Subversion Repositories FlightCtrl

Rev

Rev 1775 | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1775 Rev 1805
Line 72... Line 72...
72
#include "controlMixer.h"
72
#include "controlMixer.h"
Line 73... Line 73...
73
 
73
 
74
// For Servo_On / Off
74
// For Servo_On / Off
Line 75... Line -...
75
// #include "timer2.h"
-
 
76
 
-
 
77
#ifdef USE_MK3MAG
-
 
78
#include "mk3mag.h"
-
 
79
#include "gps.h"
75
// #include "timer2.h"
Line 80... Line 76...
80
#endif
76
 
81
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
77
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
82
 
78
 
Line 111... Line 107...
111
 */
107
 */
112
int32_t angle[2], yawAngleDiff;
108
int32_t angle[2], yawAngleDiff;
Line 113... Line 109...
113
 
109
 
Line 114... Line 110...
114
int readingHeight = 0;
110
int readingHeight = 0;
-
 
111
 
115
 
112
// Yaw angle and compass stuff.
-
 
113
 
-
 
114
// This is updated/written from MM3. Negative angle indicates invalid data.
-
 
115
int16_t compassHeading = -1;
116
// compass course
116
 
-
 
117
// This is NOT updated from MM3. Negative angle indicates invalid data.
-
 
118
int16_t compassCourse = -1;
-
 
119
 
117
int16_t compassHeading       = -1; // negative angle indicates invalid data.
120
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
-
 
121
// Not necessary. Never read anywhere.
118
int16_t compassCourse        = -1;
122
// int16_t compassOffCourse = 0;
119
int16_t compassOffCourse     = 0;
123
 
120
uint16_t updateCompassCourse = 0;
124
uint8_t updateCompassCourse = 0;
-
 
125
uint8_t compassCalState = 0;
121
uint8_t compassCalState      = 0;
126
uint16_t ignoreCompassTimer = 500;
122
uint16_t badCompassHeading = 500;
127
 
Line 123... Line 128...
123
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
128
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
124
int16_t yawGyroDrift;
129
int16_t yawGyroDrift;
125
 
130
 
Line 126... Line 131...
126
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
131
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
Line 127... Line 132...
127
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
132
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
128
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
133
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
Line 129... Line 134...
129
 
134
 
130
int16_t correctionSum[2] = {0,0};
135
int16_t correctionSum[2] = { 0, 0 };
131
 
136
 
132
// For NaviCTRL use.
137
// For NaviCTRL use.
133
int16_t averageAcc[2] = {0,0}, averageAccCount = 0;
138
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
134
 
139
 
135
/*
140
/*
Line 136... Line 141...
136
 * Experiment: Compensating for dynamic-induced gyro biasing.
141
 * Experiment: Compensating for dynamic-induced gyro biasing.
Line 149... Line 154...
149
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
154
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
150
 * it is hardly worth the trouble.                                      
155
 * it is hardly worth the trouble.                                      
151
 ************************************************************************/
156
 ************************************************************************/
Line 152... Line 157...
152
 
157
 
153
int32_t getAngleEstimateFromAcc(uint8_t axis) {
158
int32_t getAngleEstimateFromAcc(uint8_t axis) {
154
  return GYRO_ACC_FACTOR * (int32_t)filteredAcc[axis];
159
        return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
Line 155... Line 160...
155
}
160
}
156
 
161
 
157
void setStaticAttitudeAngles(void) {
162
void setStaticAttitudeAngles(void) {
158
#ifdef ATTITUDE_USE_ACC_SENSORS
163
#ifdef ATTITUDE_USE_ACC_SENSORS
159
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
164
        angle[PITCH] = getAngleEstimateFromAcc(PITCH);
160
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
165
        angle[ROLL] = getAngleEstimateFromAcc(ROLL);
161
#else
166
#else
162
  angle[PITCH] = angle[ROLL] = 0;
167
        angle[PITCH] = angle[ROLL] = 0;
Line 163... Line 168...
163
#endif
168
#endif
164
}
169
}
165
 
170
 
166
/************************************************************************
171
/************************************************************************
167
 * Neutral Readings                                                    
172
 * Neutral Readings                                                    
168
 ************************************************************************/
173
 ************************************************************************/
Line 169... Line 174...
169
void attitude_setNeutral(void) {
174
void attitude_setNeutral(void) {
170
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
175
        // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
171
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
-
 
172
 
-
 
173
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
-
 
174
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
-
 
175
 
-
 
176
  // Calibrate hardware.
-
 
177
  analog_calibrate();
-
 
178
 
-
 
179
  // reset gyro readings
-
 
180
  // rate_ATT[PITCH] = rate_ATT[ROLL] = yawRate = 0;
-
 
Line 181... Line 176...
181
 
176
        dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
182
  // reset gyro integrals to acc guessing
177
 
Line 183... Line 178...
183
  setStaticAttitudeAngles();
178
        driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
184
  yawAngleDiff = 0;
179
        correctionSum[PITCH] = correctionSum[ROLL] = 0;
Line -... Line 180...
-
 
180
 
-
 
181
        // Calibrate hardware.
-
 
182
        analog_calibrate();
-
 
183
 
-
 
184
        // reset gyro readings
-
 
185
        // rate_ATT[PITCH] = rate_ATT[ROLL] = yawRate = 0;
-
 
186
 
-
 
187
        // reset gyro integrals to acc guessing
-
 
188
        setStaticAttitudeAngles();
-
 
189
        yawAngleDiff = 0;
185
 
190
 
186
  // update compass course to current heading
191
        // update compass course to current heading
Line 187... Line 192...
187
  compassCourse = compassHeading;
192
        compassCourse = compassHeading;
188
 
193
 
189
  // Inititialize YawGyroIntegral value with current compass heading
194
        // Inititialize YawGyroIntegral value with current compass heading
190
  yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
195
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
191
 
196
 
192
  // Servo_On(); //enable servo output
197
        // Servo_On(); //enable servo output
193
}
198
}
194
 
199
 
195
/************************************************************************
200
/************************************************************************
196
 * Get sensor data from the analog module, and release the ADC          
201
 * Get sensor data from the analog module, and release the ADC          
197
 * TODO: Ultimately, the analog module could do this (instead of dumping
202
 * TODO: Ultimately, the analog module could do this (instead of dumping
-
 
203
 * the values into variables).
198
 * the values into variables).
204
 * The rate variable end up in a range of about [-1024, 1023].
-
 
205
 *************************************************************************/
199
 * The rate variable end up in a range of about [-1024, 1023].
206
void getAnalogData(void) {
200
 *************************************************************************/
207
        uint8_t axis;
201
void getAnalogData(void) {
208
 
202
  uint8_t axis;
209
        for (axis = PITCH; axis <= ROLL; axis++) {
203
 
210
                rate_PID[axis] = (gyro_PID[axis] + driftComp[axis])
204
  for (axis=PITCH; axis <=ROLL; axis++) {
211
                                / HIRES_GYRO_INTEGRATION_FACTOR;
205
    rate_PID[axis]     = (gyro_PID[axis] + driftComp[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
212
                rate_ATT[axis] = (gyro_ATT[axis] + driftComp[axis])
206
    rate_ATT[axis]     = (gyro_ATT[axis] + driftComp[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
213
                                / HIRES_GYRO_INTEGRATION_FACTOR;
207
    differential[axis] = gyroD[axis];
214
                differential[axis] = gyroD[axis];
208
    averageAcc[axis]  += acc[axis];
215
                averageAcc[axis] += acc[axis];
209
  }
216
        }
210
 
217
 
Line 211... Line 218...
211
  averageAccCount++;
218
        averageAccCount++;
212
  yawRate = yawGyro + driftCompYaw;
219
        yawRate = yawGyro + driftCompYaw;
213
 
220
 
214
  // We are done reading variables from the analog module.
221
        // We are done reading variables from the analog module.
215
  // Interrupt-driven sensor reading may restart.
222
        // Interrupt-driven sensor reading may restart.
216
  analogDataReady = 0;
223
        analogDataReady = 0;
217
  analog_start();
224
        analog_start();
218
}
225
}
219
 
226
 
220
/*
227
/*
221
 * This is the standard flight-style coordinate system transformation
228
 * This is the standard flight-style coordinate system transformation
222
 * (from airframe-local axes to a ground-based system). For some reason
229
 * (from airframe-local axes to a ground-based system). For some reason
223
 * the MK uses a left-hand coordinate system. The tranformation has been
230
 * the MK uses a left-hand coordinate system. The tranformation has been
-
 
231
 * changed accordingly.
224
 * changed accordingly.
232
 */
-
 
233
void trigAxisCoupling(void) {
-
 
234
        int16_t cospitch = int_cos(angle[PITCH]);
-
 
235
        int16_t cosroll = int_cos(angle[ROLL]);
225
 */
236
        int16_t sinroll = int_sin(angle[ROLL]);
-
 
237
        int16_t tanpitch = int_tan(angle[PITCH]);
226
void trigAxisCoupling(void) {
238
#define ANTIOVF 512
Line 227... Line 239...
227
  int16_t cospitch = int_cos(angle[PITCH]);
239
        ACRate[PITCH] = ((int32_t) rate_ATT[PITCH] * cosroll - (int32_t) yawRate
228
  int16_t cosroll =  int_cos(angle[ROLL]);
240
                        * sinroll) / (int32_t) MATH_UNIT_FACTOR;
229
  int16_t sinroll =  int_sin(angle[ROLL]);
241
        ACRate[ROLL] = rate_ATT[ROLL] + (((int32_t) rate_ATT[PITCH] * sinroll
230
  int16_t tanpitch = int_tan(angle[PITCH]);
242
                        / ANTIOVF * tanpitch + (int32_t) yawRate * int_cos(angle[ROLL])
231
#define ANTIOVF 512
243
                        / ANTIOVF * tanpitch) / ((int32_t) MATH_UNIT_FACTOR / ANTIOVF
232
  ACRate[PITCH] =                 ((int32_t) rate_ATT[PITCH] * cosroll - (int32_t)yawRate * sinroll) / (int32_t)MATH_UNIT_FACTOR;
244
                        * MATH_UNIT_FACTOR));
233
  ACRate[ROLL] = rate_ATT[ROLL] + (((int32_t)rate_ATT[PITCH] * sinroll / ANTIOVF * tanpitch + (int32_t)yawRate * int_cos(angle[ROLL]) / ANTIOVF * tanpitch) / ((int32_t)MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR));
245
        ACYawRate = ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch
234
  ACYawRate =                     ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch + ((int32_t)yawRate * cosroll) / cospitch;
246
                        + ((int32_t) yawRate * cosroll) / cospitch;
235
}
247
}
236
 
248
 
237
// 480 usec with axis coupling - almost no time without.
249
// 480 usec with axis coupling - almost no time without.
238
void integrate(void) {
250
void integrate(void) {
239
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
251
        // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
240
  uint8_t axis;
252
        uint8_t axis;
241
  if(!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
253
        if (!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
242
    // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
254
                // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
243
    trigAxisCoupling();
255
                trigAxisCoupling();
244
  } else {
256
        } else {
245
    ACRate[PITCH] = rate_ATT[PITCH];
257
                ACRate[PITCH] = rate_ATT[PITCH];
246
    ACRate[ROLL]  = rate_ATT[ROLL];
258
                ACRate[ROLL] = rate_ATT[ROLL];
247
    ACYawRate     = yawRate;
259
                ACYawRate = yawRate;
248
  }
260
        }
249
 
261
 
250
  /*
262
        /*
251
   * Yaw
263
         * Yaw
252
   * Calculate yaw gyro integral (~ to rotation angle)
264
         * Calculate yaw gyro integral (~ to rotation angle)
253
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
265
         * Limit yawGyroHeading proportional to 0 deg to 360 deg
254
   */
266
         */
255
  yawGyroHeading += ACYawRate;
267
        yawGyroHeading += ACYawRate;
256
  yawAngleDiff += yawRate;
268
        yawAngleDiff += yawRate;
257
 
269
 
258
  if(yawGyroHeading >= YAWOVER360) {
270
        if (yawGyroHeading >= YAWOVER360) {
259
    yawGyroHeading -= YAWOVER360;  // 360 deg. wrap
271
                yawGyroHeading -= YAWOVER360; // 360 deg. wrap
260
  } else if(yawGyroHeading < 0) {
272
        } else if (yawGyroHeading < 0) {
261
    yawGyroHeading += YAWOVER360;
273
                yawGyroHeading += YAWOVER360;
262
  }
274
        }
263
 
275
 
264
  /*
276
        /*
265
   * Pitch axis integration and range boundary wrap.
277
         * Pitch axis integration and range boundary wrap.
Line 266... Line 278...
266
   */
278
         */
267
  for (axis=PITCH; axis<=ROLL; axis++) {
279
        for (axis = PITCH; axis <= ROLL; axis++) {
268
    angle[axis] += ACRate[axis];
280
                angle[axis] += ACRate[axis];
269
    if(angle[axis] > PITCHROLLOVER180) {
281
                if (angle[axis] > PITCHROLLOVER180) {
270
      angle[axis] -= PITCHROLLOVER360;
282
                        angle[axis] -= PITCHROLLOVER360;
271
    } else if (angle[axis] <= -PITCHROLLOVER180) {
283
                } else if (angle[axis] <= -PITCHROLLOVER180) {
272
      angle[axis] += PITCHROLLOVER360;
284
                        angle[axis] += PITCHROLLOVER360;
273
    }
285
                }
274
  }
286
        }
275
}
287
}
276
 
288
 
277
/************************************************************************
289
/************************************************************************
278
 * A kind of 0'th order integral correction, that corrects the integrals
290
 * A kind of 0'th order integral correction, that corrects the integrals
279
 * directly. This is the "gyroAccFactor" stuff in the original code.
291
 * directly. This is the "gyroAccFactor" stuff in the original code.
-
 
292
 * There is (there) also a drift compensation
280
 * There is (there) also a drift compensation
293
 * - it corrects the differential of the integral = the gyro offsets.
281
 * - it corrects the differential of the integral = the gyro offsets.
294
 * That should only be necessary with drifty gyros like ENC-03.
282
 * That should only be necessary with drifty gyros like ENC-03.
295
 ************************************************************************/
283
 ************************************************************************/
296
void correctIntegralsByAcc0thOrder(void) {
284
void correctIntegralsByAcc0thOrder(void) {
297
        // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
285
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
298
        // are less than ....., or reintroduce Kalman.
286
  // are less than ....., or reintroduce Kalman.
299
        // Well actually the Z axis acc. check is not so silly.
287
  // Well actually the Z axis acc. check is not so silly.
300
        uint8_t axis;
288
  uint8_t axis;
301
        int32_t correction;
289
  int32_t correction;
302
        if (!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z]
290
  if(!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z] <= dynamicParams.UserParams[7]) {
303
                        <= dynamicParams.UserParams[7]) {
291
    DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
304
                DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
292
   
305
 
293
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
306
                uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
294
    uint8_t debugFullWeight = 1;
307
                uint8_t debugFullWeight = 1;
295
    int32_t accDerived;
308
                int32_t accDerived;
296
   
309
 
297
    if((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
310
                if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
298
      permilleAcc /= 2;
311
                        permilleAcc /= 2;
299
      debugFullWeight = 0;
312
                        debugFullWeight = 0;
300
    }
313
                }
301
 
314
 
302
    if((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
315
                if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
303
      permilleAcc /= 2;
316
                        permilleAcc /= 2;
304
      debugFullWeight = 0;
317
                        debugFullWeight = 0;
305
    }
318
                }
306
   
319
 
-
 
320
                if (debugFullWeight)
307
    if (debugFullWeight)
321
                        DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
308
      DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
322
                else
309
    else
323
                        DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
310
      DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
324
 
-
 
325
                /*
311
 
326
                 * Add to each sum: The amount by which the angle is changed just below.
312
    /*
327
                 */
313
     * Add to each sum: The amount by which the angle is changed just below.
328
                for (axis = PITCH; axis <= ROLL; axis++) {
314
     */
329
                        accDerived = getAngleEstimateFromAcc(axis);
315
    for (axis=PITCH; axis<=ROLL; axis++) {
330
                        DebugOut.Analog[9 + axis] = (10 * accDerived)
316
      accDerived = getAngleEstimateFromAcc(axis);
331
                                        / GYRO_DEG_FACTOR_PITCHROLL;
317
      DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
332
 
318
 
333
                        // 1000 * the correction amount that will be added to the gyro angle in next line.
319
      // 1000 * the correction amount that will be added to the gyro angle in next line.
334
                        correction = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
320
      correction = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
335
                        angle[axis] = ((int32_t) (1000L - permilleAcc) * angle[axis]
321
      angle[axis] = ((int32_t)(1000L - permilleAcc) * angle[axis] + (int32_t)permilleAcc * accDerived) / 1000L;
336
                                        + (int32_t) permilleAcc * accDerived) / 1000L;
322
      correctionSum[axis] += angle[axis] - correction;
337
                        correctionSum[axis] += angle[axis] - correction;
323
      DebugOut.Analog[16+axis] = angle[axis] - correction;
338
                        DebugOut.Analog[16 + axis] = angle[axis] - correction;
324
    }
339
                }
325
  } else {
340
        } else {
Line 326... Line 341...
326
    DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
341
                DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
327
    DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
342
                DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
328
    DebugOut.Analog[9] = 0;
343
                DebugOut.Analog[9] = 0;
Line 346... Line 361...
346
 * the error. This is then added to the dynamic offsets.
361
 * the error. This is then added to the dynamic offsets.
347
 ************************************************************************/
362
 ************************************************************************/
348
// 2 times / sec. = 488/2
363
// 2 times / sec. = 488/2
349
#define DRIFTCORRECTION_TIME 256L
364
#define DRIFTCORRECTION_TIME 256L
350
void driftCorrection(void) {
365
void driftCorrection(void) {
351
  static int16_t timer = DRIFTCORRECTION_TIME;
366
        static int16_t timer = DRIFTCORRECTION_TIME;
352
  int16_t deltaCorrection;
367
        int16_t deltaCorrection;
353
  uint8_t axis;
368
        uint8_t axis;
354
  if (! --timer) {
369
        if (!--timer) {
355
    timer = DRIFTCORRECTION_TIME;
370
                timer = DRIFTCORRECTION_TIME;
356
    for (axis=PITCH; axis<=ROLL; axis++) {
371
                for (axis = PITCH; axis <= ROLL; axis++) {
357
      // Take the sum of corrections applied, add it to delta
372
                        // Take the sum of corrections applied, add it to delta
-
 
373
                        deltaCorrection = (correctionSum[axis]
358
      deltaCorrection = (correctionSum[axis] * HIRES_GYRO_INTEGRATION_FACTOR + DRIFTCORRECTION_TIME / 2) / DRIFTCORRECTION_TIME;
374
                                        * HIRES_GYRO_INTEGRATION_FACTOR + DRIFTCORRECTION_TIME / 2)
-
 
375
                                        / DRIFTCORRECTION_TIME;
359
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
376
                        // Add the delta to the compensation. So positive delta means, gyro should have higher value.
360
      driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
377
                        driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
361
      CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
378
                        CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
362
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
379
                        // DebugOut.Analog[11 + axis] = correctionSum[axis];
363
 
380
 
364
      DebugOut.Analog[18+axis] = deltaCorrection / staticParams.GyroAccTrim;
381
                        DebugOut.Analog[18 + axis] = deltaCorrection
-
 
382
                                        / staticParams.GyroAccTrim;
365
      DebugOut.Analog[28+axis] = driftComp[axis];
383
                        DebugOut.Analog[28 + axis] = driftComp[axis];
366
 
384
 
367
      correctionSum[axis] = 0;
385
                        correctionSum[axis] = 0;
368
    }
386
                }
369
  }
387
        }
370
}
388
}
Line 371... Line 389...
371
 
389
 
372
/************************************************************************
390
/************************************************************************
373
 * Main procedure.
391
 * Main procedure.
374
 ************************************************************************/
392
 ************************************************************************/
375
void calculateFlightAttitude(void) {  
393
void calculateFlightAttitude(void) {
376
  // part1: 550 usec.
394
        // part1: 550 usec.
377
  // part1a: 550 usec.
395
        // part1a: 550 usec.
378
  // part1b: 60 usec.
396
        // part1b: 60 usec.
379
  getAnalogData();
397
        getAnalogData();
380
  // end part1b
398
        // end part1b
381
  integrate();
399
        integrate();
382
  // end part1a
400
        // end part1a
383
 
401
 
384
 
402
 
385
  DebugOut.Analog[6] = ACRate[PITCH];
403
        DebugOut.Analog[6] = ACRate[PITCH];
386
  DebugOut.Analog[7] = ACRate[ROLL];
404
        DebugOut.Analog[7] = ACRate[ROLL];
387
  DebugOut.Analog[8] = ACYawRate;
405
        DebugOut.Analog[8] = ACYawRate;
388
 
406
 
389
  DebugOut.Analog[3] = rate_PID[PITCH];
407
        DebugOut.Analog[3] = rate_PID[PITCH];
390
  DebugOut.Analog[4] = rate_PID[ROLL];
408
        DebugOut.Analog[4] = rate_PID[ROLL];
391
  DebugOut.Analog[5] = yawRate;
409
        DebugOut.Analog[5] = yawRate;
392
 
410
 
393
#ifdef ATTITUDE_USE_ACC_SENSORS
411
#ifdef ATTITUDE_USE_ACC_SENSORS
394
  correctIntegralsByAcc0thOrder();
412
        correctIntegralsByAcc0thOrder();
395
  driftCorrection();
413
        driftCorrection();
396
#endif
414
#endif
397
  // end part1
415
        // end part1
Line 398... Line 416...
398
}
416
}
399
 
417
 
400
void updateCompass(void) {
418
void updateCompass(void) {
401
  int16_t w, v, r,correction, error;
419
        int16_t w, v, r, correction, error;
402
 
420
 
403
  if(compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
421
        if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
-
 
422
                if (controlMixer_testCompassCalState()) {
404
    if (controlMixer_testCompassCalState()) {
423
                        compassCalState++;
-
 
424
                        if (compassCalState < 5)
405
      compassCalState++;
425
                                beepNumber(compassCalState);
406
      if(compassCalState < 5) beepNumber(compassCalState);
426
                        else
407
      else beep(1000);
427
                                beep(1000);
408
    }
428
                }
409
  } else {
429
        } else {
410
    // get maximum attitude angle
430
                // get maximum attitude angle
411
    w = abs(angle[PITCH] / 512);
431
                w = abs(angle[PITCH] / 512);
-
 
432
                v = abs(angle[ROLL] / 512);
412
    v = abs(angle[ROLL]  / 512);
433
                if (v > w)
413
    if(v > w) w = v;
434
                        w = v;
-
 
435
                correction = w/8 + 1;
414
    correction = w / 8 + 1;
436
                // calculate the deviation of the yaw gyro heading and the compass heading
415
    // calculate the deviation of the yaw gyro heading and the compass heading
-
 
-
 
437
                if (compassHeading < 0)
416
    if (compassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined
438
                        error = 0; // disable yaw drift compensation if compass heading is undefined
417
    else error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
439
                else
-
 
440
                if (abs(yawRate) > 128) { // spinning fast
-
 
441
                        error = 0;
-
 
442
                } else {
418
    if(abs(yawRate) > 128) { // spinning fast
443
                        // compassHeading - yawGyroHeading, on a -180..179 deg interval.
419
      error = 0;
444
                        error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
420
    }
445
                }
-
 
446
                if (!ignoreCompassTimer && w < 25) {
421
    if(!badCompassHeading && w < 25) {
447
                        yawGyroDrift += error;
422
      yawGyroDrift += error;
448
                        // Basically this gets set if we are in "fix" mode, and when starting.
423
      if(updateCompassCourse) {
449
                        if (updateCompassCourse) {
424
        beep(200);
450
                                beep(200);
425
        yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
451
                                yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
426
        compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
452
                                compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
427
        updateCompassCourse = 0;
453
                                updateCompassCourse = 0;
428
      }
454
                        }
-
 
455
                }
-
 
456
                yawGyroHeading += (error * 8) / correction;
429
    }
457
 
430
    yawGyroHeading += (error * 8) / correction;
458
                /*
-
 
459
                w = (w * dynamicParams.CompassYawEffect) / 32;
-
 
460
                w = dynamicParams.CompassYawEffect - w;
-
 
461
                */
431
    w = (w * dynamicParams.CompassYawEffect) / 32;
462
                w = dynamicParams.CompassYawEffect - (w * dynamicParams.CompassYawEffect) / 32;
-
 
463
 
-
 
464
                // As readable formula:
-
 
465
                // w = dynamicParams.CompassYawEffect * (1-w/32);
432
    w = dynamicParams.CompassYawEffect - w;
466
 
433
    if(w >= 0) {
467
                if (w >= 0) { // maxAttitudeAngle < 32
434
      if(!badCompassHeading) {
468
                        if (!ignoreCompassTimer) {
435
        v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;
469
                                v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;
436
        // calc course deviation
470
                                // yawGyroHeading - compassCourse on a -180..179 degree interval.
437
        r = ((540 + (yawGyroHeading / GYRO_DEG_FACTOR_YAW) - compassCourse) % 360) - 180;
471
                                r = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse) % 360) - 180;
438
        v = (r * w) / v; // align to compass course
472
                                v = (r * w) / v; // align to compass course
439
        // limit yaw rate
473
                                // limit yaw rate
-
 
474
                                w = 3 * dynamicParams.CompassYawEffect;
440
        w = 3 * dynamicParams.CompassYawEffect;
475
                                if (v > w)
-
 
476
                                        v = w;
441
        if (v > w) v = w;
477
                                else if (v < -w)
442
        else if (v < -w) v = -w;
478
                                        v = -w;
-
 
479
                                yawAngleDiff += v;
443
        yawAngleDiff += v;
480
                        } else { // wait a while
444
      }
481
                                ignoreCompassTimer--;
445
      else
482
                        }
-
 
483
                } else { // ignore compass at extreme attitudes for a while
446
        { // wait a while
484
                        ignoreCompassTimer = 500;
447
          badCompassHeading--;
-
 
448
        }
-
 
449
    } else {  // ignore compass at extreme attitudes for a while
-
 
450
      badCompassHeading = 500;
-
 
451
    }
485
                }
Line 452... Line 486...
452
  }
486
        }
453
}
487
}
454
 
488
 
Line 459... Line 493...
459
 * will measure the effect of vibration, to use for later compensation. So, one should keep
493
 * will measure the effect of vibration, to use for later compensation. So, one should keep
460
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
494
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
461
 * speed unfortunately... must find a better way)
495
 * speed unfortunately... must find a better way)
462
 */
496
 */
463
/*
497
/*
464
  void attitude_startDynamicCalibration(void) {
498
 void attitude_startDynamicCalibration(void) {
465
  dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
499
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
466
  savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
500
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
467
  }
501
 }
468
 
502
 
469
  void attitude_continueDynamicCalibration(void) {
503
 void attitude_continueDynamicCalibration(void) {
470
  // measure dynamic offset now...
504
 // measure dynamic offset now...
471
  dynamicCalPitch += hiResPitchGyro;
505
 dynamicCalPitch += hiResPitchGyro;
472
  dynamicCalRoll += hiResRollGyro;
506
 dynamicCalRoll += hiResRollGyro;
473
  dynamicCalYaw += rawYawGyroSum;
507
 dynamicCalYaw += rawYawGyroSum;
474
  dynamicCalCount++;
508
 dynamicCalCount++;
475
 
509
 
476
  // Param6: Manual mode. The offsets are taken from Param7 and Param8.
510
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
477
  if (dynamicParams.UserParam6 || 1) { // currently always enabled.
511
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
478
  // manual mode
512
 // manual mode
479
  driftCompPitch = dynamicParams.UserParam7 - 128;
513
 driftCompPitch = dynamicParams.UserParam7 - 128;
480
  driftCompRoll = dynamicParams.UserParam8 - 128;
514
 driftCompRoll = dynamicParams.UserParam8 - 128;
481
  } else {
515
 } else {
482
  // use the sampled value (does not seem to work so well....)
516
 // use the sampled value (does not seem to work so well....)
483
  driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
517
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
484
  driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
518
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
485
  driftCompYaw = -dynamicCalYaw / dynamicCalCount;
519
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
486
  }
520
 }
487
 
521
 
488
  // keep resetting these meanwhile, to avoid accumulating errors.
522
 // keep resetting these meanwhile, to avoid accumulating errors.
489
  setStaticAttitudeIntegrals();
523
 setStaticAttitudeIntegrals();
490
  yawAngle = 0;
524
 yawAngle = 0;
491
  }
525
 }
492
*/
526
 */