Subversion Repositories FlightCtrl

Rev

Rev 2158 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2158 Rev 2189
Line 1... Line 1...
1
#include <avr/io.h>
1
#include <avr/io.h>
2
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
3
#include <util/twi.h>
3
#include <util/twi.h>
4
#include <util/delay.h>
4
#include <util/delay.h>
-
 
5
#include <stdio.h>
5
#include "twimaster.h"
6
#include "twimaster.h"
6
#include "configuration.h"
7
//#include "configuration.h"
-
 
8
//#include "controlMixer.h"
7
#include "analog.h"
9
#include "analog.h"
8
#include "printf_P.h"
-
 
Line 9... Line 10...
9
 
10
 
10
volatile uint8_t twi_state = TWI_STATE_MOTOR_TX;
11
volatile uint8_t twi_state;
11
volatile uint8_t dac_channel = 0;
12
volatile uint8_t dac_channel;
12
volatile uint8_t motor_write = 0;
13
volatile uint8_t writeIndex;
13
volatile uint8_t motor_read = 0;
14
volatile uint8_t readIndex;
14
volatile uint16_t I2CTimeout = 100;
15
volatile uint16_t I2CTimeout = 100;
15
uint8_t missingMotor = 0;
-
 
16
 
16
uint8_t missingMotor;
17
motorData_t motor[MAX_MOTORS];
-
 
18
 
17
MLBLC_t mkblcs[MAX_I2CCHANNELS];
Line 19... Line 18...
19
uint8_t DACChannel = 0;
18
uint8_t DACChannel;
20
 
19
 
Line 21... Line 20...
21
#define SCL_CLOCK  200000L
20
#define SCL_CLOCK  200000L
Line 39... Line 38...
39
        // TWI Status Register
38
        // TWI Status Register
40
        // prescaler 1 (TWPS1 = 0, TWPS0 = 0)
39
        // prescaler 1 (TWPS1 = 0, TWPS0 = 0)
41
        TWSR &= ~((1 << TWPS1) | (1 << TWPS0));
40
        TWSR &= ~((1 << TWPS1) | (1 << TWPS0));
Line 42... Line 41...
42
 
41
 
43
        // set TWI Bit Rate Register
42
        // set TWI Bit Rate Register
Line 44... Line 43...
44
        TWBR = ((SYSCLK / SCL_CLOCK) - 16) / 2;
43
        TWBR = ((F_CPU / SCL_CLOCK) - 16) / 2;
45
 
44
 
46
        twi_state = TWI_STATE_MOTOR_TX;
45
        twi_state = TWI_STATE_MOTOR_TX;
Line 47... Line 46...
47
        motor_write = 0;
46
        writeIndex = 0;
48
        motor_read = 0;
-
 
49
 
47
        readIndex = 0;
50
        for (i = 0; i < MAX_MOTORS; i++) {
48
 
51
                motor[i].throttle = 0;
49
        for (i = 0; i < MAX_I2CCHANNELS; i++) {
Line 52... Line 50...
52
                motor[i].present = 0;
50
          mkblcs[i].present = 0;
53
                motor[i].maxPWM = 0;
51
          mkblcs[i].maxPWM = 0;
Line 54... Line 52...
54
        }
52
        }
55
 
53
 
56
        SREG = sreg;
54
        SREG = sreg;
57
}
55
}
58
 
56
 
59
/****************************************
57
/****************************************
60
 * Start I2C                          
58
 * Start I2C                          
61
 ****************************************/
59
 ****************************************/
62
void I2C_Start(uint8_t start_state) {
60
void I2C_start(uint8_t start_state) {
Line 73... Line 71...
73
}
71
}
Line 74... Line 72...
74
 
72
 
75
/****************************************
73
/****************************************
76
 * Stop I2C                          
74
 * Stop I2C                          
77
 ****************************************/
75
 ****************************************/
78
void I2C_Stop(uint8_t start_state) {
76
void I2C_stop(uint8_t start_state) {
79
        twi_state = start_state;
77
        twi_state = start_state;
80
        // TWI Control Register
78
        // TWI Control Register
81
        // clear TWI interrupt flag (TWINT=1)
79
        // clear TWI interrupt flag (TWINT=1)
82
        // disable TWI Acknowledge Bit (TWEA = 0)
80
        // disable TWI Acknowledge Bit (TWEA = 0)
Line 89... Line 87...
89
}
87
}
Line 90... Line 88...
90
 
88
 
91
/****************************************
89
/****************************************
92
 *    Write to I2C                      
90
 *    Write to I2C                      
93
 ****************************************/
91
 ****************************************/
94
void I2C_WriteByte(int8_t byte) {
92
void I2C_writeByte(int8_t byte) {
95
        // move byte to send into TWI Data Register
93
        // move byte to send into TWI Data Register
96
        TWDR = byte;
94
        TWDR = byte;
97
        // clear interrupt flag (TWINT = 1)
95
        // clear interrupt flag (TWINT = 1)
98
        // enable i2c bus (TWEN = 1)
96
        // enable i2c bus (TWEN = 1)
Line 101... Line 99...
101
}
99
}
Line 102... Line 100...
102
 
100
 
103
/****************************************
101
/****************************************
104
 * Receive byte and send ACK        
102
 * Receive byte and send ACK        
105
 ****************************************/
103
 ****************************************/
106
void I2C_ReceiveByte(void) {
104
void I2C_receiveByte(void) {
107
        TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWIE) | (1 << TWEA);
105
        TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWIE) | (1 << TWEA);
Line 108... Line 106...
108
}
106
}
109
 
107
 
110
/****************************************
108
/****************************************
111
 * I2C receive last byte and send no ACK
109
 * I2C receive last byte and send no ACK
112
 ****************************************/
110
 ****************************************/
113
void I2C_ReceiveLastByte(void) {
111
void I2C_receiveLastByte(void) {
Line 114... Line 112...
114
        TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWIE);
112
        TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWIE);
115
}
113
}
116
 
114
 
117
/****************************************
115
/****************************************
118
 * Reset I2C                        
116
 * Reset I2C                        
119
 ****************************************/
117
 ****************************************/
120
void I2C_Reset(void) {
118
void I2C_reset(void) {
121
        // stop i2c bus
119
        // stop i2c bus
122
        I2C_Stop(TWI_STATE_MOTOR_TX);
120
        I2C_stop(TWI_STATE_MOTOR_TX);
123
        twi_state = 0;
121
        twi_state = 0;
124
        motor_write = TWDR;
122
        writeIndex = TWDR;
125
        motor_write = 0;
123
        writeIndex = 0;
126
        motor_read = 0;
124
        readIndex = 0;
127
        TWCR = (1 << TWINT); // reset to original state incl. interrupt flag reset
125
        TWCR = (1 << TWINT); // reset to original state incl. interrupt flag reset
128
        TWAMR = 0;
126
        TWAMR = 0;
129
        TWAR = 0;
127
        TWAR = 0;
130
        TWDR = 0;
128
        TWDR = 0;
131
        TWSR = 0;
129
        TWSR = 0;
132
        TWBR = 0;
130
        TWBR = 0;
Line 133... Line 131...
133
        I2C_init();
131
        I2C_init();
134
        I2C_Start(TWI_STATE_MOTOR_TX);
132
        I2C_start(TWI_STATE_MOTOR_TX);
135
}
133
}
Line 142... Line 140...
142
        static uint8_t missing_motor = 0;
140
        static uint8_t missing_motor = 0;
143
        switch (twi_state++) { // First i2c_start from SendMotorData()
141
        switch (twi_state++) { // First i2c_start from SendMotorData()
144
        // Master Transmit
142
        // Master Transmit
145
        case 0: // TWI_STATE_MOTOR_TX
143
        case 0: // TWI_STATE_MOTOR_TX
146
                // skip motor if not used in mixer
144
                // skip motor if not used in mixer
147
                while ((motorMixer.matrix[motor_write][MIX_THROTTLE] <= 0) && (motor_write < MAX_MOTORS))
145
                while ((outputMixer[writeIndex].outputType != OUTPUT_TYPE_MOTOR) && (writeIndex < MAX_I2CCHANNELS))
148
                        motor_write++;
146
                        writeIndex++;
149
                if (motor_write >= MAX_MOTORS) { // writing finished, read now
147
                if (writeIndex >= MAX_I2CCHANNELS) { // writing finished, read now
150
                        motor_write = 0;
148
                        writeIndex = 0;
151
                        twi_state = TWI_STATE_MOTOR_RX;
149
                        twi_state = TWI_STATE_MOTOR_RX;
152
                        I2C_WriteByte(0x53 + (motor_read * 2)); // select slave adress in rx mode
150
                        I2C_writeByte(0x53 + (readIndex * 2)); // select slave adress in rx mode
153
                } else
151
                } else
154
                        I2C_WriteByte(0x52 + (motor_write * 2)); // select slave adress in tx mode
152
                        I2C_writeByte(0x52 + (writeIndex * 2)); // select slave adress in tx mode
155
                break;
153
                break;
156
        case 1: // Send Data to Slave
154
        case 1: // Send Data to Slave
-
 
155
                //I2C_writeByte(outputs[writeIndex]>>LOG_CONTROL_OUTPUT_SCALING); // transmit throttle value.
157
                I2C_WriteByte(motor[motor_write].throttle); // transmit throttle value.
156
            I2C_writeByte(mkblcs[writeIndex].throttle); // transmit throttle value.
158
                break;
157
                break;
159
        case 2: // repeat case 0+1 for all motors
158
        case 2: // repeat case 0+1 for all motors
160
                if (TWSR == TW_MT_DATA_NACK) { // Data transmitted, NACK received
159
                if (TWSR == TW_MT_DATA_NACK) { // Data transmitted, NACK received
161
                        if (!missing_motor)
160
                        if (!missing_motor)
162
                                missing_motor = motor_write + 1;
161
                                missing_motor = writeIndex + 1;
163
                        if (++motor[motor_write].error == 0)
162
                        if (++mkblcs[writeIndex].error == 0)
164
                                motor[motor_write].error = 255; // increment error counter and handle overflow
163
                          mkblcs[writeIndex].error = 255; // increment error counter and handle overflow
165
                }
164
                }
166
                I2C_Stop(TWI_STATE_MOTOR_TX);
165
                I2C_stop(TWI_STATE_MOTOR_TX);
167
                I2CTimeout = 10;
166
                I2CTimeout = 10;
168
                motor_write++; // next motor
167
                writeIndex++; // next motor
169
                I2C_Start(TWI_STATE_MOTOR_TX); // Repeated start -> switch slave or switch Master Transmit -> Master Receive
168
                I2C_start(TWI_STATE_MOTOR_TX); // Repeated start -> switch slave or switch Master Transmit -> Master Receive
170
                break;
169
                break;
171
                // Master Receive Data
170
                // Master Receive Data
172
        case 3:
171
        case 3:
173
                if (TWSR != TW_MR_SLA_ACK) { //  SLA+R transmitted, if not ACK received
172
                if (TWSR != TW_MR_SLA_ACK) { //  SLA+R transmitted, if not ACK received
174
                        // no response from the addressed slave received
173
                        // no response from the addressed slave received
175
                        motor[motor_read].present = 0;
174
                  mkblcs[readIndex].present = 0;
176
                        motor_read++; // next motor
175
                        readIndex++; // next motor
177
                        if (motor_read >= MAX_MOTORS)
176
                        if (readIndex >= MAX_I2CCHANNELS)
178
                                motor_read = 0; // restart reading of first motor if we have reached the last one
177
                                readIndex = 0; // restart reading of first motor if we have reached the last one
179
                        I2C_Stop(TWI_STATE_MOTOR_TX);
178
                        I2C_stop(TWI_STATE_MOTOR_TX);
180
                } else {
179
                } else {
181
                        motor[motor_read].present = ('1' - '-') + motor_read;
180
                  mkblcs[readIndex].present = ('1' - '-') + readIndex;
182
                        I2C_ReceiveByte(); //Transmit 1st byte
181
                        I2C_receiveByte(); //Transmit 1st byte
183
                }
182
                }
184
                missingMotor = missing_motor;
183
                missingMotor = missing_motor;
185
                missing_motor = 0;
184
                missing_motor = 0;
186
                break;
185
                break;
187
        case 4: //Read 1st byte and transmit 2nd Byte
186
        case 4: //Read 1st byte and transmit 2nd Byte
188
                motor[motor_read].current = TWDR;
187
          mkblcs[readIndex].current = TWDR;
189
                I2C_ReceiveLastByte(); // nack
188
                I2C_receiveLastByte(); // nack
190
                break;
189
                break;
191
        case 5:
190
        case 5:
192
                //Read 2nd byte
191
                //Read 2nd byte
193
                motor[motor_read].maxPWM = TWDR;
192
          mkblcs[readIndex].maxPWM = TWDR;
194
                motor_read++; // next motor
193
                readIndex++; // next motor
195
                if (motor_read >= MAX_MOTORS)
194
                if (readIndex >= MAX_I2CCHANNELS)
196
                        motor_read = 0; // restart reading of first motor if we have reached the last one
195
                        readIndex = 0; // restart reading of first motor if we have reached the last one
197
                I2C_Stop(TWI_STATE_MOTOR_TX);
196
                I2C_stop(TWI_STATE_MOTOR_TX);
198
                break;
197
                break;
Line 199... Line 198...
199
 
198
 
200
                // Writing ADC values.
199
                // Writing ADC values.
201
        case 7:
200
        case 7:
202
                I2C_WriteByte(0x98); // Address the DAC
201
                I2C_writeByte(0x98); // Address the DAC
Line 203... Line 202...
203
                break;
202
                break;
204
 
203
 
205
        case 8:
204
        case 8:
Line 206... Line 205...
206
                I2C_WriteByte(0x10 + (DACChannel << 1)); // Select DAC Channel (0x10 = A, 0x12 = B, 0x14 = C)
205
                I2C_writeByte(0x10 + (DACChannel << 1)); // Select DAC Channel (0x10 = A, 0x12 = B, 0x14 = C)
207
                break;
206
                break;
208
 
207
 
Line 209... Line 208...
209
        case 9:
208
        case 9:
210
                I2C_WriteByte(gyroAmplifierOffset.offsets[DACChannel]);
209
                I2C_writeByte(gyroAmplifierOffset.offsets[DACChannel]);
211
                break;
210
                break;
Line 212... Line 211...
212
 
211
 
213
        case 10:
212
        case 10:
214
                I2C_WriteByte(0x80); // 2nd byte for all channels is 0x80
213
                I2C_writeByte(0x80); // 2nd byte for all channels is 0x80
215
                break;
214
                break;
216
 
215
 
217
        case 11:
216
        case 11:
218
                I2C_Stop(TWI_STATE_MOTOR_TX);
217
                I2C_stop(TWI_STATE_MOTOR_TX);
219
                I2CTimeout = 10;
218
                I2CTimeout = 10;
220
                // repeat case 7...10 until all DAC Channels are updated
219
                // repeat case 7...10 until all DAC Channels are updated
221
                if (DACChannel < 2) {
220
                if (DACChannel < 2) {
222
                        DACChannel++; // jump to next channel
221
                        DACChannel++; // jump to next channel
Line 223... Line 222...
223
                        I2C_Start(TWI_STATE_GYRO_OFFSET_TX); // start transmission for next channel
222
                        I2C_start(TWI_STATE_GYRO_OFFSET_TX); // start transmission for next channel
224
                } else {
223
                } else {
225
                        DACChannel = 0; // reset dac channel counter
224
                        DACChannel = 0; // reset dac channel counter
226
                }
225
                }
227
                break;
226
                break;
228
 
227
 
229
        default:
228
        default:
Line 230... Line 229...
230
                I2C_Stop(TWI_STATE_MOTOR_TX);
229
                I2C_stop(TWI_STATE_MOTOR_TX);
231
                I2CTimeout = 10;
230
                I2CTimeout = 10;
232
                motor_write = 0;
231
                writeIndex = 0;
Line 233... Line 232...
233
                motor_read = 0;
232
                readIndex = 0;
Line 234... Line 233...
234
        }
233
        }
235
}
234
}
236
 
235
 
Line 237... Line 236...
237
extern void twi_diagnostics(void) {
236
extern void twi_diagnostics(void) {
238
        // Check connected BL-Ctrls
237
        // Check connected BL-Ctrls
Line 239... Line 238...
239
        uint8_t i;
238
        uint8_t i;
Line 240... Line 239...
240
 
239
 
241
        printf("\n\rFound BL-Ctrl: ");
240
        printf("\n\rFound BL-Ctrl: ");
242
 
241
 
243
        for (i = 0; i < MAX_MOTORS; i++) {
242
        for (i=0; i<MAX_I2CCHANNELS; i++) {
244
                motor[i].throttle = 0;
243
                mkblcs[i].throttle = 0;
245
        }
244
        }
Line 246... Line 245...
246
 
245
 
247
        I2C_Start(TWI_STATE_MOTOR_TX);
246
        I2C_start(TWI_STATE_MOTOR_TX);
248
        _delay_ms(2);
247
        _delay_ms(2);
249
 
248
 
250
        motor_read = 0; // read the first I2C-Data
249
        readIndex = 0; // read the first I2C-Data
251
 
250