Subversion Repositories FlightCtrl

Rev

Blame | Last modification | View Log | RSS feed

/*

Copyright 2007, Niklas Nold

This program (files math.c and math.h) is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation;
either version 3 of the License, or (at your option) any later version.  
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Please note: All the other files for the project "Mikrokopter" by H. Buss are under the license (license_buss.txt) published by www.mikrokopter.de
*/


#include "main.h"


const uint8_t pgm_atan[270] PROGMEM = {0,1,2,3,5,6,7,8,9,10,11,12,13,15,16,17,18,
19,20,21,22,23,24,25,26,27,27,28,29,30,31,32,33,33,34,35,36,37,37,38,39,39,40,41,
41,42,43,43,44,44,45,46,46,47,47,48,48,49,49,50,50,51,51,52,52,52,53,53,54,54,54,
55,55,56,56,56,57,57,57,58,58,58,59,59,59,60,60,60,60,61,61,61,61,62,62,62,62,63,
63,63,63,64,64,64,64,65,65,65,65,65,66,66,66,66,66,67,67,67,67,67,67,68,68,68,68,
68,68,69,69,69,69,69,69,69,70,70,70,70,70,70,70,70,71,71,71,71,71,71,71,71,72,72,
72,72,72,72,72,72,72,73,73,73,73,73,73,73,73,73,73,74,74,74,74,74,74,74,74,74,74,
74,74,75,75,75,75,75,75,75,75,75,75,75,75,75,76,76,76,76,76,76,76,76,76,76,76,76,
76,76,76,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,78,78,78,78,78,78,78,
78,78,78,78,78,78,78,78,78,78,78,78,78,79,79,79,79,79,79,79,79,79,79,79,79,79,79,
79,79,79,79,79,79,79,79,79,79};

// Arkustangens2 im Gradmaß
signed int atan2_i(signed int x,  signed int y)
{
        int i,angle;
        int8_t m;
       
        if (!x && !y) return 0;         //atan2 = 0 für x und y = 0
       
        if (y < 0) m=-1;
        else m=1;
       
        if (x==0) return (90*m);                // atan2 = 90° für x = 0
       
        i = abs(((float)y / x) * 50);           // Berechne i für die Lookup table (Schrittweite atan(x) ist 0.02 -> *50)

        if (i<270) angle = pgm_read_byte(&pgm_atan[i]); // Lookup für 1° bis 79°
        else if (i>5750) angle = 90;                                            // Grenzwert ist 90°
        else if (i>=1910) angle = 89;                                           // 89° bis 80° über Wertebereiche
        else if (i>=1150) angle = 88;
        else if (i>=820) angle = 87;
        else if (i>=640) angle = 86;
        else if (i>=520) angle = 85;
        else if (i>=440) angle = 84;
        else if (i>=380) angle = 83;
        else if (i>=335) angle = 82;
        else if (i>=299) angle = 81;
        else angle = 80; // (i>=270)
       
        if (x > 0) return (angle*m);    // Quadrant I und IV
        else if ((x < 0) && (y >= 0)) return ((angle*-1) + 180);        // Quadrant II
        else return (angle - 180); // x < 0 && y < 0    Quadrant III
}


//Sinusfunktion von 0° bis 359°. Ergebnis wurde mit 1000 multipliziert, damit als Definition platzsparend int
//verwendet werden kann. d.h., es muss also in der späteren Berechnung noch mit 0,001 multipliziert werden //(090907Kr)
const int c_sin[] = {0,17,34,52,69,87,104,121,139,156,173,190,
207,224,241,258,275,292,309,325,342,358,374,390,406,422,438,453,469,484,500,515,529,544,559,573,587,601,615,629,
642,656,669,682,694,707,719,731,743,754,766,777,788,798,809,819,829,838,848,857,866,874,882,891,898,906,913,920,
927,933,939,945,951,956,961,965,970,974,978,981,984,987,990,992,994,996,997,998,999,999,1000,999,999,998,997,996,
994,992,990,987,984,981,978,974,970,965,961,956,951,945,939,933,927,920,913,906,898,891,882,874,866,857,848,838,
829,819,809,798,788,777,766,754,743,731,719,707,694,682,669,656,642,629,615,601,587,573,559,544,529,515,500,484,
469,453,438,422,406,390,374,358,342,325,309,292,275,258,241,224,207,190,173,156,139,121,104,87,69,52,34,17,0,-17,
-34,-52,-69,-87,-104,-121,-139,-156,-173,-190,-207,-224,-241,-258,-275,-292,-309,-325,-342,-358,-374,-390,-406,
-422,-438,-453,-469,-484,-500,-515,-529,-544,-559,-573,-587,-601,-615,-629,-642,-656,-669,-682,-694,-707,-719,
-731,-743,-754,-766,-777,-788,-798,-809,-819,-829,-838,-848,-857,-866,-874,-882,-891,-898,-906,-913,-920,-927,
-933,-939,-945,-951,-956,-961,-965,-970,-974,-978,-981,-984,-987,-990,-992,-994,-996,-997,-998,-999,-999,-1000,
-999,-999,-998,-997,-996,-994,-992,-990,-987,-984,-981,-978,-974,-970,-965,-961,-956,-951,-945,-939,-933,-927,
-920,-913,-906,-898,-891,-882,-874,-866,-857,-848,-838,-829,-819,-809,-798,-788,-777,-766,-754,-743,-731,-719,
-707,-694,-682,-669,-656,-642,-629,-615,-601,-587,-573,-559,-544,-529,-515,-500,-484,-469,-453,-438,-422,-406,
-390,-374,-358,-342,-325,-309,-292,-275,-258,-241,-224,-207,-190,-173,-156,-139,-121,-104,-87,-69,-52,-34,-17};

//Cosinusfunktion von 0° bis 359°. Ergebnis wurde mit 1000 multipliziert, damit als Definition platzsparend int
//verwendet werden kann. D.h., es muss also in der späteren Berechnung noch mit 0,001 multipliziert werden //(090907Kr)
const int c_cos[] = {1000,999,999,998,997,996,994,992,990,987,984,981,
978,974,970,965,961,956,951,945,939,933,927,920,913,906,898,891,882,874,866,857,848,838,829,819,809,798,788,777,
766,754,743,731,719,707,694,682,669,656,642,629,615,601,587,573,559,544,529,515,500,484,469,453,438,422,406,390,
374,358,342,325,309,292,275,258,241,224,207,190,173,156,139,121,104,87,69,52,34,17,0,-17,-34,-52,-69,-87,-104,
-121,-139,-156,-173,-190,-207,-224,-241,-258,-275,-292,-309,-325,-342,-358,-374,-390,-406,-422,-438,-453,-469,
-484,-500,-515,-529,-544,-559,-573,-587,-601,-615,-629,-642,-656,-669,-682,-694,-707,-719,-731,-743,-754,-766,
-777,-788,-798,-809,-819,-829,-838,-848,-857,-866,-874,-882,-891,-898,-906,-913,-920,-927,-933,-939,-945,-951,
-956,-961,-965,-970,-974,-978,-981,-984,-987,-990,-992,-994,-996,-997,-998,-999,-999,-1000,-999,-999,-998,-997,
-996,-994,-992,-990,-987,-984,-981,-978,-974,-970,-965,-961,-956,-951,-945,-939,-933,-927,-920,-913,-906,-898,
-891,-882,-874,-866,-857,-848,-838,-829,-819,-809,-798,-788,-777,-766,-754,-743,-731,-719,-707,-694,-682,-669,
-656,-642,-629,-615,-601,-587,-573,-559,-544,-529,-515,-500,-484,-469,-453,-438,-422,-406,-390,-374,-358,-342,
-325,-309,-292,-275,-258,-241,-224,-207,-190,-173,-156,-139,-121,-104,-87,-69,-52,-34,-17,0,17,34,52,69,87,
104,121,139,156,173,190,207,224,241,258,275,292,309,325,342,358,374,390,406,422,438,453,469,484,500,515,529,544,
559,573,587,601,615,629,642,656,669,682,694,707,719,731,743,754,766,777,788,798,809,819,829,838,848,857,866,874,
882,891,898,906,913,920,927,933,939,945,951,956,961,965,970,974,978,981,984,987,990,992,994,996,997,998,999,999};



const float pgm_sinus_f [91] PROGMEM = {0.000,0.017,0.035,0.052,0.070,0.087,0.105,
0.122,0.139,0.156,0.174,0.191,0.208,0.225,0.242,0.259,0.276,0.292,0.309,0.326,
0.342,0.358,0.375,0.391,0.407,0.423,0.438,0.454,0.469,0.485,0.500,0.515,0.530,
0.545,0.559,0.574,0.588,0.602,0.616,0.629,0.643,0.656,0.669,0.682,0.695,0.707,
0.719,0.731,0.743,0.755,0.766,0.777,0.788,0.799,0.809,0.819,0.829,0.839,0.848,
0.857,0.866,0.875,0.883,0.891,0.899,0.906,0.914,0.921,0.927,0.934,0.940,0.946,
0.951,0.956,0.961,0.966,0.970,0.974,0.978,0.982,0.985,0.988,0.990,0.993,0.995,
0.996,0.998,0.999,0.999,1.000,1.000};

inline float pgm_read_float(const float *addr)
{      
        union
        {
                uint16_t i[2];  // 2 16-bit-Worte
                float f;
        } u;
       
        u.i[0]=pgm_read_word((PGM_P)addr);
        u.i[1]=pgm_read_word((PGM_P)addr+2);
       
        return u.f;
}

// Kosinusfunktion im Gradmaß
float cos_f(signed int winkel)
{
 return (sin_f(90-winkel));
}

// Sinusfunktion im Gradmaß
float sin_f(signed int winkel)
{
 short int m,n;
 float sinus;
 
 //winkel = winkel % 360;
 
 if (winkel < 0)
 {
        m = -1;
        winkel = abs(winkel);
 }
 else m = +1;
 
 // Quadranten auswerten
 if ((winkel > 90 ) && (winkel <= 180))
        {winkel = 180 - winkel; n = 1;}
 else if ((winkel > 180 ) && (winkel <= 270))
        {winkel = winkel - 180; n = -1;}
 else if ((winkel > 270) && (winkel <= 360))
        {winkel = 360 - winkel; n = -1;}
 else
        n = 1; //0 - 90 Grad


sinus = pgm_read_float(&pgm_sinus_f[winkel]);

return (sinus*m*n);
}


const uint8_t pgm_asin[201] PROGMEM = {0,0,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5,5,5,5,6,
6,6,7,7,7,7,8,8,8,9,9,9,9,10,10,10,11,11,11,12,12,12,12,13,13,13,14,14,14,14,15,
15,15,16,16,16,17,17,17,17,18,18,18,19,19,19,20,20,20,20,21,21,21,22,22,22,23,23,
23,24,24,24,25,25,25,25,26,26,26,27,27,27,28,28,28,29,29,29,30,30,30,31,31,31,32,
32,32,33,33,33,34,34,34,35,35,35,36,36,37,37,37,38,38,38,39,39,39,40,40,41,41,41,
42,42,42,43,43,44,44,44,45,45,46,46,46,47,47,48,48,49,49,49,50,50,51,51,52,52,53,
53,54,54,55,55,56,56,57,57,58,58,59,59,60,60,61,62,62,63,64,64,65,66,66,67,68,68,
69,70,71,72,73,74,75,76,77,79,80,82,84,90};

// Akurssinusfunktion im Gradmaß
int8_t asin_i(signed int i)
{
        signed char m;
       
        if (i < 0) {m=-1;i=abs(i);}
        else m=1;
       
        return (pgm_read_byte(&pgm_asin[i]) * m);
}