Subversion Repositories FlightCtrl

Rev

Rev 1634 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1634 Rev 1645
Line 82... Line 82...
82
 * things functionally without side effects) but this is shorter and probably
82
 * things functionally without side effects) but this is shorter and probably
83
 * faster too.
83
 * faster too.
84
 * The variables are overwritten at each attitude calculation invocation - the values
84
 * The variables are overwritten at each attitude calculation invocation - the values
85
 * are not preserved or reused.
85
 * are not preserved or reused.
86
 */
86
 */
87
int16_t pitchRate, rollRate, yawRate;
87
int16_t rate[2], yawRate;
Line 88... Line 88...
88
 
88
 
89
// With different (less) filtering
89
// With different (less) filtering
90
int16_t pitchRate_PID, rollRate_PID;
90
int16_t rate_PID[2];
Line 91... Line 91...
91
int16_t pitchDifferential, rollDifferential;
91
int16_t differential[2];
92
 
92
 
93
/*
93
/*
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
97
 * copied into these directly.
97
 * copied into these directly.
98
 * These are global for the same pragmatic reason as with the gyro readings.
98
 * These are global for the same pragmatic reason as with the gyro readings.
99
 * The variables are overwritten at each attitude calculation invocation - the values
99
 * The variables are overwritten at each attitude calculation invocation - the values
100
 * are not preserved or reused.
100
 * are not preserved or reused.
Line 101... Line 101...
101
 */
101
 */
102
int16_t ACPitchRate, ACRollRate, ACYawRate;
102
int16_t ACRate[2], ACYawRate;
103
 
103
 
104
/*
104
/*
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
Line 106... Line 106...
106
 * horizontal plane, yaw relative to yaw at start.
106
 * horizontal plane, yaw relative to yaw at start.
Line 107... Line 107...
107
 */
107
 */
108
int32_t pitchAngle, rollAngle, yawAngle;
108
int32_t angle[2], yawAngle;
Line 122... Line 122...
122
 
122
 
123
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
123
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
124
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
124
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
Line 125... Line 125...
125
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
125
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
Line 126... Line 126...
126
 
126
 
127
int32_t pitchCorrectionSum = 0, rollCorrectionSum = 0;
127
int32_t correctionSum[2] = {0,0};
128
 
128
 
129
/*
129
/*
130
 * Experiment: Compensating for dynamic-induced gyro biasing.
130
 * Experiment: Compensating for dynamic-induced gyro biasing.
131
 */
131
 */
132
int16_t dynamicOffsetPitch = 0, dynamicOffsetRoll = 0, dynamicOffsetYaw = 0;
132
int16_t dynamicOffset[2] = {0,0}, dynamicOffsetYaw = 0;
Line 133... Line 133...
133
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
133
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
Line 142... Line 142...
142
 * it makes sense to set the integrals (standing on ground, or flying at  
142
 * it makes sense to set the integrals (standing on ground, or flying at  
143
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
143
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
144
 * it is hardly worth the trouble.                                      
144
 * it is hardly worth the trouble.                                      
145
 ************************************************************************/
145
 ************************************************************************/
Line 146... Line -...
146
 
-
 
147
int32_t getPitchAngleEstimateFromAcc(void) {
-
 
148
  return GYRO_ACC_FACTOR * (int32_t)filteredPitchAxisAcc;
-
 
149
}
-
 
150
 
146
 
151
int32_t getRollAngleEstimateFromAcc(void) {
147
int32_t getAngleEstimateFromAcc(uint8_t axis) {
152
  return GYRO_ACC_FACTOR * (int32_t)filteredRollAxisAcc;
148
  return GYRO_ACC_FACTOR * (int32_t)filteredAcc[axis];
Line 153... Line 149...
153
}
149
}
154
 
150
 
155
void setStaticAttitudeAngles(void) {
151
void setStaticAttitudeAngles(void) {
156
#ifdef ATTITUDE_USE_ACC_SENSORS
152
#ifdef ATTITUDE_USE_ACC_SENSORS
157
  pitchAngle = getPitchAngleEstimateFromAcc();
153
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
158
  rollAngle = getRollAngleEstimateFromAcc();
-
 
159
#else
154
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
160
  pitchAngle = 0;
155
#else
161
  rollAngle = 0;
156
  angle[PITCH] = angle[ROLL] = 0;
Line 162... Line 157...
162
#endif
157
#endif
163
}
158
}
164
 
159
 
165
/************************************************************************
160
/************************************************************************
166
 * Neutral Readings                                                    
161
 * Neutral Readings                                                    
167
 ************************************************************************/
162
 ************************************************************************/
Line 168... Line 163...
168
void attitude_setNeutral(void) {
163
void attitude_setNeutral(void) {
Line 169... Line 164...
169
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
164
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
170
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
165
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
Line 171... Line 166...
171
 
166
 
172
  dynamicOffsetPitch = dynamicOffsetRoll = 0;
167
  dynamicOffset[PITCH] = dynamicOffset[ROLL] = 0;
Line 173... Line 168...
173
 
168
 
174
  // Calibrate hardware.
169
  // Calibrate hardware.
175
  analog_calibrate();
170
  analog_calibrate();
Line 190... Line 185...
190
}
185
}
Line 191... Line 186...
191
 
186
 
192
/************************************************************************
187
/************************************************************************
193
 * Get sensor data from the analog module, and release the ADC          
188
 * Get sensor data from the analog module, and release the ADC          
194
 * TODO: Ultimately, the analog module could do this (instead of dumping
189
 * TODO: Ultimately, the analog module could do this (instead of dumping
-
 
190
 * the values into variables).
-
 
191
 * The rate variable end up in a range of about [-1024, 1023].
195
 * the values into variables).                                          
192
 * When scaled down by CONTROL_SCALING, the interval is about [-256, 256].
196
 *************************************************************************/
193
 *************************************************************************/
197
void getAnalogData(void) {
-
 
198
  // For the differential calculation. Diff. is not supported right now.
194
void getAnalogData(void) {
199
  // int16_t d2Pitch, d2Roll;
-
 
200
  pitchRate_PID = (hiResPitchGyro + dynamicOffsetPitch) / HIRES_GYRO_INTEGRATION_FACTOR;
-
 
201
  pitchRate = (filteredHiResPitchGyro + dynamicOffsetPitch) / HIRES_GYRO_INTEGRATION_FACTOR;
-
 
202
  pitchDifferential = pitchGyroD;
195
  uint8_t axis;
-
 
196
 
203
 
197
  for (axis=PITCH; axis <=ROLL; axis++) {
204
  rollRate_PID = (hiResRollGyro + dynamicOffsetRoll) / HIRES_GYRO_INTEGRATION_FACTOR;
198
    rate_PID[axis]     = (gyro_PID[axis] + dynamicOffset[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
205
  rollRate = (filteredHiResRollGyro + dynamicOffsetRoll) / HIRES_GYRO_INTEGRATION_FACTOR;
199
    rate[axis]         = (gyro_ATT[axis] + dynamicOffset[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
206
  rollDifferential = rollGyroD;
200
    differential[axis] = gyroD[axis];
207
 
201
  }
Line 208... Line 202...
208
  yawRate = yawGyro + dynamicOffsetYaw;
202
  yawRate = yawGyro + dynamicOffsetYaw;
-
 
203
 
209
 
204
  // We are done reading variables from the analog module.
210
  // We are done reading variables from the analog module. Interrupt-driven sensor reading may restart.
205
  // Interrupt-driven sensor reading may restart.
211
  analogDataReady = 0;
206
  analogDataReady = 0;
Line 212... Line -...
212
  analog_start();
-
 
213
}
-
 
214
 
-
 
215
/************************************************************************
-
 
216
 * Axis coupling, H&I Style                                            
-
 
217
 * Currently not working (and there is a bug in it,
-
 
218
 * which causes unstable flight in heading-hold mode).
-
 
219
 ************************************************************************/
-
 
220
void H_and_I_axisCoupling(void) {
-
 
221
  int32_t tmpl = 0, tmpl2 = 0, tmp13 = 0, tmp14 = 0;
-
 
222
  int16_t CouplingNickRoll = 0, CouplingRollNick = 0;
-
 
223
 
-
 
224
  tmp13 = (rollRate * pitchAngle) / 2048L;
-
 
225
  tmp13 *= dynamicParams.AxisCoupling2; // 65
-
 
226
  tmp13 /= 4096L;
-
 
227
  CouplingNickRoll = tmp13;
-
 
228
 
-
 
229
  tmp14 = (pitchRate * rollAngle) / 2048L;
-
 
230
  tmp14 *= dynamicParams.AxisCoupling2; // 65
-
 
231
  tmp14 /= 4096L;
-
 
232
  CouplingRollNick = tmp14;
-
 
233
 
-
 
234
  tmp14 -= tmp13;
-
 
235
 
-
 
236
  ACYawRate = yawRate + tmp14;
-
 
237
 
-
 
238
  /*
-
 
239
  if(!dynamicParams.AxisCouplingYawCorrection) ACYawRate = yawRate - tmp14 / 2; // force yaw
-
 
240
  else ACYawRate
-
 
241
  */
-
 
242
 
-
 
243
  tmpl = ((yawRate + tmp14) * pitchAngle) / 2048L;
-
 
244
  tmpl *= dynamicParams.AxisCoupling1;
-
 
245
  tmpl /= 4096L;
-
 
246
 
-
 
247
  tmpl2 = ((yawRate + tmp14) * rollAngle) / 2048L;
-
 
248
  tmpl2 *= dynamicParams.AxisCoupling1;
-
 
249
  tmpl2 /= 4096L;
-
 
250
 
-
 
251
  // if(abs(yawRate > 64)) {
-
 
252
  // if(labs(tmpl) > 128 || labs(tmpl2) > 128) FunnelCourse = 1;
-
 
253
  // }
-
 
254
 
-
 
255
  ACPitchRate = pitchRate - tmpl2 + tmpl / 100L;
-
 
256
  ACRollRate = rollRate + tmpl - tmpl2 / 100L;
207
  analog_start();
257
}
208
}
258
 
209
 
259
/*
210
/*
260
 * This is the standard flight-style coordinate system transformation
211
 * This is the standard flight-style coordinate system transformation
261
 * (from airframe-local axes to a ground-based system). For some reason
212
 * (from airframe-local axes to a ground-based system). For some reason
262
 * the MK uses a left-hand coordinate system. The tranformation has been
213
 * the MK uses a left-hand coordinate system. The tranformation has been
263
 * changed accordingly.
214
 * changed accordingly.
264
 */
215
 */
265
void trigAxisCoupling(void) {
216
void trigAxisCoupling(void) {
266
  int16_t cospitch = int_cos(pitchAngle);
217
  int16_t cospitch = int_cos(angle[PITCH]);
267
  int16_t cosroll =  int_cos(rollAngle);
218
  int16_t cosroll =  int_cos(angle[ROLL]);
268
  int16_t sinroll =  int_sin(rollAngle);
219
  int16_t sinroll =  int_sin(angle[ROLL]);
269
  int16_t tanpitch = int_tan(pitchAngle);
220
  int16_t tanpitch = int_tan(angle[PITCH]);
270
#define ANTIOVF 1024
221
#define ANTIOVF 1024
271
  ACPitchRate =            ((int32_t)pitchRate * cosroll - (int32_t)yawRate * sinroll) / (int32_t)MATH_UNIT_FACTOR;
222
  ACRate[PITCH] =             ((int32_t) rate[PITCH] * cosroll - (int32_t)yawRate * sinroll) / (int32_t)MATH_UNIT_FACTOR;
Line 272... Line 223...
272
  ACRollRate = rollRate + (((int32_t)pitchRate * sinroll / ANTIOVF * tanpitch + (int32_t)yawRate * int_cos(rollAngle) / ANTIOVF * tanpitch) / ((int32_t)MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR));
223
  ACRate[ROLL] = rate[ROLL] + (((int32_t)rate[PITCH] * sinroll / ANTIOVF * tanpitch + (int32_t)yawRate * int_cos(angle[ROLL]) / ANTIOVF * tanpitch) / ((int32_t)MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR));
273
  ACYawRate =             ((int32_t)pitchRate * sinroll) / cospitch + ((int32_t)yawRate * cosroll) / cospitch;
224
  ACYawRate =                 ((int32_t) rate[PITCH] * sinroll) / cospitch + ((int32_t)yawRate * cosroll) / cospitch;
-
 
225
}
-
 
226
 
274
}
227
void integrate(void) {
275
 
228
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
276
void integrate(void) {
-
 
277
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
229
  uint8_t axis;
278
  if(!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
-
 
279
    // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
-
 
280
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER)
230
 
281
      trigAxisCoupling();    
231
  if(!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
282
    else
232
    // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
283
      H_and_I_axisCoupling();
233
    trigAxisCoupling();    
284
  } else {
234
  } else {
Line 285... Line 235...
285
    ACPitchRate = pitchRate;
235
    ACRate[PITCH] = rate[PITCH];
286
    ACRollRate = rollRate;
-
 
287
    ACYawRate = yawRate;
236
    ACRate[ROLL]  = rate[ROLL];
288
  }
-
 
289
 
237
    ACYawRate = yawRate;
290
  DebugOut.Analog[3] = pitchRate;
-
 
291
  // DebugOut.Analog[3 + 3] = ACPitchRate;
-
 
292
  DebugOut.Analog[4] = rollRate;
-
 
293
  // DebugOut.Analog[4 + 3] = ACRollRate;
-
 
294
  DebugOut.Analog[5] = yawRate;
-
 
295
  // DebugOut.Analog[5 + 3] = ACYawRate;
-
 
296
 
-
 
Line 297... Line 238...
297
  /*
238
  }
298
  DebugOut.Analog[9] = int_cos(pitchAngle);
239
 
299
  DebugOut.Analog[10] = int_sin(pitchAngle);
240
  DebugOut.Analog[3] = ACRate[PITCH];
300
  DebugOut.Analog[11] = int_tan(pitchAngle);
241
  DebugOut.Analog[4] = ACRate[ROLL];
301
  */
242
  DebugOut.Analog[5] = ACYawRate;
302
 
-
 
303
  /*
243
 
Line 304... Line 244...
304
   * Yaw
244
  /*
305
   * Calculate yaw gyro integral (~ to rotation angle)
245
   * Yaw
Line 318... Line 258...
318
  }
258
  }
Line 319... Line 259...
319
 
259
 
320
  /*
260
  /*
321
   * Pitch axis integration and range boundary wrap.
261
   * Pitch axis integration and range boundary wrap.
-
 
262
   */
322
   */
263
  for (axis=PITCH; axis<=ROLL; axis++) {
323
  pitchAngle += ACPitchRate;
264
    angle[axis] += ACRate[axis];
324
  if(pitchAngle > PITCHROLLOVER180) {
265
    if(angle[axis] > PITCHROLLOVER180) {
325
    pitchAngle -= PITCHROLLOVER360;
266
      angle[axis] -= PITCHROLLOVER360;
326
  } else if (pitchAngle <= -PITCHROLLOVER180) {
267
    } else if (angle[axis] <= -PITCHROLLOVER180) {
327
    pitchAngle += PITCHROLLOVER360;
-
 
328
  }
-
 
329
 
-
 
330
  /*
-
 
331
   * Pitch axis integration and range boundary wrap.
268
      angle[axis] += PITCHROLLOVER360;
332
   */
-
 
333
  rollAngle  += ACRollRate;
-
 
334
  if(rollAngle > PITCHROLLOVER180) {
-
 
335
    rollAngle -= PITCHROLLOVER360;
-
 
336
  } else if (rollAngle <= -PITCHROLLOVER180) {
-
 
337
    rollAngle += PITCHROLLOVER360;
269
    }
338
  }
270
  }
Line 339... Line 271...
339
}
271
}
340
 
272
 
Line 347... Line 279...
347
 ************************************************************************/
279
 ************************************************************************/
348
void correctIntegralsByAcc0thOrder(void) {
280
void correctIntegralsByAcc0thOrder(void) {
349
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
281
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
350
  // are less than ....., or reintroduce Kalman.
282
  // are less than ....., or reintroduce Kalman.
351
  // Well actually the Z axis acc. check is not so silly.
283
  // Well actually the Z axis acc. check is not so silly.
-
 
284
  uint8_t axis;
352
  if(!looping && //((ZAxisAcc >= -4) || (MKFlags & MKFLAG_MOTOR_RUN))) { // if not looping in any direction
285
  if(!looping && //((ZAcc >= -4) || (MKFlags & MKFLAG_MOTOR_RUN))) { // if not looping in any direction
353
     ZAxisAcc >= -dynamicParams.UserParams[7] && ZAxisAcc <= dynamicParams.UserParams[7]) {
286
     ZAcc >= -dynamicParams.UserParams[7] && ZAcc <= dynamicParams.UserParams[7]) {
354
    DebugOut.Digital[0] = 1;
287
    DebugOut.Digital[0] = 1;
Line 355... Line 288...
355
   
288
   
356
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
289
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
-
 
290
    uint8_t debugFullWeight = 1;
Line 357... Line -...
357
    uint8_t debugFullWeight = 1;
-
 
358
   
-
 
359
    int32_t accDerivedPitch = getPitchAngleEstimateFromAcc();
-
 
360
    int32_t accDerivedRoll = getRollAngleEstimateFromAcc();
291
    int32_t accDerived[2];
361
   
292
   
362
    if((maxControlPitch > 64) || (maxControlRoll > 64)) { // reduce effect during stick commands
293
    if((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
363
      permilleAcc /= 2;
294
      permilleAcc /= 2;
Line 364... Line 295...
364
      debugFullWeight = 0;
295
      debugFullWeight = 0;
Line 370... Line 301...
370
    }
301
    }
Line 371... Line 302...
371
 
302
 
372
    /*
303
    /*
373
     * Add to each sum: The amount by which the angle is changed just below.
304
     * Add to each sum: The amount by which the angle is changed just below.
374
     */
305
     */
375
    pitchCorrectionSum += permilleAcc * (accDerivedPitch - pitchAngle);
306
    for (axis=PITCH; axis<=ROLL; axis++) {
376
    rollCorrectionSum += permilleAcc * (accDerivedRoll - rollAngle);
-
 
377
   
307
      accDerived[axis] = getAngleEstimateFromAcc(axis);
378
    // There should not be a risk of overflow here, since the integrals do not exceed a few 100000.
-
 
379
    pitchAngle = ((int32_t)(1000 - permilleAcc) * pitchAngle + (int32_t)permilleAcc * accDerivedPitch) / 1000L;
-
 
Line -... Line 308...
-
 
308
      correctionSum[axis] += permilleAcc * (accDerived[axis] - angle[axis]);
-
 
309
   
-
 
310
      // There should not be a risk of overflow here, since the integrals do not exceed a few 100000.
-
 
311
      angle[axis] = ((int32_t)(1000 - permilleAcc) * angle[axis] + (int32_t)permilleAcc * accDerived[axis]) / 1000L;
380
    rollAngle = ((int32_t)(1000 - permilleAcc) * rollAngle + (int32_t)permilleAcc * accDerivedRoll) / 1000L;
312
    }
381
   
313
       
382
    DebugOut.Digital[1] = debugFullWeight;
314
    DebugOut.Digital[1] = debugFullWeight;
383
  } else {
315
  } else {
384
    DebugOut.Digital[0] = 0;
316
    DebugOut.Digital[0] = 0;
Line 398... Line 330...
398
// 2 times / sec.
330
// 2 times / sec.
399
#define DRIFTCORRECTION_TIME 488/2
331
#define DRIFTCORRECTION_TIME 488/2
400
void driftCompensation(void) {
332
void driftCompensation(void) {
401
  static int16_t timer = DRIFTCORRECTION_TIME;
333
  static int16_t timer = DRIFTCORRECTION_TIME;
402
  int16_t deltaCompensation;
334
  int16_t deltaCompensation;
-
 
335
  uint8_t axis;
403
  if (! --timer) {
336
  if (! --timer) {
404
    timer = DRIFTCORRECTION_TIME;
337
    timer = DRIFTCORRECTION_TIME;
405
    deltaCompensation = ((pitchCorrectionSum + 1000L * DRIFTCORRECTION_TIME / 2) / 1000 / DRIFTCORRECTION_TIME);
-
 
406
    CHECK_MIN_MAX(deltaCompensation, -staticParams.DriftComp, staticParams.DriftComp);
-
 
407
    dynamicOffsetPitch += deltaCompensation / staticParams.GyroAccTrim;
338
    for (axis=PITCH; axis<=ROLL; axis++) {
408
 
-
 
409
    deltaCompensation = ((rollCorrectionSum + 1000L * DRIFTCORRECTION_TIME / 2) / 1000 / DRIFTCORRECTION_TIME);
339
      deltaCompensation = ((correctionSum[axis] + 1000L * DRIFTCORRECTION_TIME / 2) / 1000 / DRIFTCORRECTION_TIME);
410
    CHECK_MIN_MAX(deltaCompensation, -staticParams.DriftComp, staticParams.DriftComp);
340
      CHECK_MIN_MAX(deltaCompensation, -staticParams.DriftComp, staticParams.DriftComp);
411
    dynamicOffsetRoll += deltaCompensation / staticParams.GyroAccTrim;
341
      dynamicOffset[axis] += deltaCompensation / staticParams.GyroAccTrim;
412
 
-
 
413
    pitchCorrectionSum = rollCorrectionSum = 0;
342
      correctionSum[axis] = 0;
414
 
-
 
415
    DebugOut.Analog[28] = dynamicOffsetPitch;
343
      DebugOut.Analog[28 + axis] = dynamicOffset;
416
    DebugOut.Analog[29] = dynamicOffsetRoll;
344
    }
417
  }
345
  }
418
}
346
}
Line 419... Line 347...
419
 
347
 
420
/************************************************************************
348
/************************************************************************
Line 428... Line 356...
428
  driftCompensation();
356
  driftCompensation();
429
#endif
357
#endif
430
}
358
}
Line 431... Line 359...
431
 
359
 
432
/*
360
/*
433
void updateCompass(void) {
361
  void updateCompass(void) {
Line 434... Line 362...
434
  int16_t w, v, r,correction, error;
362
  int16_t w, v, r,correction, error;
435
 
363
 
436
  if(compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
364
  if(compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
437
    setCompassCalState();
365
  setCompassCalState();
438
  } else {
366
  } else {
439
    // get maximum attitude angle
367
  // get maximum attitude angle
440
    w = abs(pitchAngle / 512);
368
  w = abs(pitchAngle / 512);
441
    v = abs(rollAngle / 512);
369
  v = abs(rollAngle / 512);
442
    if(v > w) w = v;
370
  if(v > w) w = v;
443
    correction = w / 8 + 1;
371
  correction = w / 8 + 1;
444
    // calculate the deviation of the yaw gyro heading and the compass heading
372
  // calculate the deviation of the yaw gyro heading and the compass heading
445
    if (compassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined
373
  if (compassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined
446
    else error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
374
  else error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
447
    if(abs(yawRate) > 128) { // spinning fast
375
  if(abs(yawRate) > 128) { // spinning fast
448
      error = 0;
376
  error = 0;
449
    }
377
  }
450
    if(!badCompassHeading && w < 25) {
378
  if(!badCompassHeading && w < 25) {
451
      if(updateCompassCourse) {
379
  if(updateCompassCourse) {
452
        beep(200);
380
  beep(200);
453
        yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
381
  yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
454
        compassCourse = (int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
382
  compassCourse = (int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
455
        updateCompassCourse = 0;
383
  updateCompassCourse = 0;
456
      }
384
  }
457
    }
385
  }
458
    yawGyroHeading += (error * 8) / correction;
386
  yawGyroHeading += (error * 8) / correction;
459
    w = (w * dynamicParams.CompassYawEffect) / 32;
387
  w = (w * dynamicParams.CompassYawEffect) / 32;
460
    w = dynamicParams.CompassYawEffect - w;
388
  w = dynamicParams.CompassYawEffect - w;
461
    if(w >= 0) {
389
  if(w >= 0) {
462
      if(!badCompassHeading) {
390
  if(!badCompassHeading) {
463
        v = 64 + (maxControlPitch + maxControlRoll) / 8;
391
  v = 64 + (maxControlPitch + maxControlRoll) / 8;
464
        // calc course deviation
392
  // calc course deviation
465
        r = ((540 + (yawGyroHeading / GYRO_DEG_FACTOR_YAW) - compassCourse) % 360) - 180;
393
  r = ((540 + (yawGyroHeading / GYRO_DEG_FACTOR_YAW) - compassCourse) % 360) - 180;
466
        v = (r * w) / v; // align to compass course
394
  v = (r * w) / v; // align to compass course
467
        // limit yaw rate
395
  // limit yaw rate
468
        w = 3 * dynamicParams.CompassYawEffect;
396
  w = 3 * dynamicParams.CompassYawEffect;
469
        if (v > w) v = w;
397
  if (v > w) v = w;
470
        else if (v < -w) v = -w;
398
  else if (v < -w) v = -w;
471
        yawAngle += v;
399
  yawAngle += v;
472
      }
400
  }
473
      else
401
  else
474
        { // wait a while
402
  { // wait a while
475
          badCompassHeading--;
403
  badCompassHeading--;
476
        }
404
  }
477
    }
405
  }
-
 
406
  else {  // ignore compass at extreme attitudes for a while
478
    else {  // ignore compass at extreme attitudes for a while
407
  badCompassHeading = 500;
479
      badCompassHeading = 500;
408
  }
480
    }
-
 
481
  }
409
  }
Line 482... Line 410...
482
}
410
  }
483
*/
411
*/
484
 
412
 
Line 489... Line 417...
489
 * will measure the effect of vibration, to use for later compensation. So, one should keep
417
 * will measure the effect of vibration, to use for later compensation. So, one should keep
490
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
418
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
491
 * speed unfortunately... must find a better way)
419
 * speed unfortunately... must find a better way)
492
 */
420
 */
493
/*
421
/*
494
void attitude_startDynamicCalibration(void) {
422
  void attitude_startDynamicCalibration(void) {
495
  dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
423
  dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
496
  savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
424
  savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
497
}
425
  }
Line 498... Line 426...
498
 
426
 
499
void attitude_continueDynamicCalibration(void) {
427
  void attitude_continueDynamicCalibration(void) {
500
  // measure dynamic offset now...
428
  // measure dynamic offset now...
501
  dynamicCalPitch += hiResPitchGyro;
429
  dynamicCalPitch += hiResPitchGyro;
502
  dynamicCalRoll += hiResRollGyro;
430
  dynamicCalRoll += hiResRollGyro;
503
  dynamicCalYaw += rawYawGyroSum;
431
  dynamicCalYaw += rawYawGyroSum;
Line 504... Line 432...
504
  dynamicCalCount++;
432
  dynamicCalCount++;
505
 
433
 
506
  // Param6: Manual mode. The offsets are taken from Param7 and Param8.
434
  // Param6: Manual mode. The offsets are taken from Param7 and Param8.
507
  if (dynamicParams.UserParam6 || 1) { // currently always enabled.
435
  if (dynamicParams.UserParam6 || 1) { // currently always enabled.
508
    // manual mode
436
  // manual mode
509
    dynamicOffsetPitch = dynamicParams.UserParam7 - 128;
437
  dynamicOffsetPitch = dynamicParams.UserParam7 - 128;
510
    dynamicOffsetRoll = dynamicParams.UserParam8 - 128;
438
  dynamicOffsetRoll = dynamicParams.UserParam8 - 128;
511
  } else {
439
  } else {
512
    // use the sampled value (does not seem to work so well....)
440
  // use the sampled value (does not seem to work so well....)
513
    dynamicOffsetPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
441
  dynamicOffsetPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
514
    dynamicOffsetRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
442
  dynamicOffsetRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
Line 515... Line 443...
515
    dynamicOffsetYaw = -dynamicCalYaw / dynamicCalCount;
443
  dynamicOffsetYaw = -dynamicCalYaw / dynamicCalCount;
516
  }
444
  }
517
 
445
 
518
  // keep resetting these meanwhile, to avoid accumulating errors.
446
  // keep resetting these meanwhile, to avoid accumulating errors.
519
  setStaticAttitudeIntegrals();
447
  setStaticAttitudeIntegrals();