Subversion Repositories MK3Mag

Rev

Rev 22 | Rev 25 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed

/*#######################################################################################
MK3Mag 3D-Magnet sensor
!!! THIS IS NOT FREE SOFTWARE !!!
#######################################################################################*/

// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Copyright (c) 05.2008 Holger Buss
// + Thanks to Ilja Fähnrich (P_Latzhalter)
// + Nur für den privaten Gebrauch
// + www.MikroKopter.com
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
// + mit unserer Zustimmung zulässig
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
// + AUSNAHME: Ein bei www.mikrokopter.de erworbener vorbestückter MK3Mag darf als Baugruppe auch in kommerziellen Systemen verbaut werden
// + Im Zweifelsfall bitte anfragen bei: info@mikrokopter.de
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
// + eindeutig als Ursprung verlinkt werden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
// + Benutzung auf eigene Gefahr
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
// + this list of conditions and the following disclaimer.
// +   * PORTING this software (or parts of it) to systems (other than hardware from www.mikrokopter.de) is NOT allowed
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
// +     from this software without specific prior written permission.
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
// +     for non-commercial use (directly or indirectly)
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
// +     with our written permission
// +     Exception: A preassembled MK3Mag, purchased from www.mikrokopter.de may be used as a part of commercial systems
// +     In case of doubt please contact: info@MikroKopter.de
// +   * If sources or documentations are redistributet on other webpages, our webpage (http://www.MikroKopter.de) must be
// +     clearly linked as origin
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// +  POSSIBILITY OF SUCH DAMAGE.
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#include <avr/interrupt.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>

#include "main.h"
#include "timer0.h"
#include "twislave.h"
#include "led.h"
#include "analog.h"
#include "uart.h"


int16_t RawMagnet1a, RawMagnet1b;  // raw AD-Data
int16_t RawMagnet2a, RawMagnet2b;
int16_t RawMagnet3a, RawMagnet3b;

uint16_t Led_Timer = 0;

struct Scaling_t
{
        int16_t Range;
        int16_t Offset;
} ;

struct Calibration_t
{
        struct Scaling_t X;
        struct Scaling_t Y;
        struct Scaling_t Z;
} ;

struct Calibration_t eeCalibration EEMEM; // calibration data in EEProm
struct Calibration_t Calibration;         // calibration data in RAM


int16_t UncalMagnetX, UncalMagnetY, UncalMagnetZ;       // sensor signal difference without Scaling
int16_t MagnetX, MagnetY, MagnetZ;                      // rescaled magnetic field readings

uint8_t PC_Connected = 0;

int16_t Heading = -1;


void CalcFields(void)
{
        UncalMagnetX = (1 * UncalMagnetX + (RawMagnet1a - RawMagnet1b)) / 2;
        UncalMagnetY = (1 * UncalMagnetY + (RawMagnet3a - RawMagnet3b)) / 2;
        UncalMagnetZ = (1 * UncalMagnetZ + (RawMagnet2a - RawMagnet2b)) / 2;

        if(Calibration.X.Range != 0) MagnetX = (1024L * (int32_t)(UncalMagnetX - Calibration.X.Offset)) / (Calibration.X.Range);
        else MagnetX = 0;
        if(Calibration.Y.Range != 0) MagnetY = (1024L * (int32_t)(UncalMagnetY - Calibration.Y.Offset)) / (Calibration.Y.Range);
        else MagnetY = 0;
        if(Calibration.Y.Range != 0) MagnetZ = (1024L * (int32_t)(UncalMagnetZ - Calibration.Z.Offset)) / (Calibration.Z.Range);
        else MagnetZ = 0;
}


void CalcHeading(void)
{
        double nick_rad, roll_rad, Hx, Hy, Cx, Cy, Cz;
        int16_t heading = -1;

        // blink code for normal operation
        if(CheckDelay(Led_Timer))
        {
                LED_GRN_TOGGLE;
                Led_Timer = SetDelay(500);
        }

        Cx = MagnetX;
        Cy = MagnetY;
        Cz = MagnetZ;

        if(ExternData.Orientation == 1)
        {
                Cx = MagnetX;
                Cy = -MagnetY;
                Cz = MagnetZ;
        }

        // calculate nick and roll angle in rad
        nick_rad = ((double)ExternData.Attitude[NICK]) * M_PI / (double)(1800.0);
        roll_rad = ((double)ExternData.Attitude[ROLL]) * M_PI / (double)(1800.0);
        // calculate attitude correction
        Hx = Cx * (double)cos(nick_rad) - Cz * (double)sin(nick_rad);
        Hy = Cy * (double)cos(roll_rad) + Cz * (double)sin(roll_rad);

        // calculate Heading
        heading = (int16_t)((180.0 * atan2(Hy, Hx)) / M_PI);
        // atan2 returns angular range from -180 deg to 180 deg in counter clockwise notation
        // but the compass course is defined in a range from 0 deg to 360 deg clockwise notation.
        if (heading < 0) heading = -heading;
        else heading = 360 - heading;

        if(abs(heading) < 361) Heading = heading;
        else (Heading = -1);
}


void Calibrate(void)
{
        uint8_t cal;
        static uint8_t calold = 0;
        static int16_t Xmin = 0, Xmax = 0, Ymin = 0, Ymax = 0, Zmin = 0, Zmax = 0;
        static uint8_t blinkcount = 0;

        // check both sources of communication for calibration request
        if(I2C_WriteCal.CalByte) cal = I2C_WriteCal.CalByte;
        else                     cal = ExternData.CalState;


        if(cal > 5) cal = 0;
        // blink code for current calibration state
        if(cal)
        {
                if(CheckDelay(Led_Timer) || (cal != calold))
                {
                        if(blinkcount & 0x01) LED_GRN_OFF;
                        else LED_GRN_ON;

                        // end of blinkcount sequence
                        if( (blinkcount + 1 ) >= (2 * cal) )
                        {
                                blinkcount = 0;
                                Led_Timer = SetDelay(1000);
                        }
                        else
                        {
                                blinkcount++;
                                Led_Timer = SetDelay(170);
                        }
                }
        }
        else
        {
                LED_GRN_OFF;
        }

        // calibration state machine
        switch(cal)
        {
                case 0: // no calibration
                        break;

                case 1: // 1st step of calibration
                        // initialize ranges
                        // used to change the orientation of the MK3MAG in the horizontal plane
                        Xmin =  10000;
                        Xmax = -10000;
                        Ymin =  10000;
                        Ymax = -10000;
                        Zmin =  10000;
                        Zmax = -10000;
                        break;

                case 2: // 2nd step of calibration
                        // find Min and Max of the X- and Y-Sensors during rotation in the horizontal plane
                        if(UncalMagnetX < Xmin) Xmin = UncalMagnetX;
                        if(UncalMagnetX > Xmax) Xmax = UncalMagnetX;
                        if(UncalMagnetY < Ymin) Ymin = UncalMagnetY;
                        if(UncalMagnetY > Ymax) Ymax = UncalMagnetY;
                        break;

                case 3: // 3rd step of calibration
                        // used to change the orietation of the MK3MAG vertical to the horizontal plane
                        break;

                case 4:
                        // find Min and Max of the Z-Sensor
                        if(UncalMagnetZ < Zmin) Zmin = UncalMagnetZ;
                        if(UncalMagnetZ > Zmax) Zmax = UncalMagnetZ;
                        break;

                case 5:
                        // Save values
                        if(cal != calold) // avoid continously wrinting of eeprom!
                        {
                                Calibration.X.Range = Xmax - Xmin;
                                Calibration.X.Offset = (Xmin + Xmax) / 2;
                                Calibration.Y.Range = Ymax - Ymin;
                                Calibration.Y.Offset = (Ymin + Ymax) / 2;
                                Calibration.Z.Range = Zmax - Zmin;
                                Calibration.Z.Offset = (Zmin + Zmax) / 2;
                                if((Calibration.X.Range > 150) && (Calibration.Y.Range > 150) && (Calibration.Z.Range > 150))
                                {
                                        // indicate write process by setting the led
                                        LED_GRN_ON;
                                        eeprom_write_block(&Calibration, &eeCalibration, sizeof(Calibration));
                                        Delay_ms(2000);
                                        // reset led state
                                        LED_GRN_OFF;
                                        // reset  blinkcode
                                        blinkcount = 0;
                                        Led_Timer = SetDelay(1000);
                                }
                        }
                        break;

                default:
                        break;
        }
        calold = cal;
}


void SetDebugValues(void)
{
        DebugOut.Analog[0] =  MagnetX;
        DebugOut.Analog[1] =  MagnetY;
        DebugOut.Analog[2] =  MagnetZ;
        DebugOut.Analog[3] =  UncalMagnetX;
        DebugOut.Analog[4] =  UncalMagnetY;
        DebugOut.Analog[5] =  UncalMagnetZ;
        DebugOut.Analog[6] =  ExternData.Attitude[NICK];
        DebugOut.Analog[7] =  ExternData.Attitude[ROLL];
        DebugOut.Analog[8] =  Calibration.X.Offset;
        DebugOut.Analog[9] =  Calibration.X.Range;
        DebugOut.Analog[10] = Calibration.Y.Offset;
        DebugOut.Analog[11] = Calibration.Y.Range;
        DebugOut.Analog[12] = Calibration.Z.Offset;
        DebugOut.Analog[13] = Calibration.Z.Range;
        DebugOut.Analog[14] = ExternData.CalState;
        DebugOut.Analog[15] = Heading;
        DebugOut.Analog[16] = ExternData.UserParam[0];
        DebugOut.Analog[17] = ExternData.UserParam[1];
}


int main (void)
{
        // reset input pullup
        DDRC &=~((1<<DDC6));
        PORTC |= (1<<PORTC6);

    LED_Init();
    TIMER0_Init();
    USART0_Init();
    ADC_Init();
        I2C_Init();

    sei(); // enable globale interrupts

    LED_GRN_ON;

    Debug_Timer = SetDelay(200);
    Led_Timer = SetDelay(200);

        // read calibration info from eeprom
        eeprom_read_block(&Calibration, &eeCalibration, sizeof(Calibration));

    ExternData.Orientation = 0;
    ExternData.CalState = 0;
    I2C_WriteCal.CalByte = 0;


        // main loop
    while (1)
    {
                FLIP_LOW;
                Delay_ms(2);
                RawMagnet1a = ADC_GetValue(ADC0);
                RawMagnet2a = -ADC_GetValue(ADC1);
                RawMagnet3a = ADC_GetValue(ADC7);
                Delay_ms(1);


                FLIP_HIGH;
                Delay_ms(2);
                RawMagnet1b = ADC_GetValue(ADC0);
                RawMagnet2b = -ADC_GetValue(ADC1);
                RawMagnet3b = ADC_GetValue(ADC7);
                Delay_ms(1);

                CalcFields();

                if(ExternData.CalState || I2C_WriteCal.CalByte) Calibrate();
                else CalcHeading();

                // check data from USART
        USART0_ProcessRxData();
                USART0_TransmitTxData();

        if(PC_Connected)
        {
            USART0_EnableTXD();
            USART0_TransmitTxData();
            PC_Connected--;
                }
                else
                {
                        USART0_DisableTXD();
                }
        } // while(1)
}