Subversion Repositories FlightCtrl

Rev

Rev 1646 | Rev 1796 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1646 Rev 1775
Line 59... Line 59...
59
//#include "analog.h"
59
//#include "analog.h"
60
//#include "rc.h"
60
//#include "rc.h"
Line 61... Line 61...
61
 
61
 
62
// Necessary for external control and motor test
62
// Necessary for external control and motor test
-
 
63
#include "uart0.h"
-
 
64
 
-
 
65
// for scope debugging
-
 
66
// #include "rc.h"
63
#include "uart0.h"
67
 
64
#include "twimaster.h"
68
#include "twimaster.h"
65
#include "attitude.h"
69
#include "attitude.h"
-
 
70
#include "controlMixer.h"
66
#include "controlMixer.h"
71
#include "commands.h"
67
#ifdef USE_MK3MAG
72
#ifdef USE_MK3MAG
68
#include "gps.h"
73
#include "gps.h"
Line 69... Line 74...
69
#endif
74
#endif
Line 74... Line 79...
74
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
79
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
75
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
80
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
76
 */
81
 */
77
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
82
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
Line 78... Line -...
78
 
-
 
79
// MK flags
-
 
80
uint16_t isFlying = 0;
-
 
81
volatile uint8_t MKFlags = 0;
-
 
82
 
83
 
83
uint8_t gyroPFactor, gyroIFactor;       // the PD factors for the attitude control
84
uint8_t gyroPFactor, gyroIFactor;       // the PD factors for the attitude control
Line 84... Line 85...
84
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
85
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
85
 
86
 
Line 115... Line 116...
115
 
116
 
116
/************************************************************************/
117
/************************************************************************/
117
/*  Neutral Readings                                                    */
118
/*  Neutral Readings                                                    */
118
/************************************************************************/
119
/************************************************************************/
119
void flight_setNeutral() {
-
 
120
  // GPSStickPitch = 0;
-
 
121
  // GPSStickRoll = 0;
-
 
122
 
120
void flight_setNeutral() {
Line 123... Line 121...
123
  MKFlags |= MKFLAG_CALIBRATE;
121
  MKFlags |= MKFLAG_CALIBRATE;
124
 
122
 
125
  // not really used here any more.
123
  // not really used here any more.
126
  dynamicParams.KalmanK = -1;
124
  dynamicParams.KalmanK = -1;
Line 127... Line 125...
127
  dynamicParams.KalmanMaxDrift = 0;
125
  dynamicParams.KalmanMaxDrift = 0;
128
  dynamicParams.KalmanMaxFusion = 32;
126
  dynamicParams.KalmanMaxFusion = 32;
Line 129... Line -...
129
 
-
 
130
  controlMixer_initVariables();
-
 
131
}
-
 
132
 
-
 
133
/************************************************************************/
-
 
134
/*  Transmit Motor Data via I2C                                         */
-
 
135
/************************************************************************/
-
 
136
void sendMotorData(void) {
-
 
137
  uint8_t i;
-
 
138
  if(!(MKFlags & MKFLAG_MOTOR_RUN)) {
-
 
139
    // If pilot has not started the engines....
-
 
140
    MKFlags &= ~(MKFLAG_FLY | MKFLAG_START); // clear flag FLY and START if motors are off
-
 
141
    for(i = 0; i < MAX_MOTORS; i++) {
-
 
142
      // and if we are not in motor test mode, cut throttle on all motors.
-
 
143
      if(!motorTestActive) Motor[i].SetPoint = 0;
-
 
144
      else                 Motor[i].SetPoint = motorTest[i];
-
 
145
    }
-
 
146
    if(motorTestActive) motorTestActive--;
-
 
147
  }
-
 
148
 
-
 
149
  /*
-
 
150
  DebugOut.Analog[] = Motor[0].SetPoint; // Front
-
 
151
  DebugOut.Analog[] = Motor[1].SetPoint; // Rear
-
 
152
  DebugOut.Analog[] = Motor[3].SetPoint; // Left
-
 
153
  DebugOut.Analog[] = Motor[2].SetPoint; // Right
-
 
154
  */
-
 
155
  // Start I2C Interrupt Mode
127
 
156
  I2C_Start(TWI_STATE_MOTOR_TX);
128
  controlMixer_initVariables();
157
}
129
}
158
 
130
 
159
void setFlightParameters(uint8_t _Ki, uint8_t _gyroPFactor, uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
131
void setFlightParameters(uint8_t _Ki, uint8_t _gyroPFactor, uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
Line 175... Line 147...
175
 
147
 
176
void setStableFlightParameters(void) {
148
void setStableFlightParameters(void) {
177
  setFlightParameters(33, 90, 120, 90, 120);
149
  setFlightParameters(33, 90, 120, 90, 120);
Line 178... Line -...
178
}
-
 
179
 
-
 
180
void handleCommands(uint8_t command, uint8_t argument, uint8_t isCommandRepeated) {
-
 
181
    if(!(MKFlags & MKFLAG_MOTOR_RUN)) {
-
 
182
      if (command == COMMAND_GYROCAL && !isCommandRepeated) {
-
 
183
        // Run gyro calibration but do not repeat it.
-
 
184
        GRN_OFF;
-
 
185
       
-
 
186
        // TODO: out of here. Anyway, MKFLAG_MOTOR_RUN is cleared. Not enough?
-
 
187
        // isFlying = 0;
-
 
188
        // check roll/pitch stick position
-
 
189
        // if pitch stick is top or roll stick is left or right --> change parameter setting
-
 
190
        // according to roll/pitch stick position
-
 
191
               
-
 
192
        if (argument < 6) {
-
 
193
          // Gyro calinbration, with or without selecting a new parameter-set.
-
 
194
          if(argument > 0 && argument < 6) {
-
 
195
            // A valid parameter-set (1..5) was chosen - use it.
-
 
196
            setActiveParamSet(argument);
-
 
197
          }
-
 
198
          ParamSet_ReadFromEEProm(getActiveParamSet());
-
 
199
          attitude_setNeutral();
-
 
200
          flight_setNeutral();
-
 
201
          // Right stick is centered; calibrate it to zero (hmm strictly does not belong here).
-
 
202
          // If heading hold is active, do not do it. TODO: We also want to re-set old calibration.
-
 
203
          controlMixer_setNeutral(!argument);
-
 
204
          beepNumber(getActiveParamSet());
-
 
205
        } else if(staticParams.GlobalConfig & (CFG_COMPASS_ACTIVE | CFG_GPS_ACTIVE) && argument == 7) {
-
 
206
          // If right stick is centered and down
-
 
207
          compassCalState = 1;
-
 
208
          beep(1000);
-
 
209
        }
-
 
210
      }
-
 
211
     
-
 
212
      // save the ACC neutral setting to eeprom
-
 
213
      else  {
-
 
214
        if(command == COMMAND_ACCCAL && !isCommandRepeated) {
-
 
215
          // Run gyro and acc. meter calibration but do not repeat it.
-
 
216
          GRN_OFF;
-
 
217
          analog_calibrateAcc();
-
 
218
          attitude_setNeutral();
-
 
219
          flight_setNeutral();
-
 
220
          controlMixer_setNeutral(1); // Calibrate right stick neutral position.
-
 
221
          beepNumber(getActiveParamSet());
-
 
222
        }
-
 
223
      }
-
 
224
    } // end !MOTOR_RUN condition.
-
 
225
    if (command == COMMAND_START) {
-
 
226
      isFlying = 1; // TODO: Really????
-
 
227
      // if (!controlMixer_isCommandRepeated()) {
-
 
228
      // attitude_startDynamicCalibration(); // Try sense the effect of the motors on sensors.
-
 
229
      MKFlags |= (MKFLAG_MOTOR_RUN | MKFLAG_START); // set flag RUN and START. TODO: Is that START flag used at all???
-
 
230
      // } else { // Pilot is holding stick, ever after motor start. Continue to sense the effect of the motors on sensors.
-
 
231
      // attitude_continueDynamicCalibration();
-
 
232
      // setPointYaw = 0;
-
 
233
      // IPartPitch = 0;
-
 
234
      // IPartRoll = 0;
-
 
235
      // }
-
 
236
    } else if (command == COMMAND_STOP) {
-
 
237
      isFlying = 0;
-
 
238
      MKFlags &= ~(MKFLAG_MOTOR_RUN);
-
 
Line 239... Line 150...
239
    }
150
}
240
}
151
 
241
 
152
 
242
/************************************************************************/
153
/************************************************************************/
Line 248... Line 159...
248
  int16_t yawTerm, throttleTerm, term[2];
159
  int16_t yawTerm, throttleTerm, term[2];
Line 249... Line 160...
249
 
160
 
250
  // PID controller variables
161
  // PID controller variables
251
  int16_t PDPart[2], PDPartYaw, PPart[2];
162
  int16_t PDPart[2], PDPartYaw, PPart[2];
252
  static int32_t IPart[2] = {0,0};
163
  static int32_t IPart[2] = {0,0};
Line 253... Line 164...
253
  static int32_t setPointYaw = 0;
164
  //  static int32_t yawControlRate = 0;
254
 
165
 
255
  // Removed. Too complicated, and apparently not necessary with MEMS gyros anyway.
166
  // Removed. Too complicated, and apparently not necessary with MEMS gyros anyway.
Line 263... Line 174...
263
  static int16_t motorFilters[MAX_MOTORS];
174
  static int16_t motorFilters[MAX_MOTORS];
Line 264... Line 175...
264
 
175
 
Line 265... Line 176...
265
  uint8_t i, axis;
176
  uint8_t i, axis;
-
 
177
 
266
 
178
  // Fire the main flight attitude calculation, including integration of angles.
267
  // Fire the main flight attitude calculation, including integration of angles.
-
 
Line 268... Line 179...
268
  calculateFlightAttitude();
179
 
269
  GRN_ON;
180
  calculateFlightAttitude();
270
 
181
 
271
  /*
182
  /*
-
 
183
   * TODO: update should: Set the stick variables if good signal, set them to zero if bad.
-
 
184
   * Set variables also.
-
 
185
   */
-
 
186
  // start part 1: 750-800 usec.
272
   * TODO: update should: Set the stick variables if good signal, set them to zero if bad.
187
  // start part 1a: 750-800 usec.
-
 
188
  // start part1b: 700 usec
Line 273... Line 189...
273
   * Set variables also.
189
  // start part1c: 700 usec!!!!!!!!! WAY too slow.
-
 
190
  controlMixer_update();
274
   */
191
  // end part1c
-
 
192
 
Line -... Line 193...
-
 
193
  throttleTerm = controlThrottle;
275
  controlMixer_update();
194
  // This check removed. Is done on a per-motor basis, after output matrix multiplication.
276
 
195
  // if(throttleTerm < staticParams.MinThrottle + 10) throttleTerm = staticParams.MinThrottle + 10;
277
  throttleTerm = controlThrottle;
196
  // else if(throttleTerm > staticParams.MaxThrottle - 20) throttleTerm = (staticParams.MaxThrottle - 20);
278
  if(throttleTerm < staticParams.MinThrottle + 10) throttleTerm = staticParams.MinThrottle + 10;
197
 
279
 
198
  // end part1b: 700 usec.
-
 
199
  /************************************************************************/
280
  /************************************************************************/
200
  /* RC-signal is bad                                                     */
281
  /* RC-signal is bad                                                     */
201
  /* This part could be abstracted, as having yet another control input   */
282
  /* This part could be abstracted, as having yet another control input   */
202
  /* to the control mixer: An emergency autopilot control.                */
Line 283... Line 203...
283
  /* to the control mixer: An emergency autopilot control.                */
203
  /************************************************************************/
284
  /************************************************************************/
204
 
285
  if(controlMixer_getSignalQuality() <= SIGNAL_BAD) {           // the rc-frame signal is not reveived or noisy
205
  if(controlMixer_getSignalQuality() <= SIGNAL_BAD) {           // the rc-frame signal is not reveived or noisy
286
    RED_ON;
206
    RED_ON;
287
    beepRCAlarm();
207
    beepRCAlarm();
288
   
208
   
289
    if(emergencyFlightTime) {
209
    if(emergencyFlightTime) {
290
      // continue emergency flight
210
      // continue emergency flight
291
      emergencyFlightTime--;
211
      emergencyFlightTime--;
Line 305... Line 225...
305
    // signal is acceptable
225
    // signal is acceptable
306
    if(controlMixer_getSignalQuality() > SIGNAL_BAD) {
226
    if(controlMixer_getSignalQuality() > SIGNAL_BAD) {
307
      // Reset emergency landing control variables.
227
      // Reset emergency landing control variables.
308
      MKFlags &= ~(MKFLAG_EMERGENCY_LANDING);  // clear flag for emergency landing
228
      MKFlags &= ~(MKFLAG_EMERGENCY_LANDING);  // clear flag for emergency landing
309
      // The time is in whole seconds.
229
      // The time is in whole seconds.
310
      emergencyFlightTime = staticParams.EmergencyGasDuration * 488;
230
      emergencyFlightTime = (uint16_t)staticParams.EmergencyGasDuration * 488;
311
    }
231
    }
Line 312... Line 232...
312
 
232
 
313
    // If some throttle is given, and the motor-run flag is on, increase the probability that we are flying.
233
    // If some throttle is given, and the motor-run flag is on, increase the probability that we are flying.
314
    if(throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
234
    if(throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
Line 319... Line 239...
319
       * When standing on the ground, do not apply I controls and zero the yaw stick.
239
       * When standing on the ground, do not apply I controls and zero the yaw stick.
320
       * Probably to avoid integration effects that will cause the copter to spin
240
       * Probably to avoid integration effects that will cause the copter to spin
321
       * or flip when taking off.
241
       * or flip when taking off.
322
       */
242
       */
323
      if(isFlying < 256) {
243
      if(isFlying < 256) {
324
            IPart[PITCH] = IPart[ROLL] = 0;
244
        IPart[PITCH] = IPart[ROLL] = 0;
325
            // TODO: Don't stomp on other modules' variables!!!
245
        // TODO: Don't stomp on other modules' variables!!!
326
            controlYaw = 0;
246
        // controlYaw = 0;
-
 
247
        PDPartYaw = 0; // instead.
327
            if(isFlying == 250) {
248
        if(isFlying == 250) {
-
 
249
          // HC_setGround();
328
              updateCompassCourse = 1;
250
          updateCompassCourse = 1;
329
              yawAngle = 0;
251
          yawAngleDiff = 0;
330
              setPointYaw = 0;
-
 
331
        }
252
        }
332
      } else {
253
      } else {
333
            // DebugOut.Digital[1] = 0;
-
 
334
            // Set fly flag. TODO: Hmmm what can we trust - the isFlying counter or the flag? 
254
            // Set fly flag. TODO: Hmmm what can we trust - the isFlying counter or the flag? 
335
            // Answer: The counter. The flag is not read from anywhere anyway... except the NC maybe.
255
            // Answer: The counter. The flag is not read from anywhere anyway... except the NC maybe.
336
            MKFlags |= (MKFLAG_FLY);
256
            MKFlags |= (MKFLAG_FLY);
337
      }
257
      }
338
   
-
 
339
    /*
-
 
340
     * Get the current command (start/stop motors, calibrate), if any.
-
 
341
     */
-
 
342
    uint8_t command = controlMixer_getCommand();
-
 
343
    uint8_t repeated = controlMixer_isCommandRepeated();
-
 
344
    uint8_t argument = controlMixer_getArgument();
-
 
Line 345... Line 258...
345
 
258
 
Line 346... Line 259...
346
    handleCommands(command, argument, repeated);
259
        commands_handleCommands();
347
 
260
 
348
    // if(controlMixer_getSignalQuality() >= SIGNAL_GOOD) {
261
    // if(controlMixer_getSignalQuality() >= SIGNAL_GOOD) {
349
    setNormalFlightParameters();
262
    setNormalFlightParameters();
350
    // }
-
 
-
 
263
    // }
351
  } // end else (not bad signal case)
264
  } // end else (not bad signal case)
352
   
265
  // end part1a: 750-800 usec.
353
  /*
266
  /*
354
   * Looping the H&I way basically is just a matter of turning off attitude angle measurement
267
   * Looping the H&I way basically is just a matter of turning off attitude angle measurement
355
   * by integration (because 300 deg/s gyros are too slow) and turning down the throttle.
268
   * by integration (because 300 deg/s gyros are too slow) and turning down the throttle.
Line 367... Line 280...
367
    if(!(staticParams.GlobalConfig & CFG_COMPASS_FIX)) {
280
    if(!(staticParams.GlobalConfig & CFG_COMPASS_FIX)) {
368
      updateCompassCourse = 1;
281
      updateCompassCourse = 1;
369
    }
282
    }
370
  }
283
  }
Line 371... Line 284...
371
 
284
 
Line 372... Line 285...
372
  setPointYaw = controlYaw;
285
  //  yawControlRate = controlYaw;
373
 
286
 
-
 
287
  // Trim drift of yawAngleDiff with controlYaw.
374
  // Trim drift of yawAngle with controlYaw.
288
  // TODO: We want NO feedback of control related stuff to the attitude related stuff.
Line 375... Line 289...
375
  // TODO: We want NO feedback of control related stuff to the attitude related stuff.
289
  // This seems to be used as: Difference desired <--> real heading.
376
  yawAngle -= controlYaw;
290
  yawAngleDiff -= controlYaw;
377
 
291
 
378
  // limit the effect
292
  // limit the effect
379
  CHECK_MIN_MAX(yawAngle, -50000, 50000)
293
  CHECK_MIN_MAX(yawAngleDiff, -50000, 50000);
380
 
294
 
381
    /************************************************************************/
-
 
382
    /* Compass is currently not supported.                                  */
295
  /************************************************************************/
383
    /************************************************************************/
296
  /* Compass is currently not supported.                                  */
384
    /*
297
  /************************************************************************/
385
      if(staticParams.GlobalConfig & (CFG_COMPASS_ACTIVE|CFG_GPS_ACTIVE)) {
-
 
386
      updateCompass();
298
  if(staticParams.GlobalConfig & (CFG_COMPASS_ACTIVE|CFG_GPS_ACTIVE)) {
387
      }
299
    updateCompass();
388
    */
300
  }
389
 
301
 
390
#if defined (USE_MK3MAG)
302
#if defined (USE_MK3MAG)
391
    /************************************************************************/
-
 
392
    /* GPS is currently not supported.                                      */
303
  /************************************************************************/
393
    /************************************************************************/
304
  /* GPS is currently not supported.                                      */
394
    /*
305
  /************************************************************************/
395
      if(staticParams.GlobalConfig & CFG_GPS_ACTIVE) {
306
  if(staticParams.GlobalConfig & CFG_GPS_ACTIVE) {
396
      GPS_Main();
307
    GPS_Main();
397
      MKFlags &= ~(MKFLAG_CALIBRATE | MKFLAG_START);
308
    MKFlags &= ~(MKFLAG_CALIBRATE | MKFLAG_START);
398
      }
309
  }
399
      else {
310
  else {
400
      // GPSStickPitch = 0;
-
 
401
      // GPSStickRoll = 0;
311
    // GPSStickPitch = 0;
402
      }
-
 
-
 
312
    // GPSStickRoll = 0;
-
 
313
  }
403
    */
314
#endif
404
#endif
-
 
405
 
315
  // end part 1: 750-800 usec.
-
 
316
  // start part 3: 350 - 400 usec.
406
#define SENSOR_LIMIT  (4096 * 4)
317
#define SENSOR_LIMIT  (4096 * 4)
407
   
318
    /************************************************************************/
408
    /************************************************************************/
319
 
409
    /* Calculate control feedback from angle (gyro integral)                */
320
    /* Calculate control feedback from angle (gyro integral)                */
410
    /* and angular velocity (gyro signal)                                   */
321
    /* and angular velocity (gyro signal)                                   */
411
    /************************************************************************/
322
    /************************************************************************/
412
    // The P-part is the P of the PID controller. That's the angle integrals (not rates).
323
    // The P-part is the P of the PID controller. That's the angle integrals (not rates).
413
  for (axis=PITCH; axis<=ROLL; axis++) {
324
  for (axis=PITCH; axis<=ROLL; axis++) {
414
    if(looping & (1<<(4+axis))) {
325
    if(looping & ((1<<4)<<axis)) {
415
      PPart[axis] = 0;
326
      PPart[axis] = 0;
Line 425... Line 336...
425
    PDPart[axis] = PPart[axis] + (int32_t)((int32_t)rate_PID[axis] * gyroPFactor / (256L / CONTROL_SCALING))
336
    PDPart[axis] = PPart[axis] + (int32_t)((int32_t)rate_PID[axis] * gyroPFactor / (256L / CONTROL_SCALING))
426
      + (differential[axis] * (int16_t)dynamicParams.GyroD) / 16;
337
      + (differential[axis] * (int16_t)dynamicParams.GyroD) / 16;
Line 427... Line 338...
427
 
338
 
428
    CHECK_MIN_MAX(PDPart[axis], -SENSOR_LIMIT, SENSOR_LIMIT);
339
    CHECK_MIN_MAX(PDPart[axis], -SENSOR_LIMIT, SENSOR_LIMIT);
429
  }
340
  }
-
 
341
 
430
 
342
  PDPartYaw =
431
  PDPartYaw = (int32_t)(yawRate * 2 * (int32_t)yawPFactor) / (256L / CONTROL_SCALING)
343
    (int32_t)(yawRate * 2 * (int32_t)yawPFactor) / (256L / CONTROL_SCALING)
Line 432... Line 344...
432
    + (int32_t)(yawAngle * yawIFactor) / (2 * (44000 / CONTROL_SCALING));
344
  + (int32_t)(yawAngleDiff * yawIFactor) / (2 * (44000 / CONTROL_SCALING));
433
 
345
 
Line 434... Line 346...
434
  // limit control feedback
346
  // limit control feedback
435
  CHECK_MIN_MAX(PDPartYaw,  -SENSOR_LIMIT, SENSOR_LIMIT);
347
  CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);
436
 
348
 
437
  /*
349
  /*
438
   * Compose throttle term.
350
   * Compose throttle term.
439
   * If a Bl-Ctrl is missing, prevent takeoff.
351
   * If a Bl-Ctrl is missing, prevent takeoff.
440
   */
352
   */
441
  if(missingMotor) {
353
  if(missingMotor) {
442
    // if we are in the lift off condition. Hmmmmmm when is throttleTerm == 0 anyway???
354
    // if we are in the lift off condition. Hmmmmmm when is throttleTerm == 0 anyway???
443
    if((isFlying > 1) && (isFlying < 50) && (throttleTerm > 0))
355
    if(isFlying > 1 && isFlying < 50 && throttleTerm > 0)
Line 444... Line -...
444
      isFlying = 1; // keep within lift off condition
-
 
445
    throttleTerm = staticParams.MinThrottle; // reduce gas to min to avoid lift of
-
 
446
  }
-
 
447
 
356
      isFlying = 1; // keep within lift off condition
448
  /*
357
    throttleTerm = staticParams.MinThrottle; // reduce gas to min to avoid lift of
Line 449... Line 358...
449
   * Height control was here.
358
  }
450
   */
359
 
451
  if(throttleTerm > staticParams.MaxThrottle - 20) throttleTerm = (staticParams.MaxThrottle - 20);
360
  // Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
452
  throttleTerm *= CONTROL_SCALING;
361
  throttleTerm *= CONTROL_SCALING;
453
 
362
 
454
  /*
363
  /*
455
   * Compose yaw term.
364
   * Compose yaw term.
456
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
365
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
457
   * However, at low throttle the yaw term is limited to a fixed value,
366
   * However, at low throttle the yaw term is limited to a fixed value,
458
   * and at high throttle it is limited by the throttle reserve (the difference
367
   * and at high throttle it is limited by the throttle reserve (the difference
459
   * between current throttle and maximum throttle).
368
   * between current throttle and maximum throttle).
460
   */
369
   */
461
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
370
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
462
  yawTerm = PDPartYaw - setPointYaw * CONTROL_SCALING;
371
  yawTerm = PDPartYaw - controlYaw * CONTROL_SCALING;
463
  // limit yawTerm
372
  // Limit yawTerm
464
  if(throttleTerm > MIN_YAWGAS) {
373
  if(throttleTerm > MIN_YAWGAS) {
465
    CHECK_MIN_MAX(yawTerm, - (throttleTerm / 2), (throttleTerm / 2));
374
    CHECK_MIN_MAX(yawTerm, - (throttleTerm / 2), (throttleTerm / 2));
466
  } else {
375
  } else {
Line 467... Line 376...
467
    CHECK_MIN_MAX(yawTerm, - (MIN_YAWGAS / 2), (MIN_YAWGAS / 2));
376
    CHECK_MIN_MAX(yawTerm, - (MIN_YAWGAS / 2), (MIN_YAWGAS / 2));
Line 484... Line 393...
484
    } else {
393
    } else {
485
      // "HH" mode: Integrate (rate - stick) = the difference between rotation rate and stick pos.
394
      // "HH" mode: Integrate (rate - stick) = the difference between rotation rate and stick pos.
486
      // To keep up with a full stick PDPart should be about 156...
395
      // To keep up with a full stick PDPart should be about 156...
487
      IPart[axis] += PDPart[axis] - control[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
396
      IPart[axis] += PDPart[axis] - control[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
488
    }
397
    }
489
   
398
 
490
    // TODO: From which planet comes the 16000?
399
    // TODO: From which planet comes the 16000?
491
    CHECK_MIN_MAX(IPart[axis], -(CONTROL_SCALING * 16000L), (CONTROL_SCALING * 16000L));
400
    CHECK_MIN_MAX(IPart[axis], -(CONTROL_SCALING * 16000L), (CONTROL_SCALING * 16000L));
492
    // Add (P, D) parts minus stick pos. to the scaled-down I part.
401
    // Add (P, D) parts minus stick pos. to the scaled-down I part.
493
    term[axis] = PDPart[axis] - control[axis] + IPart[axis] / Ki;    // PID-controller for pitch
402
    term[axis] = PDPart[axis] - control[axis] + IPart[axis] / Ki;    // PID-controller for pitch
494
   
403
 
495
    /*
404
    /*
496
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
405
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
497
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
406
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
498
     * (max. pitch or roll term is the throttle value).
407
     * (max. pitch or roll term is the throttle value).
499
     * TODO: Why a growing function of yaw?
408
     * TODO: Why a growing function of yaw?
500
     */
409
     */
501
    CHECK_MIN_MAX(term[axis], -tmp_int, tmp_int);
410
    CHECK_MIN_MAX(term[axis], -tmp_int, tmp_int);
502
  }
411
  }
-
 
412
  // end part 3: 350 - 400 usec.
Line 503... Line 413...
503
 
413
 
504
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
414
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
505
  // Universal Mixer
415
  // Universal Mixer
506
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
416
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
-
 
417
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-
 
418
 
-
 
419
  DebugOut.Analog[12] = term[PITCH];
-
 
420
  DebugOut.Analog[13] = term[ROLL];
-
 
421
  DebugOut.Analog[14] = yawTerm;
-
 
422
  DebugOut.Analog[15] = throttleTerm;
507
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
423
 
508
  for(i = 0; i < MAX_MOTORS; i++) {
424
  for(i = 0; i < MAX_MOTORS; i++) {
509
    int16_t tmp;
425
    int16_t tmp;
510
    if(Mixer.Motor[i][MIX_THROTTLE] > 0) { // If a motor has a zero throttle mix, it is not considered.
426
    if (MKFlags & MKFLAG_MOTOR_RUN && Mixer.Motor[i][MIX_THROTTLE] > 0) {
511
      tmp =  ((int32_t)throttleTerm * Mixer.Motor[i][MIX_THROTTLE]) / 64L;
427
      tmp =  ((int32_t)throttleTerm * Mixer.Motor[i][MIX_THROTTLE]) / 64L;
512
      tmp += ((int32_t)term[PITCH]  * Mixer.Motor[i][MIX_PITCH])    / 64L;
428
      tmp += ((int32_t)term[PITCH]  * Mixer.Motor[i][MIX_PITCH])    / 64L;
513
      tmp += ((int32_t)term[ROLL]   * Mixer.Motor[i][MIX_ROLL])     / 64L;
429
      tmp += ((int32_t)term[ROLL]   * Mixer.Motor[i][MIX_ROLL])     / 64L;
514
      tmp += ((int32_t)yawTerm      * Mixer.Motor[i][MIX_YAW])      / 64L;
430
      tmp += ((int32_t)yawTerm      * Mixer.Motor[i][MIX_YAW])      / 64L;
-
 
431
      motorFilters[i] = motorFilter(tmp, motorFilters[i]);
515
      motorFilters[i] = motorFilter(tmp, motorFilters[i]);
432
      // Now we scale back down to a 0..255 range.
-
 
433
      tmp = motorFilters[i] / CONTROL_SCALING;
-
 
434
      // So this was the THIRD time a throttle was limited. But should the limitation
-
 
435
      // apply to the common throttle signal (the one used for setting the "power" of 
-
 
436
      // all motors together) or should it limit the throttle set for each motor, 
-
 
437
      // including mix components of pitch, roll and yaw? I think only the common
-
 
438
      // throttle should be limited.
-
 
439
      // --> WRONG. This caused motors to stall completely in tight maneuvers.
516
      tmp = motorFilters[i] / CONTROL_SCALING;
440
      // Apply to individual signals instead.
-
 
441
      CHECK_MIN_MAX(tmp, staticParams.MinThrottle, staticParams.MaxThrottle);
517
      CHECK_MIN_MAX(tmp, staticParams.MinThrottle, staticParams.MaxThrottle);
442
      CHECK_MIN_MAX(tmp, 1, 255);
518
      Motor[i].SetPoint = tmp;
443
      motor[i].SetPoint = tmp;
-
 
444
    }
-
 
445
    else if (motorTestActive) {
-
 
446
      motor[i].SetPoint = motorTest[i];
519
    }
447
    } else {
-
 
448
      motor[i].SetPoint = 0;
-
 
449
    }
-
 
450
    if (i < 4)
520
    else Motor[i].SetPoint = 0;
451
      DebugOut.Analog[22+i] = motor[i].SetPoint;
-
 
452
  }
521
  }
453
  I2C_Start(TWI_STATE_MOTOR_TX);
522
 
454
 
523
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
455
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
524
  // Debugging
456
  // Debugging
525
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
457
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
526
  if(!(--debugDataTimer)) {
458
  if(!(--debugDataTimer)) {
527
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
459
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
528
    DebugOut.Analog[0]  = (10 * angle[PITCH]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
460
    DebugOut.Analog[0]  = (10 * angle[PITCH]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
529
    DebugOut.Analog[1]  = (10 * angle[ROLL]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
461
    DebugOut.Analog[1]  = (10 * angle[ROLL]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
Line 530... Line -...
530
    DebugOut.Analog[2]  = yawGyroHeading / GYRO_DEG_FACTOR_YAW;
-
 
531
 
-
 
532
    // DebugOut.Analog[9]  = setPointYaw;
-
 
533
    // DebugOut.Analog[10] = yawIFactor;
-
 
534
    // DebugOut.Analog[11] = gyroIFactor;
-
 
535
    // DebugOut.Analog[12] = RC_getVariable(0);
-
 
536
    // DebugOut.Analog[13] = dynamicParams.UserParams[0];
-
 
537
    // DebugOut.Analog[14] = RC_getVariable(4);
-
 
538
    // DebugOut.Analog[15] = dynamicParams.UserParams[4];
462
    DebugOut.Analog[2]  = yawGyroHeading / GYRO_DEG_FACTOR_YAW;
539
    /* DebugOut.Analog[11] = yawGyroHeading / GYRO_DEG_FACTOR_YAW; */
-
 
540
 
-
 
541
    // 12..15 are the controls.
-
 
542
    // DebugOut.Analog[16] = pitchAxisAcc;
463
 
543
    // DebugOut.Analog[17] = rollAxisAcc;
-
 
544
    DebugOut.Analog[18] = HIRES_GYRO_INTEGRATION_FACTOR;
-
 
545
 
-
 
546
    DebugOut.Analog[19] = throttleTerm;
464
    /*
547
    DebugOut.Analog[20] = term[PITCH];
465
    DebugOut.Analog[23] = (yawRate * 2 * (int32_t)yawPFactor) / (256L / CONTROL_SCALING);
548
    DebugOut.Analog[21] = term[ROLL];
-
 
549
    DebugOut.Analog[22] = yawTerm;
-
 
550
 
-
 
551
    DebugOut.Analog[23] = PPart[PITCH];     //
-
 
552
    DebugOut.Analog[24] = IPart[PITCH] /Ki; // meget meget lille.
-
 
553
    DebugOut.Analog[25] = PDPart[PITCH];    // omtrent lig ppart.
466
    DebugOut.Analog[24] = controlYaw;
554
 
467
    DebugOut.Analog[25] = yawAngleDiff / 100L;
-
 
468
    DebugOut.Analog[26] = accNoisePeak[PITCH];
Line 555... Line 469...
555
    DebugOut.Analog[26] = accNoisePeak[PITCH];
469
    DebugOut.Analog[27] = accNoisePeak[ROLL];
556
    DebugOut.Analog[27] = accNoisePeak[ROLL];
470
    */
557
 
471
 
558
    DebugOut.Analog[30] = gyroNoisePeak[PITCH];
472
    DebugOut.Analog[30] = gyroNoisePeak[PITCH];