergency thrust
                        EmergencyLanding = 1; // enable emergency landing
                        // set neutral rc inputs
                        PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
                        PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
                        PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] = 0;
                        PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] = 0;
                        PPM_in[ParamSet.ChannelAssignment[CH_YAW]] = 0;
                }
                else MotorsOn = 0; // switch of all motors
        }
        else
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// RC-signal is good
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        if(SenderOkay > 140)
        {
                EmergencyLanding = 0; // switch off emergency landing if RC-signal is okay
                // reset emergency timer
                RcLostTimer = ParamSet.EmergencyThrustDuration * 50;
                if(ThrustMixFraction > 40)
                {
                        if(Modell_Is_Flying < 0xFFFF) Modell_Is_Flying++;
                }
                if((Modell_Is_Flying < 200) || (ThrustMixFraction < 40))
                {
                        SumPitch = 0;
                        SumRoll = 0;
                        Reading_IntegralGyroYaw = 0;
                        Reading_IntegralGyroYaw2 = 0;
                }
                // if motors are off and the thrust stick is in the upper position
                if((PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] > 80) && MotorsOn == 0)
                {
                        // and if the yaw stick is in the leftmost position
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// calibrate the neutral readings of all attitude sensors
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                        {
                        if(++delay_neutral > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
                        {
                                delay_neutral = 0;
                                GRN_OFF;
                                Modell_Is_Flying = 0;
                                // check roll/pitch stick position
                                // if pitch stick is topmost or roll stick is leftmost --> change parameter setting
                                // according to roll/pitch stick position
                                if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70 || abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > 70)
                                {
                                         uint8_t setting = 1; // default
                                         //  _________
                                         // |2   3   4|
                                         // |         |
                                         // |1       5|
                                         // |         |
                                         // |_________|
                                         //
                                         // roll stick leftmost and pitch stick centered --> setting 1
                                         if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 1;
                                         // roll stick leftmost and pitch stick topmost --> setting 2
                                         if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 2;
                                         // roll stick centered an pitch stick topmost --> setting 3
                                         if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < 70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 3;
                                         // roll stick rightmost and pitch stick topmost --> setting 4
                                         if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > 70) setting = 4;
                                         // roll stick rightmost and pitch stick centered --> setting 5
                                         if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] <-70 && PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < 70) setting = 5;
                                         // update active parameter set in eeprom
                                         SetActiveParamSet(setting);
                                }
                                ParamSet_ReadFromEEProm(GetActiveParamSet());
                                SetNeutral();
                                Beep(GetActiveParamSet());
                                }
                        }
                        // and if the yaw stick is in the rightmost position
                        // save the ACC neutral setting to eeprom
            else if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
                        {
                        if(++delay_neutral > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
                                {
                                delay_neutral = 0;
                                GRN_OFF;
                                SetParamWord(PID_ACC_PITCH, 0xFFFF); // make value invalid
                                Modell_Is_Flying = 0;
                                SetNeutral();
                                // Save ACC neutral settings to eeprom
                                SetParamWord(PID_ACC_PITCH, (uint16_t)NeutralAccX);
                                SetParamWord(PID_ACC_ROLL,  (uint16_t)NeutralAccY);
                                SetParamWord(PID_ACC_Z,     (uint16_t)NeutralAccZ);
                                Beep(GetActiveParamSet());
                                }
                        }
            else delay_neutral = 0;
                }
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// thrust stick is down
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                if(PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] < -85)
                {
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// and yaw stick is rightmost --> start motors
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] < -75)
                        {
                                if(++delay_startmotors > 200) // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
                                {
                                        delay_startmotors = 200; // do not repeat if once executed
                                        Modell_Is_Flying = 1;
                                        MotorsOn = 1;
                                        SetPointYaw = 0;
                                        Reading_IntegralGyroYaw = 0;
                                        Reading_IntegralGyroYaw2 = 0;
                                        Reading_IntegralGyroPitch = 0;
                                        Reading_IntegralGyroRoll = 0;
                                        Reading_IntegralGyroPitch2 = IntegralPitch;
                                        Reading_IntegralGyroRoll2 = IntegralRoll;
                                        SumPitch = 0;
                                        SumRoll = 0;
                                }
                        }
                        else delay_startmotors = 0; // reset delay timer if sticks are not in this position
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// and yaw stick is leftmost --> stop motors
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                        if(PPM_in[ParamSet.ChannelAssignment[CH_YAW]] > 75)
                                {
                                if(++delay_stopmotors > 200)  // not immediately (wait 200 loops = 200 * 2ms = 0.4 s)
                                {
                                        delay_stopmotors = 200; // do not repeat if once executed
                                        Modell_Is_Flying = 0;
                                        MotorsOn = 0;

                                }
                        }
                        else delay_stopmotors = 0; // reset delay timer if sticks are not in this position
                        }
                }
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// new values from RC
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                if(!NewPpmData-- || EmergencyLanding) // NewData = 0 means new data from RC
                {
                        int tmp_int;
                        ParameterMapping(); // remapping params (online poti replacement)

                        // calculate Stick inputs by rc channels (P) and changing of rc channels (D)
                        StickPitch = (StickPitch * 3 + PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_P) / 4;
                        StickPitch += PPM_diff[ParamSet.ChannelAssignment[CH_PITCH]] * ParamSet.Stick_D;
                        StickRoll = (StickRoll * 3 + PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_P) / 4;
                        StickRoll += PPM_diff[ParamSet.ChannelAssignment[CH_ROLL]] * ParamSet.Stick_D;

                        // direct mapping of yaw and thrust
                        StickYaw = -PPM_in[ParamSet.ChannelAssignment[CH_YAW]];
                        StickThrust  = PPM_in[ParamSet.ChannelAssignment[CH_THRUST]] + 120;// shift to positive numbers

                        // update max stick positions for pitch, roll and yaw
                        if(abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]) > MaxStickPitch)
                                MaxStickPitch = abs(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]]);
                        else MaxStickPitch--;
                        if(abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]) > MaxStickRoll)
                                MaxStickRoll = abs(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]]);
                        else MaxStickRoll--;
                        if(abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]) > MaxStickYaw)
                                MaxStickYaw = abs(PPM_in[ParamSet.ChannelAssignment[CH_YAW]]);
                        else MaxStickYaw--;

                        // update gyro control loop factors

                        Gyro_P_Factor = ((float) FCParam.Gyro_P + 10.0) / 256.0;
                        Gyro_I_Factor = ((float) FCParam.Gyro_I) / 44000;

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Digital Control via DubWise
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

                        #define KEY_VALUE (FCParam.UserParam1 * 4) // step width
                        if(DubWiseKeys[1]) BeepTime = 10;
                        if(DubWiseKeys[1] & DUB_KEY_UP)  tmp_int = KEY_VALUE;
                        else if(DubWiseKeys[1] & DUB_KEY_DOWN)  tmp_int = -KEY_VALUE;
                        else tmp_int = 0;
                        ExternStickPitch = (ExternStickPitch * 7 + tmp_int) / 8;
                        if(DubWiseKeys[1] & DUB_KEY_LEFT)  tmp_int = KEY_VALUE;
                        else if(DubWiseKeys[1] & DUB_KEY_RIGHT) tmp_int = -KEY_VALUE;
                        else tmp_int = 0;
                        ExternStickRoll = (ExternStickRoll * 7 + tmp_int) / 8;

                        if(DubWiseKeys[0] & 8)  ExternStickYaw = 50;else
                        if(DubWiseKeys[0] & 4)  ExternStickYaw =-50;else ExternStickYaw = 0;
                        if(DubWiseKeys[0] & 2)  ExternHightValue++;
                        if(DubWiseKeys[0] & 16) ExternHightValue--;

                        StickPitch += ExternStickPitch / 8;
                        StickRoll += ExternStickRoll / 8;
                        StickYaw += ExternStickYaw;

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//+ Analoge Control via serial communication
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

                    if(ExternControl.Config & 0x01 && FCParam.UserParam1 > 128)
                        {
                                 StickPitch += (int16_t) ExternControl.Pitch * (int16_t) ParamSet.Stick_P;
                                 StickRoll += (int16_t) ExternControl.Roll * (int16_t) ParamSet.Stick_P;
                                 StickYaw += ExternControl.Yaw;
                                 ExternHightValue =  (int16_t) ExternControl.Hight * (int16_t)ParamSet.Hight_Gain;
                                 if(ExternControl.Thrust < StickThrust) StickThrust = ExternControl.Thrust;
                        }
            // disable I part of gyro control feedback
                        if(ParamSet.GlobalConfig & CFG_HEADING_HOLD) Gyro_I_Factor =  0;
                        // avoid negative scaling factors
                        if(Gyro_P_Factor < 0) Gyro_P_Factor = 0;
                        if(Gyro_I_Factor < 0) Gyro_I_Factor = 0;

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Looping?
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

                        if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_LEFT)  Looping_Left = 1;
                        else
                        {
                         {
                          if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Left = 0;
                         }
                        }
                        if((PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_RIGHT) Looping_Right = 1;
                        else
                        {
                        if(Looping_Right) // Hysterese
                         {
                          if(PPM_in[ParamSet.ChannelAssignment[CH_ROLL]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Right = 0;
                         }
                        }

                        if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_UP) Looping_Top = 1;
                        else
                        {
                        if(Looping_Top)  // Hysterese
                         {
                          if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < (ParamSet.LoopThreshold - ParamSet.LoopHysteresis))) Looping_Top = 0;
                         }
                        }
                        if((PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] < -ParamSet.LoopThreshold) && ParamSet.LoopConfig & CFG_LOOP_DOWN) Looping_Down = 1;
                        else
                        {
                        if(Looping_Down) // Hysterese
                         {
                          if(PPM_in[ParamSet.ChannelAssignment[CH_PITCH]] > -(ParamSet.LoopThreshold - ParamSet.LoopHysteresis)) Looping_Down = 0;
                         }
                        }

                        if(Looping_Left || Looping_Right)   Looping_Roll = 1; else Looping_Roll = 0;
                        if(Looping_Top  || Looping_Down) {Looping_Pitch = 1; Looping_Roll = 0; Looping_Left = 0; Looping_Right = 0;} else Looping_Pitch = 0;
                } // End of new RC-Values or Emergency Landing


                if(Looping_Roll) BeepTime = 100;
                if(Looping_Roll || Looping_Pitch)
                {
                if(ThrustMixFraction > ParamSet.LoopThrustLimit) ThrustMixFraction = ParamSet.LoopThrustLimit;
                }

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// in case of emergency landing
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                // set all inputs to save values
                if(EmergencyLanding)
                {
                        StickYaw = 0;
                        StickPitch = 0;
                        StickRoll = 0;
                        Gyro_P_Factor  = 0.5;
                        Gyro_I_Factor = 0.003;
                        Looping_Roll = 0;
                        Looping_Pitch = 0;
                        MaxStickPitch = 0;
                        MaxStickRoll = 0;
                        MaxStickYaw = 0;
                }

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Trim Gyro-Integrals to ACC-Signals
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

                #define BALANCE_NUMBER 256L
        // sum for averaging
                MeanIntegralPitch  += IntegralPitch;
                MeanIntegralRoll  += IntegralRoll;

                if(Looping_Pitch || Looping_Roll) // if looping in any direction
                {
                        // reset averaging for acc and gyro integral as well as gyro integral acc correction
                        MeasurementCounter = 0;

                        IntegralAccPitch = 0;
                        IntegralAccRoll = 0;
                        IntegralAccZ = 0;

                        MeanIntegralPitch = 0;
                        MeanIntegralRoll = 0;

                        Reading_IntegralGyroPitch2 = Reading_IntegralGyroPitch;
                        Reading_IntegralGyroRoll2 = Reading_IntegralGyroRoll;

                        AttitudeCorrectionPitch = 0;
                        AttitudeCorrectionRoll = 0;
                }

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                if(!Looping_Pitch && !Looping_Roll) // if not lopping in any direction
                {
                        int32_t tmp_long, tmp_long2;
                        // determine the deviation of gyro integral from averaged acceleration sensor
                        tmp_long   =  (int32_t)(IntegralPitch / ParamSet.GyroAccFaktor - (int32_t)Mean_AccPitch);
                        tmp_long  /= 16;
                        tmp_long2  = (int32_t)(IntegralRoll   / ParamSet.GyroAccFaktor - (int32_t)Mean_AccRoll);
                        tmp_long2 /= 16;

                        if((MaxStickPitch > 15) || (MaxStickRoll > 15))
                        {
                                tmp_long  /= 3;
                                tmp_long2 /= 3;
                        }
                        if(MaxStickYaw > 25)
                        {
                                tmp_long  /= 3;
                                tmp_long2 /= 3;
                        }

                        #define BALANCE 32
                        // limit correction
                        if(tmp_long >  BALANCE)  tmp_long  = BALANCE;
                        if(tmp_long < -BALANCE)  tmp_long  =-BALANCE;
                        if(tmp_long2 > BALANCE)  tmp_long2 = BALANCE;
                        if(tmp_long2 <-BALANCE)  tmp_long2 =-BALANCE;
                        // correct current readings
                        Reading_IntegralGyroPitch -= tmp_long;
                        Reading_IntegralGyroRoll -= tmp_long2;
                }
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        // MeasurementCounter is incremented in the isr of analog.c
                if(MeasurementCounter >= BALANCE_NUMBER) // averaging number has reached
                {
                        static int cnt = 0;
                        static char last_n_p, last_n_n, last_r_p, last_r_n;
                        static long MeanIntegralPitch_old, MeanIntegralRoll_old;

                        // if not lopping in any direction (this should be alwais the case,
                        // because the Measurement counter is reset to 0 if looping in any direction is active.)
                        if(!Looping_Pitch && !Looping_Roll)
                        {
                                // Calculate mean value of the gyro integrals
                                MeanIntegralPitch /= BALANCE_NUMBER;
                                MeanIntegralRoll  /= BALANCE_NUMBER;

                                // Calculate mean of the acceleration values
                                IntegralAccPitch = (ParamSet.GyroAccFaktor * IntegralAccPitch) / BALANCE_NUMBER;
                                IntegralAccRoll  = (ParamSet.GyroAccFaktor * IntegralAccRoll ) / BALANCE_NUMBER;
                                IntegralAccZ     = IntegralAccZ / BALANCE_NUMBER;

                                // Pitch ++++++++++++++++++++++++++++++++++++++++++++++++
                                // Calculate deviation of the averaged gyro integral and the averaged acceleration integral
                                IntegralErrorPitch = (int32_t)(MeanIntegralPitch - (int32_t)IntegralAccPitch);
                                CorrectionPitch = IntegralErrorPitch / ParamSet.GyroAccTrim;
                                AttitudeCorrectionPitch = CorrectionPitch / BALANCE_NUMBER;
                                // Roll ++++++++++++++++++++++++++++++++++++++++++++++++
                                // Calculate deviation of the averaged gyro integral and the averaged acceleration integral
                                IntegralErrorRoll = (int32_t)(MeanIntegralRoll - (int32_t)IntegralAccRoll);
                                CorrectionRoll  = IntegralErrorRoll / ParamSet.GyroAccTrim;
                                AttitudeCorrectionRoll  = CorrectionRoll  / BALANCE_NUMBER;

                                if((MaxStickPitch > 15) || (MaxStickRoll > 15) || (MaxStickYaw > 25))
                                {
                                        AttitudeCorrectionPitch /= 2;
                                        AttitudeCorrectionRoll /= 2;
                                }

                // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                // Gyro-Drift ermitteln
                // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                                // deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
                                IntegralErrorPitch  = IntegralPitch2 - IntegralPitch;
                                Reading_IntegralGyroPitch2 -= IntegralErrorPitch;
                                // deviation of gyro pitch integral (IntegralPitch is corrected by averaged acc sensor)
                                IntegralErrorRoll = IntegralRoll2 - IntegralRoll;
                                Reading_IntegralGyroRoll2 -= IntegralErrorRoll;


                                DebugOut.Analog[17] = IntegralAccPitch / 26;
                                DebugOut.Analog[18] = IntegralAccRoll / 26;
                                DebugOut.Analog[19] = IntegralErrorPitch;// / 26;
                                DebugOut.Analog[20] = IntegralErrorRoll;// / 26;
                                DebugOut.Analog[21] = MeanIntegralPitch / 26;
                                DebugOut.Analog[22] = MeanIntegralRoll / 26;
                                //DebugOut.Analog[28] = CorrectionPitch;
                                DebugOut.Analog[29] = CorrectionRoll;
                                DebugOut.Analog[30] = AttitudeCorrectionRoll * 10;

                                #define ERROR_LIMIT  (BALANCE_NUMBER * 4)
                                #define ERROR_LIMIT2 (BALANCE_NUMBER * 16)
                                #define MOVEMENT_LIMIT 20000
                // Pitch +++++++++++++++++++++++++++++++++++++++++++++++++
                                cnt = 1;// + labs(IntegralErrorPitch) / 4096;
                                CorrectionPitch = 0;
                                if(labs(MeanIntegralPitch_old - MeanIntegralPitch) < MOVEMENT_LIMIT)
                                {
                                        if(IntegralErrorPitch >  ERROR_LIMIT2)
                                        {
                                                if(last_n_p)
                                                {
                                                        cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
                                                        CorrectionPitch = IntegralErrorPitch / 8;
                                                        if(CorrectionPitch > 5000) CorrectionPitch = 5000;
                                                        AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
                                                }
                                                else last_n_p = 1;
                                        }
                                        else  last_n_p = 0;
                                        if(IntegralErrorPitch < -ERROR_LIMIT2)
                                        {
                                                if(last_n_n)
                                                {
                                                        cnt += labs(IntegralErrorPitch) / ERROR_LIMIT2;
                                                        CorrectionPitch = IntegralErrorPitch / 8;
                                                        if(CorrectionPitch < -5000) CorrectionPitch = -5000;
                                                        AttitudeCorrectionPitch += CorrectionPitch / BALANCE_NUMBER;
                                                }
                                                else last_n_n = 1;
                                        }
                                        else  last_n_n = 0;
                                }
                                else cnt = 0;
                                if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
                                // correct Gyro Offsets
                                if(IntegralErrorPitch >  ERROR_LIMIT)   AdNeutralPitch += cnt;
                                if(IntegralErrorPitch < -ERROR_LIMIT)   AdNeutralPitch -= cnt;

                // Roll +++++++++++++++++++++++++++++++++++++++++++++++++
                                cnt = 1;// + labs(IntegralErrorPitch) / 4096;
                                CorrectionRoll = 0;
                                if(labs(MeanIntegralRoll_old - MeanIntegralRoll) < MOVEMENT_LIMIT)
                                {
                                        if(IntegralErrorRoll >  ERROR_LIMIT2)
                                        {
                                                if(last_r_p)
                                                {
                                                        cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
                                                        CorrectionRoll = IntegralErrorRoll / 8;
                                                        if(CorrectionRoll > 5000) CorrectionRoll = 5000;
                                                        AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
                                                }
                                                else last_r_p = 1;
                                        }
                                        else  last_r_p = 0;
                                        if(IntegralErrorRoll < -ERROR_LIMIT2)
                                        {
                                                if(last_r_n)
                                                {
                                                        cnt += labs(IntegralErrorRoll) / ERROR_LIMIT2;
                                                        CorrectionRoll = IntegralErrorRoll / 8;
                                                        if(CorrectionRoll < -5000) CorrectionRoll = -5000;
                                                        AttitudeCorrectionRoll += CorrectionRoll / BALANCE_NUMBER;
                                                }
                                                else last_r_n = 1;
                                        }
                                        else  last_r_n = 0;
                                }
                                else cnt = 0;
                                // correct Gyro Offsets
                                if(cnt > ParamSet.DriftComp) cnt = ParamSet.DriftComp;
                                if(IntegralErrorRoll >  ERROR_LIMIT)   AdNeutralRoll += cnt;
                                if(IntegralErrorRoll < -ERROR_LIMIT)   AdNeutralRoll -= cnt;

                                DebugOut.Analog[27] = CorrectionRoll;
                                DebugOut.Analog[23] = AdNeutralPitch;//10*(AdNeutralPitch - StartNeutralPitch);
                                DebugOut.Analog[24] = 10*(AdNeutralRoll - StartNeutralRoll);
                        }
                        else // looping is active
                        {
                                AttitudeCorrectionRoll  = 0;
                                AttitudeCorrectionPitch = 0;
                        }

                        // if Gyro_I_Faktor == 0 , for example at Heading Hold, ignore attitude correction
                        if(!Gyro_I_Factor)
                        {
                                AttitudeCorrectionRoll  = 0;
                                AttitudeCorrectionPitch = 0;
                        }
                // +++++++++++++++++++++++++++++++++++++++++++++++++++++
                        MeanIntegralPitch_old = MeanIntegralPitch;
                        MeanIntegralRoll_old  = MeanIntegralRoll;
                // +++++++++++++++++++++++++++++++++++++++++++++++++++++
                        // reset variables used for averaging
                        IntegralAccPitch = 0;
                        IntegralAccRoll = 0;
                        IntegralAccZ = 0;
                        MeanIntegralPitch = 0;
                        MeanIntegralRoll = 0;
                        MeasurementCounter = 0;
                } // end of averaging


// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//  Yawing
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                if(MaxStickYaw > 20) // yaw stick is activated
                {   // if not fixed compass course is set update compass course
                        if(!(ParamSet.GlobalConfig & CFG_COMPASS_FIX)) StoreNewCompassCourse = 1;
                }
                // exponential stick sensitivity in yawring rate
                tmp_int  = (int32_t) ParamSet.Yaw_P * ((int32_t)StickYaw * abs(StickYaw)) / 512L; // expo  y = ax + bx²
                tmp_int += (ParamSet.Yaw_P * StickYaw) / 4;
                SetPointYaw = tmp_int;
                Reading_IntegralGyroYaw -= tmp_int;
                // limit the effect
                if(Reading_IntegralGyroYaw > 50000) Reading_IntegralGyroYaw = 50000;
                if(Reading_IntegralGyroYaw <-50000) Reading_IntegralGyroYaw =-50000;

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//  Compass
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                if(ParamSet.GlobalConfig & CFG_COMPASS_ACTIVE)
                {
                        int16_t w,v;
                        static uint8_t updCompass = 0;

                        if (!updCompass--)
                        {
                                updCompass = 49; // update only at 2ms*50 = 100ms (10Hz)
                                // get current compass heading (angule between MK head and magnetic north)
                                CompassHeading = MM3_Heading();
                                // calculate OffCourse (angular deviation from heading to course)
                                CompassOffCourse = ((540 + CompassHeading - CompassCourse) % 360) - 180;

                        }

                        // reduce compass effect with increasing declination
                        w = abs(IntegralPitch / 512);
                        v = abs(IntegralRoll  / 512);
                        if(v > w) w = v; // get maximum declination
                        // if declination is small enough update compass course if neccessary
                        if(w < 35 && StoreNewCompassCourse)
                        {
                                CompassCourse = CompassHeading;
                                StoreNewCompassCourse = 0;
                        }
                        w = (w * FCParam.CompassYawEffect) / 64;  // scale to parameter
                        w = FCParam.CompassYawEffect - w; // reduce commpass effect with increasing declination
                        if(w > 0) // if there is any compass effect (avoid negative compass feedback)
                        {
                                Reading_IntegralGyroYaw += (CompassOffCourse * w) / 32;
                        }
                }
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//  GPS
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                if(ParamSet.GlobalConfig & CFG_GPS_ACTIVE)
                {
                        GPS_P_Factor = FCParam.UserParam5;
                        GPS_D_Factor = FCParam.UserParam6;
                        GPS_Main(); // updates GPS_Pitch and GPS_Roll on new GPS data
                }
                else
                {
                        GPS_Pitch = 0;
                        GPS_Roll = 0;
                }

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//  Debugwerte zuordnen
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                if(!TimerDebugOut--)
                {
                        TimerDebugOut = 24; // update debug outputs every 25*2ms = 50 ms (20Hz)
                        DebugOut.Analog[0]  = IntegralPitch / ParamSet.GyroAccFaktor;
                        DebugOut.Analog[1]  = IntegralRoll / ParamSet.GyroAccFaktor;
                        DebugOut.Analog[2]  = Mean_AccPitch;
                        DebugOut.Analog[3]  = Mean_AccRoll;
                        DebugOut.Analog[4]  = Reading_GyroYaw;
                        DebugOut.Analog[5]  = ReadingHight;
                        DebugOut.Analog[6]  = (Reading_Integral_Top / 512);
                        DebugOut.Analog[8]  = CompassHeading;
                        DebugOut.Analog[9]  = UBat;
                        DebugOut.Analog[10] = SenderOkay;
                        DebugOut.Analog[16] = Mean_AccTop;

                        /*    DebugOut.Analog[16] = motor_rx[0];
                        DebugOut.Analog[17] = motor_rx[1];
                        DebugOut.Analog[18] = motor_rx[2];
                        DebugOut.Analog[19] = motor_rx[3];
                        DebugOut.Analog[20] = motor_rx[0] + motor_rx[1] + motor_rx[2] + motor_rx[3];
                        DebugOut.Analog[20] /= 14;
                        DebugOut.Analog[21] = motor_rx[4];
                        DebugOut.Analog[22] = motor_rx[5];
                        DebugOut.Analog[23] = motor_rx[6];
                        DebugOut.Analog[24] = motor_rx[7];
                        DebugOut.Analog[25] = motor_rx[4] + motor_rx[5] + motor_rx[6] + motor_rx[7];

                        DebugOut.Analog[9]  = Reading_GyroPitch;
                        DebugOut.Analog[9]  = SetPointHight;
                        DebugOut.Analog[10] = Reading_IntegralGyroYaw / 128;
                        DebugOut.Analog[11] = CompassCourse;
                        DebugOut.Analog[10] = FCParam.Gyro_I;
                        DebugOut.Analog[10] = ParamSet.Gyro_I;
                        DebugOut.Analog[9]  = CompassOffCourse;
                        DebugOut.Analog[10] = ThrustMixFraction;
                        DebugOut.Analog[3]  = HightD * 32;
                        DebugOut.Analog[4]  = HightControlThrust;
                        */

                }

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//  calculate control feedback from angle (gyro integral) and agular velocity (gyro signal)
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

                if(Looping_Pitch) Reading_GyroPitch = Reading_GyroPitch * Gyro_P_Factor;
                else Reading_GyroPitch = IntegralPitch * Gyro_I_Factor + Reading_GyroPitch * Gyro_P_Factor;
                if(Looping_Roll) Reading_GyroRoll = Reading_GyroRoll * Gyro_P_Factor;
                else Reading_GyroRoll = IntegralRoll * Gyro_I_Factor + Reading_GyroRoll * Gyro_P_Factor;
                Reading_GyroYaw = Reading_GyroYaw * (2 * Gyro_P_Factor) + IntegralYaw * Gyro_I_Factor / 2;

                DebugOut.Analog[25] = IntegralRoll * Gyro_I_Factor;
                DebugOut.Analog[31] = StickRoll;// / (26*Gyro_I_Factor);
                DebugOut.Analog[28] = Reading_GyroRoll;

                // limit control feedback
                #define MAX_SENSOR  2048
                if(Reading_GyroPitch >  MAX_SENSOR) Reading_GyroPitch =  MAX_SENSOR;
                if(Reading_GyroPitch < -MAX_SENSOR) Reading_GyroPitch = -MAX_SENSOR;
                if(Reading_GyroRoll  >  MAX_SENSOR) Reading_GyroRoll  =  MAX_SENSOR;
                if(Reading_GyroRoll  < -MAX_SENSOR) Reading_GyroRoll  = -MAX_SENSOR;
                if(Reading_GyroYaw   >  MAX_SENSOR) Reading_GyroYaw   =  MAX_SENSOR;
                if(Reading_GyroYaw   < -MAX_SENSOR) Reading_GyroYaw   = -MAX_SENSOR;

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Hight Control
// The higth control algorithm reduces the thrust but does not increase the thrust.
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                // If hight control is activated and no emergency landing is activre
                if((ParamSet.GlobalConfig & CFG_HEIGHT_CONTROL) && (!EmergencyLanding) )
                {
                        int tmp_int;
                        // if hight control is activated by an rc channel
                        if(ParamSet.GlobalConfig & CFG_HEIGHT_SWITCH)
                        {       // check if parameter is less than activation threshold
                                if(FCParam.MaxHight < 50)
                                {
                                        SetPointHight = ReadingHight - 20;  // update SetPoint with current reading
                                        HightControlActive = 0; // disable hight control
                                }
                                else HightControlActive = 1; // enable hight control
                        }
                        else // no switchable hight control
                        {
                                SetPointHight = ((int16_t) ExternHightValue + (int16_t) FCParam.MaxHight) * (int16_t)ParamSet.Hight_Gain - 20;
                                HightControlActive = 1;
                        }
                        // get current hight
                        h = ReadingHight;
                        // if current hight is above the setpoint reduce thrust
                        if((h > SetPointHight) && HightControlActive)
                        {
                                // hight difference -> P control part
                                h = ((h - SetPointHight) * (int16_t) FCParam.Hight_P) / 16;
                                h = ThrustMixFraction - h; // reduce gas
                                // higth gradient --> D control part
                                h -= (HightD * FCParam.Hight_D) / 8;  // D control part
                                // acceleration sensor effect
                                tmp_int = ((Reading_Integral_Top / 512) * (int32_t) FCParam.Hight_ACC_Effect) / 32;
                                if(tmp_int > 50) tmp_int = 50;
                                if(tmp_int < -50) tmp_int = -50;
                                h -= tmp_int;
                                // update hight control thrust
                                HightControlThrust = (HightControlThrust*15 + h) / 16;
                                // limit thrust reduction
                                if(HightControlThrust < ParamSet.Hight_MinThrust)
                                {
                                        if(ThrustMixFraction >= ParamSet.Hight_MinThrust) HightControlThrust = ParamSet.Hight_MinThrust;
                                        // allows landing also if thrust stick is reduced below min thrust on hight control
                                        if(ThrustMixFraction < ParamSet.Hight_MinThrust) HightControlThrust = ThrustMixFraction;
                                }
                                // limit thrust to stick setting
                                if(HightControlThrust > ThrustMixFraction) HightControlThrust = ThrustMixFraction;
                                ThrustMixFraction = HightControlThrust;
                        }
                }
                // limit thrust to parameter setting
                if(ThrustMixFraction > ParamSet.Trust_Max - 20) ThrustMixFraction = ParamSet.Trust_Max - 20;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Mixer and PI-Controller
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                DebugOut.Analog[7] = ThrustMixFraction;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Yaw-Fraction
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    YawMixFraction = Reading_GyroYaw - SetPointYaw;     // yaw controller

        // limit YawMixFraction
    if(YawMixFraction > (ThrustMixFraction / 2)) YawMixFraction = ThrustMixFraction / 2;
    if(YawMixFraction < -(ThrustMixFraction / 2)) YawMixFraction = -(ThrustMixFraction / 2);
    if(YawMixFraction > ((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = ((ParamSet.Trust_Max - ThrustMixFraction));
    if(YawMixFraction < -((ParamSet.Trust_Max - ThrustMixFraction))) YawMixFraction = -((ParamSet.Trust_Max - ThrustMixFraction));
    if(ThrustMixFraction < 20) YawMixFraction = 0;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Pitch-Axis
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    DiffPitch = Reading_GyroPitch - (StickPitch - GPS_Pitch);   // get difference
    if(Gyro_I_Factor) SumPitch += IntegralPitch * Gyro_I_Factor - (StickPitch - GPS_Pitch); // I-part for attitude control
    else SumPitch += DiffPitch; // I-part for head holding
    if(SumPitch >  16000) SumPitch =  16000;
    if(SumPitch < -16000) SumPitch = -16000;
    pd_result = DiffPitch + Ki * SumPitch; // PI-controller for pitch

    tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
    if(pd_result >  tmp_int) pd_result =  tmp_int;
    if(pd_result < -tmp_int) pd_result = -tmp_int;

        // Motor Front
    MotorValue = ThrustMixFraction + pd_result + YawMixFraction;          // Mixer
        if ((MotorValue < 0)) MotorValue = 0;
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
        Motor_Front = MotorValue;

 // Motor Rear
        MotorValue = ThrustMixFraction - pd_result + YawMixFraction;     // Mixer
        if ((MotorValue < 0)) MotorValue = 0;
        else if(MotorValue > ParamSet.Trust_Max)            MotorValue = ParamSet.Trust_Max;
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
        Motor_Rear = MotorValue;
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Roll-Axis
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        DiffRoll = Reading_GyroRoll - (StickRoll  - GPS_Roll);  // get difference
    if(Gyro_I_Factor) SumRoll += IntegralRoll * Gyro_I_Factor - (StickRoll  - GPS_Roll); // I-part for attitude control
    else SumRoll += DiffRoll;  // I-part for head holding
    if(SumRoll >  16000) SumRoll =  16000;
    if(SumRoll < -16000) SumRoll = -16000;
    pd_result = DiffRoll + Ki * SumRoll;         // PI-controller for roll
    tmp_int = (int32_t)((int32_t)FCParam.DynamicStability * (int32_t)(ThrustMixFraction + abs(YawMixFraction)/2)) / 64;
    if(pd_result >  tmp_int) pd_result =  tmp_int;
    if(pd_result < -tmp_int) pd_result = -tmp_int;

    // Motor Left
    MotorValue = ThrustMixFraction + pd_result - YawMixFraction;  // Mixer
        if ((MotorValue < 0)) MotorValue = 0;
        else if(MotorValue > ParamSet.Trust_Max)                MotorValue = ParamSet.Trust_Max;
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
    Motor_Left = MotorValue;

 // Motor Right
        MotorValue = ThrustMixFraction - pd_result - YawMixFraction;  // Mixer
        if ((MotorValue < 0)) MotorValue = 0;
        else if(MotorValue > ParamSet.Trust_Max)                MotorValue = ParamSet.Trust_Max;
        if (MotorValue < ParamSet.Trust_Min)            MotorValue = ParamSet.Trust_Min;
    Motor_Right = MotorValue;
}