Blame |
Last modification |
View Log
| RSS feed
/*************************************************************************
Title: Interrupt UART library with receive/transmit circular buffers
Author: Peter Fleury <pfleury@gmx.ch> http://jump.to/fleury
File: $Id: uart.c,v 1.6.2.2 2009/11/29 08:56:12 Peter Exp $
Software: AVR-GCC 4.1, AVR Libc 1.4.6 or higher
Hardware: any AVR with built-in UART,
License: GNU General Public License
DESCRIPTION:
An interrupt is generated when the UART has finished transmitting or
receiving a byte. The interrupt handling routines use circular buffers
for buffering received and transmitted data.
The UART_RX_BUFFER_SIZE and UART_TX_BUFFER_SIZE variables define
the buffer size in bytes. Note that these variables must be a
power of 2.
USAGE:
Refere to the header file uart.h for a description of the routines.
See also example test_uart.c.
NOTES:
Based on Atmel Application Note AVR306
LICENSE:
Copyright (C) 2006 Peter Fleury
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
*************************************************************************/
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <string.h>
#include <stdbool.h>
#include "uart1.h"
#include "main.h"
#include "bluetooth.h"
#include "tracking.h"
//
// constants and macros
//
#if defined HWVERSION1_3W || defined HWVERSION3_9
// size of RX/TX buffers
#define UART_RX_BUFFER_MASK ( UART_RX_BUFFER_SIZE - 1)
#define UART_TX_BUFFER_MASK ( UART_TX_BUFFER_SIZE - 1)
#if ( UART_RX_BUFFER_SIZE & UART_RX_BUFFER_MASK )
#error RX buffer size is not a power of 2
#endif
#if ( UART_TX_BUFFER_SIZE & UART_TX_BUFFER_MASK )
#error TX buffer size is not a power of 2
#endif
// ATmega with two USART
#define ATMEGA_USART1
#define UART1_STATUS UCSR1A
#define UART1_CONTROL UCSR1B
#define UART1_DATA UDR1
#define UART1_UDRIE UDRIE1
//
// module global variables
//
uint8_t receiveNMEA = false;
#if defined( ATMEGA_USART1 )
static volatile unsigned char UART1_TxBuf[UART_TX_BUFFER_SIZE];
static volatile unsigned char UART1_RxBuf[UART_RX_BUFFER_SIZE];
static volatile unsigned char UART1_TxHead;
static volatile unsigned char UART1_TxTail;
static volatile unsigned char UART1_RxHead;
static volatile unsigned char UART1_RxTail;
static volatile unsigned char UART1_LastRxError;
#endif
//
// these functions are only for ATmegas with two USART
//
#if defined( ATMEGA_USART1 )
//--------------------------------------------------------------
// Function: UART1 Receive Complete interrupt
// Purpose: called when the UART1 has received a character
//--------------------------------------------------------------
ISR(USART1_RX_vect)
{
unsigned char tmphead;
unsigned char data;
unsigned char usr;
unsigned char lastRxError;
// read UART status register and UART data register
usr = UART1_STATUS;
data = UART1_DATA;
lastRxError = (usr & (_BV(FE1)|_BV(DOR1)) );
// calculate buffer index
tmphead = ( UART1_RxHead + 1) & UART_RX_BUFFER_MASK;
if ( tmphead == UART1_RxTail )
{
// error: receive buffer overflow
lastRxError = UART_BUFFER_OVERFLOW >> 8;
}
else
{
// store new index
UART1_RxHead = tmphead;
// store received data in buffer
UART1_RxBuf[tmphead] = data;
}
UART1_LastRxError = lastRxError;
#if defined HWVERSION3_9
if (receiveNMEA==true)
{
if (bt_receiveNMEA()) Tracking_NMEA();
}
#endif
}
//--------------------------------------------------------------
// Function: UART1 Data Register Empty interrupt
// Purpose: called when the UART1 is ready to transmit the next byte
//--------------------------------------------------------------
ISR(USART1_UDRE_vect)
{
unsigned char tmptail;
if ( UART1_TxHead != UART1_TxTail)
{
// calculate and store new buffer index
tmptail = (UART1_TxTail + 1) & UART_TX_BUFFER_MASK;
UART1_TxTail = tmptail;
// get one byte from buffer and write it to UART
UART1_DATA = UART1_TxBuf[tmptail]; // start transmission
}
else
{
// tx buffer empty, disable UDRE interrupt
UART1_CONTROL &= ~_BV(UART1_UDRIE);
}
}
//--------------------------------------------------------------
// Function: uart1_init()
// Purpose: initialize UART1 and set baudrate
// Input: baudrate using macro UART_BAUD_SELECT()
// Returns: none
//--------------------------------------------------------------
void uart1_init(unsigned int baudrate)
{
UART1_TxHead = 0;
UART1_TxTail = 0;
UART1_RxHead = 0;
UART1_RxTail = 0;
// Set baud rate
if ( baudrate & 0x8000 )
{
UART1_STATUS = (1<<U2X1); //Enable 2x speed
baudrate &= ~0x8000;
}
UBRR1H = (unsigned char)(baudrate>>8);
UBRR1L = (unsigned char) baudrate;
// Enable USART receiver and transmitter and receive complete interrupt
UART1_CONTROL = _BV(RXCIE1)|(1<<RXEN1)|(1<<TXEN1);
// Set frame format: asynchronous, 8data, no parity, 1stop bit
#ifdef URSEL1
UCSR1C = (1<<URSEL1)|(3<<UCSZ10);
#else
UCSR1C = (3<<UCSZ10);
#endif
}
//--------------------------------------------------------------
// Function: uart1_getc()
// Purpose: return byte from ringbuffer
// Returns: lower byte: received byte from ringbuffer
// higher byte: last receive error
//--------------------------------------------------------------
unsigned int uart1_getc(void)
{
unsigned char tmptail;
unsigned char data;
if ( UART1_RxHead == UART1_RxTail )
{
return UART_NO_DATA; // no data available
}
// calculate /store buffer index
tmptail = (UART1_RxTail + 1) & UART_RX_BUFFER_MASK;
UART1_RxTail = tmptail;
// get data from receive buffer
data = UART1_RxBuf[tmptail];
return (UART1_LastRxError << 8) + data;
}
//--------------------------------------------------------------
// Function: uart1_putc()
// Purpose: write byte to ringbuffer for transmitting via UART
// Input: byte to be transmitted
// Returns: 1 on succes, 0 if remote not ready
//--------------------------------------------------------------
int uart1_putc(unsigned char data)
{
unsigned char tmphead;
tmphead = (UART1_TxHead + 1) & UART_TX_BUFFER_MASK;
while ( tmphead == UART1_TxTail )
{;} // wait for free space in buffer
UART1_TxBuf[tmphead] = data;
UART1_TxHead = tmphead;
// enable UDRE interrupt
UART1_CONTROL |= _BV(UART1_UDRIE);
return (UART1_LastRxError << 8) + data;
}
//--------------------------------------------------------------
// Function: uart1_puts()
// Purpose: transmit string to UART1
// Input: string to be transmitted
// Returns: none
//--------------------------------------------------------------
void uart1_puts(const char *s )
{
while (*s)
uart1_putc(*s++);
}
//--------------------------------------------------------------
// Function: uart1_puts_p()
// Purpose: transmit string from program memory to UART1
// Input: program memory string to be transmitted
// Returns: none
//--------------------------------------------------------------
void uart1_puts_p(const char *progmem_s )
{
register char c;
while ( (c = pgm_read_byte(progmem_s++)) )
uart1_putc(c);
}
//--------------------------------------------------------------
// Function: uart1_available()
// Purpose: Determine the number of bytes waiting in the receive buffer
// Input: None
// Returns: Integer number of bytes in the receive buffer
//--------------------------------------------------------------
int uart1_available(void)
{
return (UART_RX_BUFFER_MASK + UART1_RxHead - UART1_RxTail) % UART_RX_BUFFER_MASK;
}
//--------------------------------------------------------------
// Function: uart1_flush()
// Purpose: Flush bytes waiting the receive buffer. Acutally ignores them.
// Input: None
// Returns: None
//--------------------------------------------------------------
void uart1_flush(void)
{
UART1_RxHead = UART1_RxTail;
}
#endif
#endif