Subversion Repositories FlightCtrl

Rev

Rev 1868 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1868 Rev 1869
Line 154... Line 154...
154
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
154
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
155
 * it is hardly worth the trouble.                                      
155
 * it is hardly worth the trouble.                                      
156
 ************************************************************************/
156
 ************************************************************************/
Line 157... Line 157...
157
 
157
 
158
int32_t getAngleEstimateFromAcc(uint8_t axis) {
158
int32_t getAngleEstimateFromAcc(uint8_t axis) {
159
        return GYRO_ACC_FACTOR * (int32_t)filteredAcc[axis];
159
  return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
Line 160... Line 160...
160
}
160
}
161
 
161
 
162
void setStaticAttitudeAngles(void) {
162
void setStaticAttitudeAngles(void) {
163
#ifdef ATTITUDE_USE_ACC_SENSORS
163
#ifdef ATTITUDE_USE_ACC_SENSORS
164
        angle[PITCH] = getAngleEstimateFromAcc(PITCH);
164
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
165
        angle[ROLL] = getAngleEstimateFromAcc(ROLL);
165
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
166
#else
166
#else
167
        angle[PITCH] = angle[ROLL] = 0;
167
  angle[PITCH] = angle[ROLL] = 0;
Line 168... Line 168...
168
#endif
168
#endif
169
}
169
}
170
 
170
 
171
/************************************************************************
171
/************************************************************************
172
 * Neutral Readings                                                    
172
 * Neutral Readings                                                    
173
 ************************************************************************/
173
 ************************************************************************/
Line 174... Line 174...
174
void attitude_setNeutral(void) {
174
void attitude_setNeutral(void) {
175
        // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
175
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
Line 176... Line 176...
176
        dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
176
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
177
 
177
 
Line 178... Line 178...
178
        driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
178
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
179
        correctionSum[PITCH] = correctionSum[ROLL] = 0;
179
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
180
 
180
 
Line 181... Line 181...
181
        // Calibrate hardware.
181
  // Calibrate hardware.
182
        analog_calibrate();
182
  analog_calibrate();
Line 183... Line 183...
183
 
183
 
184
        // reset gyro integrals to acc guessing
184
  // reset gyro integrals to acc guessing
Line 185... Line 185...
185
        setStaticAttitudeAngles();
185
  setStaticAttitudeAngles();
186
        yawAngleDiff = 0;
186
  yawAngleDiff = 0;
Line 187... Line 187...
187
 
187
 
188
        // update compass course to current heading
188
  // update compass course to current heading
189
        compassCourse = compassHeading;
189
  compassCourse = compassHeading;
190
 
190
 
191
        // Inititialize YawGyroIntegral value with current compass heading
191
  // Inititialize YawGyroIntegral value with current compass heading
192
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
192
  yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
193
 
193
 
194
        // Servo_On(); //enable servo output
194
  // Servo_On(); //enable servo output
Line 195... Line 195...
195
}
195
}
196
 
196
 
-
 
197
/************************************************************************
197
/************************************************************************
198
 * Get sensor data from the analog module, and release the ADC          
-
 
199
 * TODO: Ultimately, the analog module could do this (instead of dumping
198
 * Get sensor data from the analog module, and release the ADC          
200
 * the values into variables).
199
 * TODO: Ultimately, the analog module could do this (instead of dumping
201
 * The rate variable end up in a range of about [-1024, 1023].
200
 * the values into variables).
202
 *************************************************************************/
201
 * The rate variable end up in a range of about [-1024, 1023].
203
void getAnalogData(void) {
202
 *************************************************************************/
204
  uint8_t axis;
203
void getAnalogData(void) {
205
 
204
        uint8_t axis;
206
  for (axis = PITCH; axis <= ROLL; axis++) {
205
 
207
    rate_PID[axis] = gyro_PID[axis] / HIRES_GYRO_INTEGRATION_FACTOR
206
        for (axis = PITCH; axis <= ROLL; axis++) {
208
        + driftComp[axis];
207
                rate_PID[axis] = gyro_PID[axis] / HIRES_GYRO_INTEGRATION_FACTOR + driftComp[axis];
209
    rate_ATT[axis] = gyro_ATT[axis] / HIRES_GYRO_INTEGRATION_FACTOR
208
                rate_ATT[axis] = gyro_ATT[axis] / HIRES_GYRO_INTEGRATION_FACTOR + driftComp[axis];
210
        + driftComp[axis];
209
                differential[axis] = gyroD[axis];
211
    differential[axis] = gyroD[axis];
Line 210... Line 212...
210
                averageAcc[axis] += acc[axis];
212
    averageAcc[axis] += acc[axis];
211
        }
213
  }
212
 
214
 
213
        averageAccCount++;
215
  averageAccCount++;
214
        yawRate = yawGyro + driftCompYaw;
216
  yawRate = yawGyro + driftCompYaw;
215
 
217
 
216
        // We are done reading variables from the analog module.
218
  // We are done reading variables from the analog module.
-
 
219
  // Interrupt-driven sensor reading may restart.
217
        // Interrupt-driven sensor reading may restart.
220
  analogDataReady = 0;
218
        analogDataReady = 0;
221
  analog_start();
219
        analog_start();
222
}
220
}
223
 
221
 
224
/*
222
/*
225
 * This is the standard flight-style coordinate system transformation
223
 * This is the standard flight-style coordinate system transformation
226
 * (from airframe-local axes to a ground-based system). For some reason
224
 * (from airframe-local axes to a ground-based system). For some reason
-
 
225
 * the MK uses a left-hand coordinate system. The tranformation has been
227
 * the MK uses a left-hand coordinate system. The tranformation has been
226
 * changed accordingly.
228
 * changed accordingly.
227
 */
229
 */
Line 228... Line 230...
228
void trigAxisCoupling(void) {
230
void trigAxisCoupling(void) {
229
        int16_t cospitch = int_cos(angle[PITCH]);
231
  J5HIGH;
230
        int16_t cosroll = int_cos(angle[ROLL]);
232
  int16_t cospitch = int_cos(angle[PITCH]);
Line 231... Line 233...
231
        int16_t sinroll = int_sin(angle[ROLL]);
233
  int16_t cosroll = int_cos(angle[ROLL]);
232
 
234
  int16_t sinroll = int_sin(angle[ROLL]);
233
        ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll - (int32_t) yawRate
235
 
234
                    * sinroll) >> MATH_UNIT_FACTOR_LOG);
236
  ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll - (int32_t) yawRate
235
 
237
      * sinroll) >> MATH_UNIT_FACTOR_LOG);
236
        ACRate[ROLL] = rate_ATT[ROLL] +
238
 
237
          (((((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll)
239
  ACRate[ROLL] = rate_ATT[ROLL] + (((((int32_t) rate_ATT[PITCH] * sinroll
238
              >> MATH_UNIT_FACTOR_LOG)
240
      + (int32_t) yawRate * cosroll) >> MATH_UNIT_FACTOR_LOG) * int_tan(
239
              * int_tan(angle[PITCH])) >> MATH_UNIT_FACTOR_LOG);
241
      angle[PITCH])) >> MATH_UNIT_FACTOR_LOG);
240
 
242
 
241
        ACYawRate = ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch
243
  ACYawRate = ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch
242
                        + ((int32_t) yawRate * cosroll) / cospitch;
244
      + ((int32_t) yawRate * cosroll) / cospitch;
243
}
245
}
244
 
246
 
245
// 480 usec with axis coupling - almost no time without.
247
// 480 usec with axis coupling - almost no time without.
246
void integrate(void) {
248
void integrate(void) {
247
        // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
249
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
248
        uint8_t axis;
250
  uint8_t axis;
249
        if (!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
251
  if (!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
250
                // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
252
    // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
251
                trigAxisCoupling();
253
    trigAxisCoupling();
252
        } else {
254
  } else {
253
                ACRate[PITCH] = rate_ATT[PITCH];
255
    ACRate[PITCH] = rate_ATT[PITCH];
254
                ACRate[ROLL] = rate_ATT[ROLL];
256
    ACRate[ROLL] = rate_ATT[ROLL];
255
                ACYawRate = yawRate;
257
    ACYawRate = yawRate;
256
        }
258
  }
257
 
259
 
258
        /*
260
  /*
259
         * Yaw
261
   * Yaw
260
         * Calculate yaw gyro integral (~ to rotation angle)
262
   * Calculate yaw gyro integral (~ to rotation angle)
261
         * Limit yawGyroHeading proportional to 0 deg to 360 deg
263
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
262
         */
264
   */
263
        yawGyroHeading += ACYawRate;
265
  yawGyroHeading += ACYawRate;
264
        yawAngleDiff += yawRate;
266
  yawAngleDiff += yawRate;
265
 
267
 
266
        if (yawGyroHeading >= YAWOVER360) {
268
  if (yawGyroHeading >= YAWOVER360) {
267
                yawGyroHeading -= YAWOVER360; // 360 deg. wrap
269
    yawGyroHeading -= YAWOVER360; // 360 deg. wrap
268
        } else if (yawGyroHeading < 0) {
270
  } else if (yawGyroHeading < 0) {
-
 
271
    yawGyroHeading += YAWOVER360;
269
                yawGyroHeading += YAWOVER360;
272
  }
Line 270... Line 273...
270
        }
273
 
271
 
274
  /*
272
        /*
275
   * Pitch axis integration and range boundary wrap.
273
         * Pitch axis integration and range boundary wrap.
276
   */
274
         */
277
  for (axis = PITCH; axis <= ROLL; axis++) {
275
        for (axis = PITCH; axis <= ROLL; axis++) {
278
    angle[axis] += ACRate[axis];
276
                angle[axis] += ACRate[axis];
279
    if (angle[axis] > PITCHROLLOVER180) {
277
                if (angle[axis] > PITCHROLLOVER180) {
280
      angle[axis] -= PITCHROLLOVER360;
278
                        angle[axis] -= PITCHROLLOVER360;
281
    } else if (angle[axis] <= -PITCHROLLOVER180) {
279
                } else if (angle[axis] <= -PITCHROLLOVER180) {
282
      angle[axis] += PITCHROLLOVER360;
280
                        angle[axis] += PITCHROLLOVER360;
283
    }
281
                }
284
  }
282
        }
285
  J5LOW;
283
}
286
}
284
 
287
 
285
/************************************************************************
288
/************************************************************************
286
 * A kind of 0'th order integral correction, that corrects the integrals
289
 * A kind of 0'th order integral correction, that corrects the integrals
287
 * directly. This is the "gyroAccFactor" stuff in the original code.
290
 * directly. This is the "gyroAccFactor" stuff in the original code.
288
 * There is (there) also a drift compensation
291
 * There is (there) also a drift compensation
289
 * - it corrects the differential of the integral = the gyro offsets.
292
 * - it corrects the differential of the integral = the gyro offsets.
290
 * That should only be necessary with drifty gyros like ENC-03.
293
 * That should only be necessary with drifty gyros like ENC-03.
291
 ************************************************************************/
294
 ************************************************************************/
292
void correctIntegralsByAcc0thOrder(void) {
295
void correctIntegralsByAcc0thOrder(void) {
293
        // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
296
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
294
        // are less than ....., or reintroduce Kalman.
297
  // are less than ....., or reintroduce Kalman.
295
        // Well actually the Z axis acc. check is not so silly.
298
  // Well actually the Z axis acc. check is not so silly.
296
        uint8_t axis;
299
  uint8_t axis;
297
        int32_t temp;
300
  int32_t temp;
298
        if (!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z]
301
  if (!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z]
299
                        <= dynamicParams.UserParams[7]) {
302
      <= dynamicParams.UserParams[7]) {
300
                DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
303
    DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
301
 
304
 
302
                uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
305
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
303
                uint8_t debugFullWeight = 1;
306
    uint8_t debugFullWeight = 1;
304
                int32_t accDerived;
307
    int32_t accDerived;
305
 
308
 
306
                if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
309
    if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
307
                        permilleAcc /= 2;
310
      permilleAcc /= 2;
308
                        debugFullWeight = 0;
311
      debugFullWeight = 0;
309
                }
312
    }
310
 
313
 
311
                if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
314
    if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
312
                        permilleAcc /= 2;
315
      permilleAcc /= 2;
313
                        debugFullWeight = 0;
316
      debugFullWeight = 0;
314
                }
317
    }
315
 
318
 
316
                if (debugFullWeight)
319
    if (debugFullWeight)
317
                        DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
320
      DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
318
                else
321
    else
319
                        DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
322
      DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
320
 
323
 
321
                /*
324
    /*
322
                 * Add to each sum: The amount by which the angle is changed just below.
325
     * Add to each sum: The amount by which the angle is changed just below.
323
                 */
326
     */
324
                for (axis = PITCH; axis <= ROLL; axis++) {
327
    for (axis = PITCH; axis <= ROLL; axis++) {
325
                        accDerived = getAngleEstimateFromAcc(axis);
328
      accDerived = getAngleEstimateFromAcc(axis);
326
                        DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
329
      DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
327
 
330
 
328
                        // 1000 * the correction amount that will be added to the gyro angle in next line.
331
      // 1000 * the correction amount that will be added to the gyro angle in next line.
329
                        temp = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
332
      temp = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
330
                        angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
333
      angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
Line 331... Line 334...
331
                                        + (int32_t) permilleAcc * accDerived) / 1000L;
334
          + (int32_t) permilleAcc * accDerived) / 1000L;
332
                        correctionSum[axis] += angle[axis] - temp;
335
      correctionSum[axis] += angle[axis] - temp;
333
                }
336
    }
Line 355... Line 358...
355
 * the error. This is then added to the dynamic offsets.
358
 * the error. This is then added to the dynamic offsets.
356
 ************************************************************************/
359
 ************************************************************************/
357
// 2 times / sec. = 488/2
360
// 2 times / sec. = 488/2
358
#define DRIFTCORRECTION_TIME 256L
361
#define DRIFTCORRECTION_TIME 256L
359
void driftCorrection(void) {
362
void driftCorrection(void) {
360
        static int16_t timer = DRIFTCORRECTION_TIME;
363
  static int16_t timer = DRIFTCORRECTION_TIME;
361
        int16_t deltaCorrection;
364
  int16_t deltaCorrection;
362
        uint8_t axis;
365
  uint8_t axis;
363
        if (!--timer) {
366
  if (!--timer) {
364
                timer = DRIFTCORRECTION_TIME;
367
    timer = DRIFTCORRECTION_TIME;
365
                for (axis = PITCH; axis <= ROLL; axis++) {
368
    for (axis = PITCH; axis <= ROLL; axis++) {
366
                        // Take the sum of corrections applied, add it to delta
369
      // Take the sum of corrections applied, add it to delta
367
                        deltaCorrection = (correctionSum[axis] + DRIFTCORRECTION_TIME / 2) / DRIFTCORRECTION_TIME;
370
      deltaCorrection = (correctionSum[axis] + DRIFTCORRECTION_TIME / 2)
-
 
371
          / DRIFTCORRECTION_TIME;
368
                        // Add the delta to the compensation. So positive delta means, gyro should have higher value.
372
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
369
                        driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
373
      driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
370
                        CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
374
      CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
371
                        // DebugOut.Analog[11 + axis] = correctionSum[axis];
375
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
372
            DebugOut.Analog[16 + axis] = correctionSum[axis];
376
      DebugOut.Analog[16 + axis] = correctionSum[axis];
373
                        DebugOut.Analog[18 + axis] = deltaCorrection / staticParams.GyroAccTrim;
377
      DebugOut.Analog[18 + axis] = deltaCorrection / staticParams.GyroAccTrim;
374
                        DebugOut.Analog[28 + axis] = driftComp[axis];
378
      DebugOut.Analog[28 + axis] = driftComp[axis];
375
 
379
 
376
                        correctionSum[axis] = 0;
380
      correctionSum[axis] = 0;
377
                }
381
    }
378
        }
382
  }
379
}
383
}
Line 380... Line 384...
380
 
384
 
381
/************************************************************************
385
/************************************************************************
382
 * Main procedure.
386
 * Main procedure.
383
 ************************************************************************/
387
 ************************************************************************/
384
void calculateFlightAttitude(void) {
388
void calculateFlightAttitude(void) {
385
        // part1: 550 usec.
389
  // part1: 550 usec.
386
        // part1a: 550 usec.
390
  // part1a: 550 usec.
387
        // part1b: 60 usec.
391
  // part1b: 60 usec.
388
        getAnalogData();
392
  getAnalogData();
389
        // end part1b
393
  // end part1b
390
        integrate();
394
  integrate();
391
        // end part1a
-
 
392
 
395
  // end part1a
393
 
396
 
394
        DebugOut.Analog[6] = ACRate[PITCH];
397
  DebugOut.Analog[6] = stronglyFilteredAcc[PITCH];
395
        DebugOut.Analog[7] = ACRate[ROLL];
398
  DebugOut.Analog[7] = stronglyFilteredAcc[ROLL];
396
        DebugOut.Analog[8] = ACYawRate;
399
  DebugOut.Analog[8] = stronglyFilteredAcc[Z];
397
 
400
 
398
        DebugOut.Analog[3] = rate_PID[PITCH];
401
  DebugOut.Analog[3] = rate_PID[PITCH];
399
        DebugOut.Analog[4] = rate_PID[ROLL];
402
  DebugOut.Analog[4] = rate_PID[ROLL];
Line 400... Line 403...
400
        DebugOut.Analog[5] = yawRate;
403
  DebugOut.Analog[5] = yawRate;
401
 
404
 
402
#ifdef ATTITUDE_USE_ACC_SENSORS
405
#ifdef ATTITUDE_USE_ACC_SENSORS
403
        correctIntegralsByAcc0thOrder();
406
  correctIntegralsByAcc0thOrder();
404
        driftCorrection();
407
  driftCorrection();
405
#endif
408
#endif
Line 406... Line 409...
406
        // end part1
409
  // end part1
407
}
410
}
Line 408... Line 411...
408
 
411
 
409
void updateCompass(void) {
412
void updateCompass(void) {
410
        int16_t w, v, r, correction, error;
413
  int16_t w, v, r, correction, error;
411
 
414
 
412
        if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
415
  if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
413
                if (controlMixer_testCompassCalState()) {
416
    if (controlMixer_testCompassCalState()) {
414
                        compassCalState++;
417
      compassCalState++;
415
                        if (compassCalState < 5)
418
      if (compassCalState < 5)
416
                                beepNumber(compassCalState);
419
        beepNumber(compassCalState);
417
                        else
420
      else
418
                                beep(1000);
421
        beep(1000);
419
                }
422
    }
420
        } else {
423
  } else {
421
                // get maximum attitude angle
424
    // get maximum attitude angle
422
                w = abs(angle[PITCH] / 512);
425
    w = abs(angle[PITCH] / 512);
423
                v = abs(angle[ROLL] / 512);
426
    v = abs(angle[ROLL] / 512);
424
                if (v > w)
427
    if (v > w)
425
                        w = v;
428
      w = v;
426
                correction = w / 8 + 1;
429
    correction = w / 8 + 1;
427
                // calculate the deviation of the yaw gyro heading and the compass heading
430
    // calculate the deviation of the yaw gyro heading and the compass heading
428
                if (compassHeading < 0)
431
    if (compassHeading < 0)
429
                        error = 0; // disable yaw drift compensation if compass heading is undefined
432
      error = 0; // disable yaw drift compensation if compass heading is undefined
430
                else if (abs(yawRate) > 128) { // spinning fast
433
    else if (abs(yawRate) > 128) { // spinning fast
431
                        error = 0;
434
      error = 0;
432
                } else {
435
    } else {
433
                        // compassHeading - yawGyroHeading, on a -180..179 deg interval.
436
      // compassHeading - yawGyroHeading, on a -180..179 deg interval.
434
                        error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW))
437
      error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW))
435
                                        % 360) - 180;
438
          % 360) - 180;
436
                }
439
    }
437
                if (!ignoreCompassTimer && w < 25) {
440
    if (!ignoreCompassTimer && w < 25) {
438
                        yawGyroDrift += error;
441
      yawGyroDrift += error;
439
                        // Basically this gets set if we are in "fix" mode, and when starting.
442
      // Basically this gets set if we are in "fix" mode, and when starting.
440
                        if (updateCompassCourse) {
443
      if (updateCompassCourse) {
441
                                beep(200);
444
        beep(200);
442
                                yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
445
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
443
                                compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
446
        compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
444
                                updateCompassCourse = 0;
447
        updateCompassCourse = 0;
445
                        }
448
      }
446
                }
449
    }
447
                yawGyroHeading += (error * 8) / correction;
450
    yawGyroHeading += (error * 8) / correction;
448
 
451
 
449
                /*
452
    /*
450
                 w = (w * dynamicParams.CompassYawEffect) / 32;
453
     w = (w * dynamicParams.CompassYawEffect) / 32;
451
                 w = dynamicParams.CompassYawEffect - w;
454
     w = dynamicParams.CompassYawEffect - w;
452
                 */
455
     */
453
                w = dynamicParams.CompassYawEffect - (w * dynamicParams.CompassYawEffect)
456
    w = dynamicParams.CompassYawEffect - (w * dynamicParams.CompassYawEffect)
454
                                / 32;
457
        / 32;
455
 
458
 
456
                // As readable formula:
459
    // As readable formula:
457
                // w = dynamicParams.CompassYawEffect * (1-w/32);
460
    // w = dynamicParams.CompassYawEffect * (1-w/32);
458
 
461
 
459
                if (w >= 0) { // maxAttitudeAngle < 32
462
    if (w >= 0) { // maxAttitudeAngle < 32
460
                        if (!ignoreCompassTimer) {
463
      if (!ignoreCompassTimer) {
461
                                v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;
464
        v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;
462
                                // yawGyroHeading - compassCourse on a -180..179 degree interval.
465
        // yawGyroHeading - compassCourse on a -180..179 degree interval.
463
                                r
466
        r
464
                                                = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse)
467
            = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse)
465
                                                                % 360) - 180;
468
                % 360) - 180;
466
                                v = (r * w) / v; // align to compass course
469
        v = (r * w) / v; // align to compass course
467
                                // limit yaw rate
470
        // limit yaw rate
468
                                w = 3 * dynamicParams.CompassYawEffect;
471
        w = 3 * dynamicParams.CompassYawEffect;
469
                                if (v > w)
472
        if (v > w)
470
                                        v = w;
473
          v = w;
471
                                else if (v < -w)
474
        else if (v < -w)
472
                                        v = -w;
475
          v = -w;
473
                                yawAngleDiff += v;
476
        yawAngleDiff += v;
474
                        } else { // wait a while
477
      } else { // wait a while
475
                                ignoreCompassTimer--;
478
        ignoreCompassTimer--;
476
                        }
479
      }
477
                } else { // ignore compass at extreme attitudes for a while
480
    } else { // ignore compass at extreme attitudes for a while
Line 478... Line 481...
478
                        ignoreCompassTimer = 500;
481
      ignoreCompassTimer = 500;
479
                }
482
    }
480
        }
483
  }