Subversion Repositories FlightCtrl

Rev

Rev 1646 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1646 Rev 1775
Line 57... Line 57...
57
#include <avr/io.h>
57
#include <avr/io.h>
Line 58... Line 58...
58
 
58
 
59
#include "attitude.h"
59
#include "attitude.h"
Line -... Line 60...
-
 
60
#include "dongfangMath.h"
-
 
61
 
-
 
62
// For scope debugging only!
60
#include "dongfangMath.h"
63
#include "rc.h"
61
 
64
 
Line 62... Line 65...
62
// where our main data flow comes from.
65
// where our main data flow comes from.
-
 
66
#include "analog.h"
Line 63... Line 67...
63
#include "analog.h"
67
 
64
 
68
#include "configuration.h"
Line 65... Line 69...
65
#include "configuration.h"
69
#include "output.h"
Line 82... Line 86...
82
 * things functionally without side effects) but this is shorter and probably
86
 * things functionally without side effects) but this is shorter and probably
83
 * faster too.
87
 * faster too.
84
 * The variables are overwritten at each attitude calculation invocation - the values
88
 * The variables are overwritten at each attitude calculation invocation - the values
85
 * are not preserved or reused.
89
 * are not preserved or reused.
86
 */
90
 */
87
int16_t rate[2], yawRate;
91
int16_t rate_ATT[2], yawRate;
Line 88... Line 92...
88
 
92
 
89
// With different (less) filtering
93
// With different (less) filtering
90
int16_t rate_PID[2];
94
int16_t rate_PID[2];
Line 103... Line 107...
103
 
107
 
104
/*
108
/*
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
109
 * Gyro integrals. These are the rotation angles of the airframe compared to the
106
 * horizontal plane, yaw relative to yaw at start.
110
 * horizontal plane, yaw relative to yaw at start.
107
 */
111
 */
Line 108... Line 112...
108
int32_t angle[2], yawAngle;
112
int32_t angle[2], yawAngleDiff;
Line 109... Line 113...
109
 
113
 
110
int readingHeight = 0;
114
int readingHeight = 0;
111
 
115
 
112
// compass course
116
// compass course
113
int16_t compassHeading = -1; // negative angle indicates invalid data.
117
int16_t compassHeading       = -1; // negative angle indicates invalid data.
114
int16_t compassCourse = -1;
118
int16_t compassCourse        = -1;
115
int16_t compassOffCourse = 0;
-
 
116
uint16_t updateCompassCourse = 0;
-
 
117
uint8_t compassCalState = 0;
119
int16_t compassOffCourse     = 0;
118
 
120
uint16_t updateCompassCourse = 0;
-
 
121
uint8_t compassCalState      = 0;
Line 119... Line 122...
119
// uint8_t FunnelCourse = 0;
122
uint16_t badCompassHeading = 500;
120
uint16_t badCompassHeading = 500;
123
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
121
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
124
int16_t yawGyroDrift;
Line 122... Line 125...
122
 
125
 
Line -... Line 126...
-
 
126
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
-
 
127
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
-
 
128
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
123
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
129
 
124
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
130
int16_t correctionSum[2] = {0,0};
125
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
131
 
126
 
132
// For NaviCTRL use.
127
int16_t correctionSum[2] = {0,0};
133
int16_t averageAcc[2] = {0,0}, averageAccCount = 0;
128
 
134
 
129
/*
135
/*
Line 130... Line 136...
130
 * Experiment: Compensating for dynamic-induced gyro biasing.
136
 * Experiment: Compensating for dynamic-induced gyro biasing.
Line 162... Line 168...
162
 ************************************************************************/
168
 ************************************************************************/
163
void attitude_setNeutral(void) {
169
void attitude_setNeutral(void) {
164
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
170
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
165
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
171
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
Line 166... Line 172...
166
 
172
 
167
  dynamicOffset[PITCH] = dynamicOffset[ROLL] = 0;
173
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
Line 168... Line 174...
168
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
174
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
169
 
175
 
170
  // Calibrate hardware.
176
  // Calibrate hardware.
171
  analog_calibrate();
177
  analog_calibrate();
172
 
178
 
Line 173... Line 179...
173
  // reset gyro readings
179
  // reset gyro readings
174
  rate[PITCH] = rate[ROLL] = yawRate = 0;
180
  // rate_ATT[PITCH] = rate_ATT[ROLL] = yawRate = 0;
175
 
181
 
Line 176... Line 182...
176
  // reset gyro integrals to acc guessing
182
  // reset gyro integrals to acc guessing
177
  setStaticAttitudeAngles();
183
  setStaticAttitudeAngles();
Line 178... Line 184...
178
  yawAngle = 0;
184
  yawAngleDiff = 0;
Line 189... Line 195...
189
/************************************************************************
195
/************************************************************************
190
 * Get sensor data from the analog module, and release the ADC          
196
 * Get sensor data from the analog module, and release the ADC          
191
 * TODO: Ultimately, the analog module could do this (instead of dumping
197
 * TODO: Ultimately, the analog module could do this (instead of dumping
192
 * the values into variables).
198
 * the values into variables).
193
 * The rate variable end up in a range of about [-1024, 1023].
199
 * The rate variable end up in a range of about [-1024, 1023].
194
 * When scaled down by CONTROL_SCALING, the interval is about [-256, 256].
-
 
195
 *************************************************************************/
200
 *************************************************************************/
196
void getAnalogData(void) {
201
void getAnalogData(void) {
197
  uint8_t axis;
202
  uint8_t axis;
Line 198... Line 203...
198
 
203
 
199
  for (axis=PITCH; axis <=ROLL; axis++) {
204
  for (axis=PITCH; axis <=ROLL; axis++) {
200
    rate_PID[axis]     = (gyro_PID[axis] + dynamicOffset[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
205
    rate_PID[axis]     = (gyro_PID[axis] + driftComp[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
201
    rate[axis]         = (gyro_ATT[axis] + dynamicOffset[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
206
    rate_ATT[axis]     = (gyro_ATT[axis] + driftComp[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
-
 
207
    differential[axis] = gyroD[axis];
202
    differential[axis] = gyroD[axis];
208
    averageAcc[axis]  += acc[axis];
203
  }
209
  }
-
 
210
 
204
 
211
  averageAccCount++;
Line 205... Line 212...
205
  yawRate = yawGyro + dynamicOffsetYaw;
212
  yawRate = yawGyro + driftCompYaw;
206
 
213
 
207
  // We are done reading variables from the analog module.
214
  // We are done reading variables from the analog module.
208
  // Interrupt-driven sensor reading may restart.
215
  // Interrupt-driven sensor reading may restart.
Line 219... Line 226...
219
void trigAxisCoupling(void) {
226
void trigAxisCoupling(void) {
220
  int16_t cospitch = int_cos(angle[PITCH]);
227
  int16_t cospitch = int_cos(angle[PITCH]);
221
  int16_t cosroll =  int_cos(angle[ROLL]);
228
  int16_t cosroll =  int_cos(angle[ROLL]);
222
  int16_t sinroll =  int_sin(angle[ROLL]);
229
  int16_t sinroll =  int_sin(angle[ROLL]);
223
  int16_t tanpitch = int_tan(angle[PITCH]);
230
  int16_t tanpitch = int_tan(angle[PITCH]);
224
#define ANTIOVF 1024
231
#define ANTIOVF 512
225
  ACRate[PITCH] =             ((int32_t) rate[PITCH] * cosroll - (int32_t)yawRate * sinroll) / (int32_t)MATH_UNIT_FACTOR;
232
  ACRate[PITCH] =                 ((int32_t) rate_ATT[PITCH] * cosroll - (int32_t)yawRate * sinroll) / (int32_t)MATH_UNIT_FACTOR;
226
  ACRate[ROLL] = rate[ROLL] + (((int32_t)rate[PITCH] * sinroll / ANTIOVF * tanpitch + (int32_t)yawRate * int_cos(angle[ROLL]) / ANTIOVF * tanpitch) / ((int32_t)MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR));
233
  ACRate[ROLL] = rate_ATT[ROLL] + (((int32_t)rate_ATT[PITCH] * sinroll / ANTIOVF * tanpitch + (int32_t)yawRate * int_cos(angle[ROLL]) / ANTIOVF * tanpitch) / ((int32_t)MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR));
227
  ACYawRate =                 ((int32_t) rate[PITCH] * sinroll) / cospitch + ((int32_t)yawRate * cosroll) / cospitch;
234
  ACYawRate =                     ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch + ((int32_t)yawRate * cosroll) / cospitch;
228
}
235
}
Line -... Line 236...
-
 
236
 
229
 
237
// 480 usec with axis coupling - almost no time without.
230
void integrate(void) {
238
void integrate(void) {
231
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
239
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
232
  uint8_t axis;
-
 
233
 
240
  uint8_t axis;
234
  if(!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
241
  if(!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
235
    // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
242
    // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
236
    trigAxisCoupling();    
243
    trigAxisCoupling();
237
  } else {
244
  } else {
238
    ACRate[PITCH] = rate[PITCH];
245
    ACRate[PITCH] = rate_ATT[PITCH];
239
    ACRate[ROLL]  = rate[ROLL];
246
    ACRate[ROLL]  = rate_ATT[ROLL];
240
    ACYawRate = yawRate;
247
    ACYawRate     = yawRate;
Line 241... Line 248...
241
  }
248
  }
242
 
249
 
243
  /*
250
  /*
244
   * Yaw
251
   * Yaw
245
   * Calculate yaw gyro integral (~ to rotation angle)
252
   * Calculate yaw gyro integral (~ to rotation angle)
246
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
253
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
247
   */
-
 
248
  yawGyroHeading += ACYawRate;
-
 
249
 
254
   */
Line 250... Line 255...
250
  // Why is yawAngle not wrapped 'round?
255
  yawGyroHeading += ACYawRate;
251
  yawAngle += ACYawRate;
256
  yawAngleDiff += yawRate;
252
 
257
 
253
  if(yawGyroHeading >= YAWOVER360) {
258
  if(yawGyroHeading >= YAWOVER360) {
Line 281... Line 286...
281
  // are less than ....., or reintroduce Kalman.
286
  // are less than ....., or reintroduce Kalman.
282
  // Well actually the Z axis acc. check is not so silly.
287
  // Well actually the Z axis acc. check is not so silly.
283
  uint8_t axis;
288
  uint8_t axis;
284
  int32_t correction;
289
  int32_t correction;
285
  if(!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z] <= dynamicParams.UserParams[7]) {
290
  if(!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z] <= dynamicParams.UserParams[7]) {
286
    DebugOut.Digital[0] = 1;
291
    DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
Line 287... Line 292...
287
   
292
   
288
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
293
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
289
    uint8_t debugFullWeight = 1;
294
    uint8_t debugFullWeight = 1;
Line 290... Line 295...
290
    int32_t accDerived;
295
    int32_t accDerived;
291
   
296
   
292
    if((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
297
    if((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
293
      permilleAcc /= 2;
298
      permilleAcc /= 2;
294
      debugFullWeight = 0;
299
      debugFullWeight = 0;
295
    }
300
    }
296
   
301
 
297
    if(abs(controlYaw) > 25) { // reduce further if yaw stick is active
302
    if((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
298
      permilleAcc /= 2;
303
      permilleAcc /= 2;
-
 
304
      debugFullWeight = 0;
-
 
305
    }
-
 
306
   
-
 
307
    if (debugFullWeight)
-
 
308
      DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
Line 299... Line 309...
299
      debugFullWeight = 0;
309
    else
300
    }
310
      DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
301
 
311
 
302
    /*
312
    /*
303
     * Add to each sum: The amount by which the angle is changed just below.
313
     * Add to each sum: The amount by which the angle is changed just below.
304
     */
314
     */
305
    for (axis=PITCH; axis<=ROLL; axis++) {
315
    for (axis=PITCH; axis<=ROLL; axis++) {
306
      accDerived = getAngleEstimateFromAcc(axis);
316
      accDerived = getAngleEstimateFromAcc(axis);
307
      DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
317
      DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
308
     
318
 
309
      // 1000 * the correction amount that will be added to the gyro angle in next line.
-
 
310
      correction = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
319
      // 1000 * the correction amount that will be added to the gyro angle in next line.
311
      angle[axis] = ((int32_t)(1000 - permilleAcc) * angle[axis] + (int32_t)permilleAcc * accDerived) / 1000L;
-
 
312
 
-
 
313
      correctionSum[axis] += angle[axis] - correction;
-
 
314
   
-
 
315
      // There should not be a risk of overflow here, since the integrals do not exceed a few 100000.
-
 
316
      // change = ((1000 - permilleAcc) * angle[axis] + permilleAcc * accDerived) / 1000 - angle[axis]
-
 
317
      // = (1000 * angle[axis] - permilleAcc * angle[axis] + permilleAcc * accDerived) / 1000 - angle[axis]
-
 
318
      // = (- permilleAcc * angle[axis] + permilleAcc * accDerived) / 1000
-
 
319
      // = permilleAcc * (accDerived - angle[axis]) / 1000
320
      correction = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
320
     
321
      angle[axis] = ((int32_t)(1000L - permilleAcc) * angle[axis] + (int32_t)permilleAcc * accDerived) / 1000L;
321
      // Experiment: Do not acutally apply the correction. See if drift compensation does that.
-
 
322
      // angle[axis] += correction / 1000;
-
 
323
    }
322
      correctionSum[axis] += angle[axis] - correction;
-
 
323
      DebugOut.Analog[16+axis] = angle[axis] - correction;
-
 
324
    }
-
 
325
  } else {
324
       
326
    DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
-
 
327
    DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
-
 
328
    DebugOut.Analog[9] = 0;
-
 
329
    DebugOut.Analog[10] = 0;
-
 
330
 
-
 
331
    DebugOut.Analog[16] = 0;
325
    DebugOut.Digital[1] = debugFullWeight;
332
    DebugOut.Analog[17] = 0;
326
  } else {
333
    // experiment: Kill drift compensation updates when not flying smooth.
Line 327... Line 334...
327
    DebugOut.Digital[0] = 0;
334
    correctionSum[PITCH] = correctionSum[ROLL] = 0;
328
  }
335
  }
Line 346... Line 353...
346
  uint8_t axis;
353
  uint8_t axis;
347
  if (! --timer) {
354
  if (! --timer) {
348
    timer = DRIFTCORRECTION_TIME;
355
    timer = DRIFTCORRECTION_TIME;
349
    for (axis=PITCH; axis<=ROLL; axis++) {
356
    for (axis=PITCH; axis<=ROLL; axis++) {
350
      // Take the sum of corrections applied, add it to delta
357
      // Take the sum of corrections applied, add it to delta
351
      deltaCorrection = ((correctionSum[axis] + DRIFTCORRECTION_TIME / 2) * HIRES_GYRO_INTEGRATION_FACTOR) / DRIFTCORRECTION_TIME;
358
      deltaCorrection = (correctionSum[axis] * HIRES_GYRO_INTEGRATION_FACTOR + DRIFTCORRECTION_TIME / 2) / DRIFTCORRECTION_TIME;
352
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
359
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
353
      dynamicOffset[axis] += deltaCorrection / staticParams.GyroAccTrim;
360
      driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
354
      CHECK_MIN_MAX(dynamicOffset[axis], -staticParams.DriftComp, staticParams.DriftComp);
361
      CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
355
      DebugOut.Analog[11 + axis] = correctionSum[axis];
362
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
-
 
363
 
-
 
364
      DebugOut.Analog[18+axis] = deltaCorrection / staticParams.GyroAccTrim;
356
      DebugOut.Analog[28 + axis] = dynamicOffset[axis];
365
      DebugOut.Analog[28+axis] = driftComp[axis];
-
 
366
 
357
      correctionSum[axis] = 0;
367
      correctionSum[axis] = 0;
358
    }
368
    }
359
  }
369
  }
360
}
370
}
Line 361... Line 371...
361
 
371
 
362
/************************************************************************
372
/************************************************************************
363
 * Main procedure.
373
 * Main procedure.
364
 ************************************************************************/
374
 ************************************************************************/
-
 
375
void calculateFlightAttitude(void) {  
-
 
376
  // part1: 550 usec.
-
 
377
  // part1a: 550 usec.
365
void calculateFlightAttitude(void) {  
378
  // part1b: 60 usec.
-
 
379
  getAnalogData();
366
  getAnalogData();
380
  // end part1b
-
 
381
  integrate();
-
 
382
  // end part1a
Line 367... Line 383...
367
  integrate();
383
 
368
 
384
 
369
  DebugOut.Analog[6] = ACRate[PITCH];
385
  DebugOut.Analog[6] = ACRate[PITCH];
Line 376... Line 392...
376
 
392
 
377
#ifdef ATTITUDE_USE_ACC_SENSORS
393
#ifdef ATTITUDE_USE_ACC_SENSORS
378
  correctIntegralsByAcc0thOrder();
394
  correctIntegralsByAcc0thOrder();
379
  driftCorrection();
395
  driftCorrection();
-
 
396
#endif
380
#endif
397
  // end part1
Line 381... Line -...
381
}
-
 
382
 
398
}
383
/*
399
 
Line 384... Line 400...
384
  void updateCompass(void) {
400
void updateCompass(void) {
-
 
401
  int16_t w, v, r,correction, error;
385
  int16_t w, v, r,correction, error;
402
 
-
 
403
  if(compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
-
 
404
    if (controlMixer_testCompassCalState()) {
-
 
405
      compassCalState++;
386
 
406
      if(compassCalState < 5) beepNumber(compassCalState);
387
  if(compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
407
      else beep(1000);
388
  setCompassCalState();
408
    }
389
  } else {
409
  } else {
390
  // get maximum attitude angle
410
    // get maximum attitude angle
391
  w = abs(pitchAngle / 512);
411
    w = abs(angle[PITCH] / 512);
392
  v = abs(rollAngle / 512);
412
    v = abs(angle[ROLL]  / 512);
393
  if(v > w) w = v;
413
    if(v > w) w = v;
394
  correction = w / 8 + 1;
414
    correction = w / 8 + 1;
395
  // calculate the deviation of the yaw gyro heading and the compass heading
415
    // calculate the deviation of the yaw gyro heading and the compass heading
396
  if (compassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined
416
    if (compassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined
397
  else error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
417
    else error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
398
  if(abs(yawRate) > 128) { // spinning fast
418
    if(abs(yawRate) > 128) { // spinning fast
-
 
419
      error = 0;
399
  error = 0;
420
    }
400
  }
421
    if(!badCompassHeading && w < 25) {
401
  if(!badCompassHeading && w < 25) {
422
      yawGyroDrift += error;
402
  if(updateCompassCourse) {
423
      if(updateCompassCourse) {
403
  beep(200);
424
        beep(200);
404
  yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
425
        yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
405
  compassCourse = (int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
426
        compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
406
  updateCompassCourse = 0;
427
        updateCompassCourse = 0;
407
  }
428
      }
408
  }
429
    }
409
  yawGyroHeading += (error * 8) / correction;
430
    yawGyroHeading += (error * 8) / correction;
410
  w = (w * dynamicParams.CompassYawEffect) / 32;
431
    w = (w * dynamicParams.CompassYawEffect) / 32;
411
  w = dynamicParams.CompassYawEffect - w;
432
    w = dynamicParams.CompassYawEffect - w;
412
  if(w >= 0) {
433
    if(w >= 0) {
413
  if(!badCompassHeading) {
434
      if(!badCompassHeading) {
414
  v = 64 + (maxControlPitch + maxControlRoll) / 8;
435
        v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;
415
  // calc course deviation
436
        // calc course deviation
416
  r = ((540 + (yawGyroHeading / GYRO_DEG_FACTOR_YAW) - compassCourse) % 360) - 180;
437
        r = ((540 + (yawGyroHeading / GYRO_DEG_FACTOR_YAW) - compassCourse) % 360) - 180;
417
  v = (r * w) / v; // align to compass course
438
        v = (r * w) / v; // align to compass course
418
  // limit yaw rate
439
        // limit yaw rate
419
  w = 3 * dynamicParams.CompassYawEffect;
440
        w = 3 * dynamicParams.CompassYawEffect;
420
  if (v > w) v = w;
441
        if (v > w) v = w;
421
  else if (v < -w) v = -w;
442
        else if (v < -w) v = -w;
422
  yawAngle += v;
443
        yawAngleDiff += v;
423
  }
444
      }
424
  else
-
 
425
  { // wait a while
445
      else
426
  badCompassHeading--;
446
        { // wait a while
427
  }
447
          badCompassHeading--;
428
  }
-
 
429
  else {  // ignore compass at extreme attitudes for a while
448
        }
430
  badCompassHeading = 500;
449
    } else {  // ignore compass at extreme attitudes for a while
431
  }
450
      badCompassHeading = 500;
Line 432... Line 451...
432
  }
451
    }
433
  }
452
  }
434
*/
453
}
435
 
454
 
Line 455... Line 474...
455
  dynamicCalCount++;
474
  dynamicCalCount++;
Line 456... Line 475...
456
 
475
 
457
  // Param6: Manual mode. The offsets are taken from Param7 and Param8.
476
  // Param6: Manual mode. The offsets are taken from Param7 and Param8.
458
  if (dynamicParams.UserParam6 || 1) { // currently always enabled.
477
  if (dynamicParams.UserParam6 || 1) { // currently always enabled.
459
  // manual mode
478
  // manual mode
460
  dynamicOffsetPitch = dynamicParams.UserParam7 - 128;
479
  driftCompPitch = dynamicParams.UserParam7 - 128;
461
  dynamicOffsetRoll = dynamicParams.UserParam8 - 128;
480
  driftCompRoll = dynamicParams.UserParam8 - 128;
462
  } else {
481
  } else {
463
  // use the sampled value (does not seem to work so well....)
482
  // use the sampled value (does not seem to work so well....)
464
  dynamicOffsetPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
483
  driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
465
  dynamicOffsetRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
484
  driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
466
  dynamicOffsetYaw = -dynamicCalYaw / dynamicCalCount;
485
  driftCompYaw = -dynamicCalYaw / dynamicCalCount;
Line 467... Line 486...
467
  }
486
  }
468
 
487
 
469
  // keep resetting these meanwhile, to avoid accumulating errors.
488
  // keep resetting these meanwhile, to avoid accumulating errors.