Rev 30 |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/*#######################################################################################
MK3Mag 3D-Magnet sensor
!!! THIS IS NOT FREE SOFTWARE !!!
#######################################################################################*/
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) 05.2008 Holger Buss
// + Thanks to Ilja Fähnrich (P_Latzhalter)
// + Nur für den privaten Gebrauch
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
// + AUSNAHME: Ein bei www.mikrokopter.de erworbener vorbestückter MK3Mag darf als Baugruppe auch in kommerziellen Systemen verbaut werden
// + Im Zweifelsfall bitte anfragen bei: info@mikrokopter.de
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
// + eindeutig als Ursprung verlinkt werden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// + * PORTING this software (or parts of it) to systems (other than hardware from www.mikrokopter.de) is NOT allowed
// + * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// + from this software without specific prior written permission.
// + * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// + for non-commercial use (directly or indirectly)
// + Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// + with our written permission
// + Exception: A preassembled MK3Mag, purchased from www.mikrokopter.de may be used as a part of commercial systems
// + In case of doubt please contact: info@MikroKopter.de
// + * If sources or documentations are redistributet on other webpages, our webpage (http://www.MikroKopter.de) must be
// + clearly linked as origin
// + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// + POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include <avr/interrupt.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "main.h"
#include "timer0.h"
#include "twislave.h"
#include "led.h"
#include "analog.h"
#include "uart.h"
AttitudeSource_t AttitudeSource
= ATTITUDE_SOURCE_ACC
;
Orientation_t Orientation
= ORIENTATION_FC
;
uint16_t Led_Timer
= 0;
typedef struct
{
int16_t Range
;
int16_t Offset
;
} Scaling_t
;
typedef struct
{
Scaling_t MagX
;
Scaling_t MagY
;
Scaling_t MagZ
;
Scaling_t AccX
;
Scaling_t AccY
;
Scaling_t AccZ
;
} Calibration_t
;
Calibration_t eeCalibration EEMEM
; // calibration data in EEProm
Calibration_t Calibration
; // calibration data in RAM
// magnet sensor variable
int16_t RawMagnet1a
, RawMagnet1b
; // raw magnet sensor data
int16_t RawMagnet2a
, RawMagnet2b
;
int16_t RawMagnet3a
, RawMagnet3b
;
int16_t UncalMagX
, UncalMagY
, UncalMagZ
; // sensor signal difference without Scaling
int16_t MagX
= 0, MagY
= 0, MagZ
= 0; // rescaled magnetic field readings
// acceleration sensor variables
int16_t RawAccX
= 0, RawAccY
= 0, RawAccZ
= 0; // raw acceleration readings
int16_t AccX
= 0, AccY
= 0, AccZ
= 0; // rescaled acceleration readings
int16_t AccAttitudeNick
= 0, AccAttitudeRoll
= 0; // nick and roll angle from acc
int16_t Heading
= -1; // the current compass heading in deg
void CalcFields
(void)
{
UncalMagX
= (RawMagnet1a
- RawMagnet1b
);
UncalMagY
= (RawMagnet3a
- RawMagnet3b
);
UncalMagZ
= (RawMagnet2a
- RawMagnet2b
);
if(Calibration.
MagX.
Range != 0) MagX
= (1024L * (int32_t)(UncalMagX
- Calibration.
MagX.
Offset)) / (Calibration.
MagX.
Range);
else MagX
= 0;
if(Calibration.
MagY.
Range != 0) MagY
= (1024L * (int32_t)(UncalMagY
- Calibration.
MagY.
Offset)) / (Calibration.
MagY.
Range);
else MagY
= 0;
if(Calibration.
MagY.
Range != 0) MagZ
= (1024L * (int32_t)(UncalMagZ
- Calibration.
MagZ.
Offset)) / (Calibration.
MagZ.
Range);
else MagZ
= 0;
if(AccPresent
)
{
AccX
= (RawAccX
- Calibration.
AccX.
Offset);
AccY
= (RawAccY
- Calibration.
AccY.
Offset);
AccZ
= (Calibration.
AccZ.
Offset - RawAccZ
);
#if (BOARD == 10) // the hardware 1.0 has the LIS3L02AL
// acc mode assumes orientation like FC
if(AccX
> 136) AccAttitudeNick
= -800;
else
if(AccX
< -136) AccAttitudeNick
= 800;
else AccAttitudeNick
= (int16_t)(-1800.0 * asin((double) AccX
/ 138.0) / M_PI
);
if(AccY
> 136) AccAttitudeRoll
= 800;
else
if(AccY
< -136) AccAttitudeRoll
= -800;
else AccAttitudeRoll
= (int16_t)( 1800.0 * asin((double) AccY
/ 138.0) / M_PI
);
#else // the hardware 1.1 has the LIS344ALH with a different axis definition (X -> -Y, Y -> X, Z -> Z)
// acc mode assumes orientation like FC
if(AccY
> 136) AccAttitudeNick
= 800;
else
if(AccY
< -136) AccAttitudeNick
= -800;
else AccAttitudeNick
= (int16_t)( 1800.0 * asin((double) AccY
/ 138.0) / M_PI
);
if(AccX
> 136) AccAttitudeRoll
= 800;
else
if(AccX
< -136) AccAttitudeRoll
= -800;
else AccAttitudeRoll
= (int16_t)( 1800.0 * asin((double) AccX
/ 138.0) / M_PI
);
#endif
}
}
void CalcHeading
(void)
{
double nick_rad
, roll_rad
, Hx
, Hy
, Cx
= 0.0, Cy
= 0.0, Cz
= 0.0;
int16_t nick
, roll
;
int16_t heading
= -1;
// blink code for normal operation
if(CheckDelay
(Led_Timer
))
{
LED_GRN_TOGGLE
;
Led_Timer
= SetDelay
(500);
}
switch(Orientation
)
{
case ORIENTATION_NC
:
Cx
= MagX
;
Cy
= MagY
;
Cz
= MagZ
;
break;
case ORIENTATION_FC
:
// rotation of 90 deg compared to NC setup
Cx
= MagY
;
Cy
= -MagX
;
Cz
= MagZ
;
break;
}
// calculate nick and roll angle in rad
switch(AttitudeSource
)
{
case ATTITUDE_SOURCE_I2C
:
cli
(); // stop interrupts
nick
= I2C_WriteAttitude.
Nick;
roll
= I2C_WriteAttitude.
Roll;
sei
(); // start interrupts
break;
case ATTITUDE_SOURCE_UART
:
cli
(); // stop interrupts
nick
= ExternData.
Attitude[NICK
];
roll
= ExternData.
Attitude[ROLL
];
sei
(); // start interrupts
break;
case ATTITUDE_SOURCE_ACC
:
nick
= AccAttitudeNick
;
roll
= AccAttitudeRoll
;
break;
default:
nick_rad
= 0;
roll_rad
= 0;
break;
}
nick_rad
= ((double)nick
) * M_PI
/ (double)(1800.0);
roll_rad
= ((double)roll
) * M_PI
/ (double)(1800.0);
// calculate attitude correction
Hx
= Cx
* cos(nick_rad
) - Cz
* sin(nick_rad
);
Hy
= Cy
* cos(roll_rad
) + Cz
* sin(roll_rad
);
DebugOut.
Analog[27] = (int16_t)Hx
;
DebugOut.
Analog[28] = (int16_t)Hy
;
// calculate Heading
heading
= (int16_t)((180.0 * atan2(Hy
, Hx
)) / M_PI
);
// atan2 returns angular range from -180 deg to 180 deg in counter clockwise notation
// but the compass course is defined in a range from 0 deg to 360 deg clockwise notation.
if (heading
< 0) heading
= -heading
;
else heading
= 360 - heading
;
cli
(); // stop interrupts
if(abs(heading
) < 361) Heading
= heading
;
else (Heading
= -1);
sei
(); // start interrupts
}
void Calibrate
(void)
{
uint8_t cal
;
static uint8_t calold
= 0;
static int16_t Xmin
= 0, Xmax
= 0, Ymin
= 0, Ymax
= 0, Zmin
= 0, Zmax
= 0;
static uint8_t blinkcount
= 0;
static uint8_t invert_blinking
= 0;
// check both sources of communication for calibration request
if(I2C_WriteCal.
CalByte) cal
= I2C_WriteCal.
CalByte;
else cal
= ExternData.
CalState;
if(cal
> 5) cal
= 0;
// blink code for current calibration state
if(cal
)
{
if(CheckDelay
(Led_Timer
) || (cal
!= calold
))
{
if(blinkcount
& 0x01) if(invert_blinking
) LED_GRN_ON
; else LED_GRN_OFF
;
else if(invert_blinking
) LED_GRN_OFF
; else LED_GRN_ON
;
// end of blinkcount sequence
if((blinkcount
+ 1 ) >= (2 * cal
))
{
blinkcount
= 0;
Led_Timer
= SetDelay
(1000);
}
else
{
blinkcount
++;
Led_Timer
= SetDelay
(170);
}
}
}
else
{
if(invert_blinking
) LED_GRN_ON
; else LED_GRN_OFF
;
}
// calibration state machine
switch(cal
)
{
case 1: // 1st step of calibration
// initialize ranges
// used to change the orientation of the MK3MAG in the horizontal plane
Xmin
= 10000;
Xmax
= -10000;
Ymin
= 10000;
Ymax
= -10000;
Zmin
= 10000;
Zmax
= -10000;
Calibration.
AccX.
Offset = RawAccX
;
Calibration.
AccY.
Offset = RawAccY
;
Calibration.
AccZ.
Offset = RawAccZ
;
invert_blinking
= 0;
break;
case 2: // 2nd step of calibration
// find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
if(UncalMagX
< Xmin
) Xmin
= UncalMagX
;
if(UncalMagX
> Xmax
) Xmax
= UncalMagX
;
if(UncalMagY
< Ymin
) Ymin
= UncalMagY
;
if(UncalMagY
> Ymax
) Ymax
= UncalMagY
;
invert_blinking
= 1;
break;
case 3: // 3rd step of calibration
// used to change the orientation of the MK3MAG vertical to the horizontal plane
invert_blinking
= 0;
break;
case 4:
// find Min and Max of the Z-Sensor
if(UncalMagZ
< Zmin
) Zmin
= UncalMagZ
;
if(UncalMagZ
> Zmax
) Zmax
= UncalMagZ
;
invert_blinking
= 1;
break;
case 5:
// Save values
if(cal
!= calold
) // avoid continously writing of eeprom!
{
Calibration.
MagX.
Range = Xmax
- Xmin
;
Calibration.
MagX.
Offset = (Xmin
+ Xmax
) / 2;
Calibration.
MagY.
Range = Ymax
- Ymin
;
Calibration.
MagY.
Offset = (Ymin
+ Ymax
) / 2;
Calibration.
MagZ.
Range = Zmax
- Zmin
;
Calibration.
MagZ.
Offset = (Zmin
+ Zmax
) / 2;
if((Calibration.
MagX.
Range > 150) && (Calibration.
MagY.
Range > 150) && (Calibration.
MagZ.
Range > 150))
{
// indicate write process by setting the led
LED_GRN_ON
;
eeprom_write_block
(&Calibration
, &eeCalibration
, sizeof(Calibration
));
Led_Timer
= SetDelay
(2000);
// reset blinkcode
blinkcount
= 0;
}
}
invert_blinking
= 0;
break;
default:
break;
}
calold
= cal
;
}
void SetDebugValues
(void)
{
DebugOut.
Analog[0] = MagX
;
DebugOut.
Analog[1] = MagY
;
DebugOut.
Analog[2] = MagZ
;
DebugOut.
Analog[3] = UncalMagX
;
DebugOut.
Analog[4] = UncalMagY
;
DebugOut.
Analog[5] = UncalMagZ
;
switch(AttitudeSource
)
{
case ATTITUDE_SOURCE_ACC
:
DebugOut.
Analog[6] = AccAttitudeNick
;
DebugOut.
Analog[7] = AccAttitudeRoll
;
break;
case ATTITUDE_SOURCE_UART
:
DebugOut.
Analog[6] = ExternData.
Attitude[NICK
];
DebugOut.
Analog[7] = ExternData.
Attitude[ROLL
];
break;
case ATTITUDE_SOURCE_I2C
:
DebugOut.
Analog[6] = I2C_WriteAttitude.
Nick;
DebugOut.
Analog[7] = I2C_WriteAttitude.
Roll;
break;
}
DebugOut.
Analog[8] = Calibration.
MagX.
Offset;
DebugOut.
Analog[9] = Calibration.
MagX.
Range;
DebugOut.
Analog[10] = Calibration.
MagY.
Offset;
DebugOut.
Analog[11] = Calibration.
MagY.
Range;
DebugOut.
Analog[12] = Calibration.
MagZ.
Offset;
DebugOut.
Analog[13] = Calibration.
MagZ.
Range;
DebugOut.
Analog[14] = ExternData.
CalState;
DebugOut.
Analog[15] = Heading
;
DebugOut.
Analog[16] = ExternData.
UserParam[0];
DebugOut.
Analog[17] = ExternData.
UserParam[1];
DebugOut.
Analog[18] = AccX
;
DebugOut.
Analog[19] = AccY
;
DebugOut.
Analog[20] = AccZ
;
DebugOut.
Analog[21] = RawAccX
;
DebugOut.
Analog[22] = RawAccY
;
DebugOut.
Analog[23] = RawAccZ
;
DebugOut.
Analog[24] = Calibration.
AccX.
Offset;
DebugOut.
Analog[25] = Calibration.
AccY.
Offset;
DebugOut.
Analog[26] = Calibration.
AccZ.
Offset;
DebugOut.
Analog[29] = AttitudeSource
;
}
void AccMeasurement
(void)
{
if(AccPresent
)
{
RawAccX
= (RawAccX
+ (int16_t)ADC_GetValue
(ACC_X
))/2;
RawAccY
= (RawAccY
+ (int16_t)ADC_GetValue
(ACC_Y
))/2;
RawAccZ
= (RawAccZ
+ (int16_t)ADC_GetValue
(ACC_Z
))/2;
}
else
{
RawAccX
= 0;
RawAccY
= 0;
RawAccZ
= 0;
}
}
int main
(void)
{
// reset input pullup
DDRC
&=~
((1<<DDC6
));
PORTC
|= (1<<PORTC6
);
LED_Init
();
TIMER0_Init
();
USART0_Init
();
ADC_Init
();
I2C_Init
();
sei
(); // enable globale interrupts
if(AccPresent
)
{
USART0_Print
("ACC present\n");
}
LED_GRN_ON
;
Debug_Timer
= SetDelay
(200);
Led_Timer
= SetDelay
(200);
// read calibration info from eeprom
eeprom_read_block
(&Calibration
, &eeCalibration
, sizeof(Calibration
));
ExternData.
CalState = 0;
I2C_WriteCal.
CalByte = 0;
// main loop
while (1)
{
FLIP_LOW
;
Delay_ms
(2);
RawMagnet1a
= ADC_GetValue
(MAG_X
);
RawMagnet2a
= -ADC_GetValue
(MAG_Y
);
RawMagnet3a
= ADC_GetValue
(MAG_Z
);
AccMeasurement
();
Delay_ms
(1);
FLIP_HIGH
;
Delay_ms
(2);
RawMagnet1b
= ADC_GetValue
(MAG_X
);
RawMagnet2b
= -ADC_GetValue
(MAG_Y
);
RawMagnet3b
= ADC_GetValue
(MAG_Z
);
AccMeasurement
();
Delay_ms
(1);
CalcFields
();
if(ExternData.
CalState || I2C_WriteCal.
CalByte) Calibrate
();
else CalcHeading
();
// check data from USART
USART0_ProcessRxData
();
if(NC_Connected
) NC_Connected
--;
if(FC_Connected
) FC_Connected
--;
// fall back to attitude estimation from acc sensor if NC or FC does'nt send attittude data
if(!FC_Connected
&& ! NC_Connected
)
{
AttitudeSource
= ATTITUDE_SOURCE_ACC
;
Orientation
= ORIENTATION_FC
;
}
if(PC_Connected
)
{
USART0_EnableTXD
();
USART0_TransmitTxData
();
PC_Connected
--;
}
else
{
USART0_DisableTXD
();
}
} // while(1)
}