Subversion Repositories FlightCtrl

Rev

Rev 1635 | Rev 1646 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1635 Rev 1645
Line 63... Line 63...
63
 
63
 
64
// For reading and writing acc. meter offsets.
64
// For reading and writing acc. meter offsets.
Line 65... Line 65...
65
#include "eeprom.h"
65
#include "eeprom.h"
66
 
-
 
67
/*
-
 
68
 * Arrays could have been used for the 2 * 3 axes, but despite some repetition,
-
 
69
 * the code is easier to read without.
66
 
70
 *
-
 
71
 * For each A/D conversion cycle, each channel (eg. the yaw gyro, or the Z axis
67
/*
72
 * accelerometer) is sampled a number of times (see array channelsForStates), and
68
 * For each A/D conversion cycle, each analog channel is sampled a number of times
73
 * the results for each channel are summed. Here are those for the gyros and the
69
 * (see array channelsForStates), and the results for each channel are summed.
74
 * acc. meters. They are not zero-offset.
70
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
75
 * They are exported in the analog.h file - but please do not use them! The only
71
 * They are exported in the analog.h file - but please do not use them! The only
76
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
72
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
77
 * the offsets with the DAC.
73
 * the offsets with the DAC.
78
 */
74
 */
79
volatile int16_t rawPitchGyroSum, rawRollGyroSum, rawYawGyroSum;
75
volatile int16_t rawGyroSum[2], rawYawGyroSum;
80
volatile int16_t pitchAxisAcc = 0, rollAxisAcc = 0, ZAxisAcc = 0;
-
 
81
volatile int16_t filteredPitchAxisAcc = 0, filteredRollAxisAcc = 0;
-
 
Line 82... Line 76...
82
 
76
volatile int16_t acc[2] = {0,0}, ZAcc = 0;
83
// that float one - "Top" - is missing.
77
volatile int16_t filteredAcc[2] = {0,0};
84
 
78
 
85
/*
79
/*
86
 * These 4 exported variables are zero-offset. The "filtered" ones are
-
 
87
 * (if configured to with the GYROS_SECONDORDERFILTER define) low pass
80
 * These 4 exported variables are zero-offset. The "PID" ones are used
88
 * filtered versions of the other 2.
81
 * in the attitude control as rotation rates. The "ATT" ones are for
89
 * They are derived from the "raw" values above, by zero-offsetting.
82
 * integration to angles.
90
 */
83
 */
91
volatile int16_t hiResPitchGyro = 0, hiResRollGyro = 0;
84
volatile int16_t gyro_PID[2];
Line 92... Line 85...
92
volatile int16_t filteredHiResPitchGyro = 0, filteredHiResRollGyro = 0;
85
volatile int16_t gyro_ATT[2];
93
volatile int16_t pitchGyroD = 0, rollGyroD = 0;
86
volatile int16_t gyroD[2];
94
volatile int16_t yawGyro = 0;
87
volatile int16_t yawGyro = 0;
95
 
88
 
96
/*
89
/*
97
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
90
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
98
 * standing still. They are used for adjusting the gyro and acc. meter values
91
 * standing still. They are used for adjusting the gyro and acc. meter values
Line 99... Line 92...
99
 * to be zero when the copter stands still.
92
 * to be centered on zero.
100
 */
93
 */
101
volatile int16_t pitchOffset, rollOffset, yawOffset;
94
volatile int16_t gyroOffset[2], yawGyroOffset;
102
volatile int16_t pitchAxisAccOffset, rollAxisAccOffset, ZAxisAccOffset;
95
volatile int16_t accOffset[2], ZAccOffset;
103
 
96
 
104
/*
97
/*
105
 * This allows some experimentation with the gyro filters.
98
 * This allows some experimentation with the gyro filters.
106
 * Should be replaced by #define's later on...
99
 * Should be replaced by #define's later on...
Line -... Line 100...
-
 
100
 */
107
 */
101
volatile uint8_t GYROS_FIRSTORDERFILTER;
-
 
102
volatile uint8_t GYROS_SECONDORDERFILTER;
108
volatile uint8_t GYROS_FIRSTORDERFILTER;
103
volatile uint8_t GYROS_DFILTER;
109
volatile uint8_t GYROS_SECONDORDERFILTER;
104
volatile uint8_t ACC_FILTER;
110
volatile uint8_t GYROS_DFILTER;
105
 
111
volatile uint8_t ACC_FILTER;
106
/*
112
 
107
 * Air pressure measurement.
Line 113... Line 108...
113
// Air pressure (no support right now).
108
 */
114
// volatile int32_t AirPressure = 32000;
109
#define MIN_RAWPRESSURE 200
115
// volatile uint8_t average_pressure = 0;
110
#define MAX_RAWPRESSURE (1023-MIN_RAWPRESSURE)
116
// volatile int16_t StartAirPressure;
111
volatile uint8_t rangewidth = 53;
117
// volatile uint16_t ReadingAirPressure = 1023;
112
volatile uint16_t rawAirPressure;
118
// volatile int16_t HeightD = 0;
113
volatile uint16_t filteredAirPressure;
Line 119... Line -...
119
 
-
 
120
/*
-
 
121
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
114
 
122
 * That is divided by 3 below, for a final 10.34 per volt.
115
/*
123
 * So the initial value of 100 is for 9.7 volts.
116
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
124
 */
117
 * That is divided by 3 below, for a final 10.34 per volt.
125
volatile int16_t UBat = 100;
118
 * So the initial value of 100 is for 9.7 volts.
Line 126... Line 119...
126
 
119
 */
127
volatile int16_t filteredAirPressure;
120
volatile int16_t UBat = 100;
128
 
121
 
129
/*
122
/*
130
 * Control and status.
123
 * Control and status.
Line 131... Line 124...
131
 */
124
 */
132
volatile uint16_t ADCycleCount = 0;
125
volatile uint16_t ADCycleCount = 0;
133
volatile uint8_t analogDataReady = 1;
126
volatile uint8_t analogDataReady = 1;
134
 
127
 
135
/*
128
/*
136
 * Experiment: Measuring vibration-induced sensor noise.
129
 * Experiment: Measuring vibration-induced sensor noise.
137
 */
130
 */
138
volatile uint16_t pitchGyroNoisePeak, rollGyroNoisePeak;
131
volatile uint16_t gyroNoisePeak[2];
139
volatile uint16_t pitchAccNoisePeak, rollAccNoisePeak;
132
volatile uint16_t accNoisePeak[2];
Line 140... Line 133...
140
 
133
 
141
// ADC channels
134
// ADC channels
142
#define AD_GYRO_YAW       0
135
#define AD_GYRO_YAW       0
143
#define AD_GYRO_ROLL      1
136
#define AD_GYRO_ROLL      1
Line 226... Line 219...
226
  } else {
219
  } else {
227
    *noiseMeasurement = 0;
220
    *noiseMeasurement = 0;
228
  }
221
  }
229
}
222
}
Line 230... Line -...
230
 
-
 
231
 
-
 
232
#define ADCENTER (1023/2)
-
 
233
#define HALFRANGE 400
-
 
234
uint8_t stepsize = 53;
-
 
235
 
223
 
236
uint16_t getAbsPressure(int advalue) {
224
uint16_t getAbsPressure(int advalue) {
237
  return (uint16_t)OCR0A * (uint16_t)stepsize + advalue;
225
  return (uint16_t)OCR0A * (uint16_t)rangewidth + advalue;
Line 238... Line 226...
238
}
226
}
239
 
227
 
240
uint16_t filterAirPressure(uint16_t rawpressure) {
228
uint16_t filterAirPressure(uint16_t rawpressure) {
Line 241... Line 229...
241
  return rawpressure;
229
  return rawpressure;
242
}
230
}
243
 
-
 
244
/*****************************************************/
231
 
245
/*     Interrupt Service Routine for ADC             */
232
/*****************************************************
246
/*****************************************************/
233
 * Interrupt Service Routine for ADC            
247
// Runs at 312.5 kHz or 3.2 µs
-
 
-
 
234
 * Runs at 312.5 kHz or 3.2 µs. When all states are
248
// When all states are processed the interrupt is disabled
235
 * processed the interrupt is disabled and further
249
// and the update of further AD conversions is stopped.
236
 * AD conversions are stopped.
250
 
237
 *****************************************************/
251
ISR(ADC_vect) {
-
 
-
 
238
ISR(ADC_vect) {
252
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
239
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
253
  static uint16_t sensorInputs[8] = {0,0,0,0,0,0,0,0};
240
  static uint16_t sensorInputs[8] = {0,0,0,0,0,0,0,0};
Line 254... Line 241...
254
 
241
  static uint8_t pressure_wait = 10;
255
  uint8_t i;
242
  uint8_t i, axis;
Line 256... Line 243...
256
  int16_t step = OCR0A;
243
  int16_t range;
Line 257... Line 244...
257
 
244
 
258
  // for various filters...
245
  // for various filters...
259
  static int16_t pitchGyroFilter, rollGyroFilter, tempOffsetGyro;
246
  int16_t tempOffsetGyro, tempGyro;
260
 
247
 
261
  sensorInputs[ad_channel] += ADC;
248
  sensorInputs[ad_channel] += ADC;
262
 
249
 
263
  /*
250
  /*
264
   * Actually we don't need this "switch". We could do all the sampling into the
251
   * Actually we don't need this "switch". We could do all the sampling into the
265
   * sensorInputs array first, and all the processing after the last sample.
252
   * sensorInputs array first, and all the processing after the last sample.
266
   */
253
   */
267
  switch(state++) {
254
  switch(state++) {
268
  case 7: // Z acc      
255
  case 7: // Z acc      
Line 269... Line 256...
269
#ifdef ACC_REVERSE_ZAXIS
256
#ifdef ACC_REVERSE_ZAXIS
270
    ZAxisAcc = -ZAxisAccOffset - sensorInputs[AD_ACC_Z];
257
    ZAcc = -ZAccOffset - sensorInputs[AD_ACC_Z];
271
#else
258
#else
272
    ZAxisAcc = sensorInputs[AD_ACC_Z] - ZAxisAccOffset;
259
    ZAcc = sensorInputs[AD_ACC_Z] - ZAccOffset;
273
#endif
260
#endif
274
    break;
261
    break;
275
   
262
   
276
  case 10: // yaw gyro
263
  case 10: // yaw gyro
Line 277... Line 264...
277
    rawYawGyroSum = sensorInputs[AD_GYRO_YAW];
264
    rawYawGyroSum = sensorInputs[AD_GYRO_YAW];
278
#ifdef GYRO_REVERSE_YAW
265
#ifdef GYRO_REVERSE_YAW
279
    yawGyro = rawYawGyroSum - yawOffset;
266
    yawGyro = rawYawGyroSum - yawGyroOffset;
280
#else
267
#else
281
    yawGyro = yawOffset - rawYawGyroSum; // negative is "default" (FC 1.0-1.3).
268
    yawGyro = yawGyroOffset - rawYawGyroSum; // negative is "default" (FC 1.0-1.3).
282
#endif
269
#endif
283
    break;
270
    break;
Line 284... Line 271...
284
   
271
   
285
  case 11: // pitch axis acc.
272
  case 11: // pitch axis acc.
Line 286... Line 273...
286
#ifdef ACC_REVERSE_PITCHAXIS
273
#ifdef ACC_REVERSE_PITCHAXIS
287
    pitchAxisAcc = -pitchAxisAccOffset - sensorInputs[AD_ACC_PITCH];
274
    acc[PITCH] = -accOffset[PITCH] - sensorInputs[AD_ACC_PITCH];
288
#else
275
#else
289
    pitchAxisAcc = sensorInputs[AD_ACC_PITCH] - pitchAxisAccOffset;
276
    acc[PITCH] = sensorInputs[AD_ACC_PITCH] - accOffset[PITCH];
290
#endif
277
#endif
291
    filteredPitchAxisAcc = (filteredPitchAxisAcc * (ACC_FILTER-1) + pitchAxisAcc) / ACC_FILTER;
278
    filteredAcc[PITCH] = (filteredAcc[PITCH] * (ACC_FILTER-1) + acc[PITCH]) / ACC_FILTER;
292
 
279
 
293
    measureNoise(pitchAxisAcc, &pitchAccNoisePeak, 1);
280
    measureNoise(acc[PITCH], &accNoisePeak[PITCH], 1);
294
    break;
281
    break;
295
   
282
   
296
  case 12: // roll axis acc.
283
  case 12: // roll axis acc.
-
 
284
#ifdef ACC_REVERSE_ROLLAXIS
-
 
285
    acc[ROLL] = sensorInputs[AD_ACC_ROLL] - accOffset[ROLL];
-
 
286
#else
-
 
287
    acc[ROLL] = -accOffset[ROLL] - sensorInputs[AD_ACC_ROLL];
-
 
288
#endif
-
 
289
    filteredAcc[ROLL] = (filteredAcc[ROLL] * (ACC_FILTER-1) + acc[ROLL]) / ACC_FILTER;
297
#ifdef ACC_REVERSE_ROLLAXIS
290
    measureNoise(acc[ROLL], &accNoisePeak[ROLL], 1);
-
 
291
    break;
298
    rollAxisAcc = sensorInputs[AD_ACC_ROLL] - rollAxisAccOffset;
292
 
299
#else
293
  case 13: // air pressure
300
    rollAxisAcc = -rollAxisAccOffset - sensorInputs[AD_ACC_ROLL];
294
    if (pressure_wait) {
-
 
295
      // A range switch was done recently. Wait for steadying.
301
#endif
296
      pressure_wait--;
302
    filteredRollAxisAcc = (filteredRollAxisAcc * (ACC_FILTER-1) + rollAxisAcc) / ACC_FILTER;
-
 
303
    measureNoise(rollAxisAcc, &rollAccNoisePeak, 1);
297
      break;
304
    break;
298
    }
305
   
299
    range = OCR0A;
306
  case 13: // air pressure
300
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
-
 
301
    if (rawAirPressure < MIN_RAWPRESSURE) {
307
    if (sensorInputs[AD_AIRPRESSURE] < ADCENTER-HALFRANGE) {
302
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
308
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
-
 
309
      step -= ((HALFRANGE-sensorInputs[AD_AIRPRESSURE]) / stepsize + 1);
303
      range -= (MAX_RAWPRESSURE - rawAirPressure) / rangewidth - 1;
310
      if (step<0) step = 0;
304
      if (range < 0) range = 0;
311
      OCR0A = step;
305
      pressure_wait = (OCR0A - range) * 4;
-
 
306
      OCR0A = range;
-
 
307
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
-
 
308
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
-
 
309
      range += (rawAirPressure - MIN_RAWPRESSURE) / rangewidth - 1;
312
      // wait = ... (calculate something here .. calculate at what time the R/C filter is to within one sample off)
310
      if (range > 254) range = 254;
Line -... Line 311...
-
 
311
      pressure_wait = (range - OCR0A) * 4;
313
    } else if (sensorInputs[AD_AIRPRESSURE] > ADCENTER+HALFRANGE) {
312
      OCR0A = range;
-
 
313
    } else {
314
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
314
      filteredAirPressure = filterAirPressure(getAbsPressure(rawAirPressure));
-
 
315
    }
-
 
316
   
-
 
317
    DebugOut.Analog[12] = range;
-
 
318
    DebugOut.Analog[13] = rawAirPressure;
315
      step += ((sensorInputs[AD_AIRPRESSURE] - HALFRANGE)/stepsize + 1);
319
    DebugOut.Analog[14] = filteredAirPressure;
316
      if (step>254) step = 254;
320
    break;
-
 
321
 
-
 
322
  case 14:
-
 
323
  case 15: // pitch or roll gyro.
-
 
324
    axis = state - 15;
-
 
325
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
-
 
326
        // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
317
      OCR0A = step;
327
    /*
318
      // wait = ... (calculate something here .. calculate at what time the R/C filter is to within one sample off)
328
     * Process the gyro data for the PID controller.
-
 
329
     */
-
 
330
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
-
 
331
    //    gyro with a wider range, and helps counter saturation at full control.
319
    } else {
332
 
320
      filteredAirPressure = filterAirPressure(getAbsPressure(sensorInputs[AD_AIRPRESSURE]));
333
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
321
    }
334
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
322
    break;
335
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
323
 
336
      }
-
 
337
      else if (tempGyro > SENSOR_MAX_PITCHROLL) {
324
  case 14: // pitch gyro
338
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
325
    rawPitchGyroSum = sensorInputs[AD_GYRO_PITCH];
339
      }
-
 
340
    }
326
    // Filter already before offsetting. The offsetting resolution improvement obtained by divding by
341
 
327
    // GYROS_FIRSTORDERFILTER _after_ offsetting is too small to be worth pursuing.
342
    // 2) Apply sign and offset, scale before filtering.
-
 
343
    if (GYROS_REVERSE[axis]) {
328
    pitchGyroFilter = (pitchGyroFilter * (GYROS_FIRSTORDERFILTER-1) + rawPitchGyroSum * GYRO_FACTOR_PITCHROLL) / GYROS_FIRSTORDERFILTER;
344
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
329
    // Offset to 0.
345
    } else {
330
#ifdef GYROS_REVERSE_PITCH
-
 
-
 
346
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
331
    tempOffsetGyro = pitchOffset - pitchGyroFilter;
347
    }
-
 
348
 
332
#else
349
    // 3) Scale and filter.
-
 
350
    tempOffsetGyro = (gyro_PID[axis] * (GYROS_PIDFILTER-1) + tempOffsetGyro) / GYROS_PIDFILTER;
333
    tempOffsetGyro = pitchGyroFilter - pitchOffset;
351
 
-
 
352
    // 4) Measure noise.
334
#endif
353
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
-
 
354
 
335
    // Calculate the delta from last shot and filter it.
355
    // 5) Differential measurement. 
336
    pitchGyroD = (pitchGyroD * (GYROS_DFILTER-1) + (tempOffsetGyro - hiResPitchGyro)) / GYROS_DFILTER;
356
    gyroD[axis] = (gyroD[axis] * (GYROS_DFILTER-1) + (tempOffsetGyro - gyro_PID[axis])) / GYROS_DFILTER;
337
    // How we can overwrite the last value. This value is used for the D part of the PID controller.
357
 
338
    hiResPitchGyro = tempOffsetGyro;
358
    // 6) Done.
339
    // Filter a little more. This value is used in integration to angles.
359
    gyro_PID[axis] = tempOffsetGyro;
340
    filteredHiResPitchGyro = (filteredHiResPitchGyro * (GYROS_SECONDORDERFILTER-1) + hiResPitchGyro) / GYROS_SECONDORDERFILTER;
360
 
341
    measureNoise(hiResPitchGyro, &pitchGyroNoisePeak, GYRO_NOISE_MEASUREMENT_DAMPING);
-
 
-
 
361
    /*
342
    break;
362
     * Now process the data for attitude angles.
343
   
363
     */
344
  case 15: // Roll gyro. Works the same as pitch.
-
 
345
    rawRollGyroSum = sensorInputs[AD_GYRO_ROLL];
364
    tempGyro = rawGyroSum[axis];
Line 346... Line 365...
346
    rollGyroFilter = (rollGyroFilter * (GYROS_FIRSTORDERFILTER-1) + rawRollGyroSum * GYRO_FACTOR_PITCHROLL) / GYROS_FIRSTORDERFILTER;
365
   
347
#ifdef GYRO_REVERSE_ROLL
366
    // 1) Apply sign and offset, scale before filtering.
348
    tempOffsetGyro = rollOffset - rollGyroFilter;
367
    if (GYROS_REVERSE[axis]) {
Line 388... Line 407...
388
  GYROS_FIRSTORDERFILTER = (dynamicParams.UserParams[4]   & 0b00000011)       + 1;
407
  GYROS_FIRSTORDERFILTER = (dynamicParams.UserParams[4]   & 0b00000011)       + 1;
389
  GYROS_SECONDORDERFILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
408
  GYROS_SECONDORDERFILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
390
  GYROS_DFILTER = ((dynamicParams.UserParams[4]           & 0b00110000) >> 4) + 1;
409
  GYROS_DFILTER = ((dynamicParams.UserParams[4]           & 0b00110000) >> 4) + 1;
391
  ACC_FILTER = ((dynamicParams.UserParams[4]              & 0b11000000) >> 6) + 1;
410
  ACC_FILTER = ((dynamicParams.UserParams[4]              & 0b11000000) >> 6) + 1;
Line 392... Line 411...
392
 
411
 
Line 393... Line 412...
393
  pitchOffset = rollOffset = yawOffset = 0;
412
  gyroOffset[PITCH] = gyroOffset[ROLL] = yawGyroOffset = 0;
Line 394... Line 413...
394
 
413
 
395
  gyro_calibrate();
414
  gyro_calibrate();
396
 
415
 
397
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
416
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
398
  for(i=0; i < GYRO_OFFSET_CYCLES; i++) {
417
  for(i=0; i < GYRO_OFFSET_CYCLES; i++) {
399
    Delay_ms_Mess(10);
418
    Delay_ms_Mess(10);
400
    _pitchOffset += rawPitchGyroSum * GYRO_FACTOR_PITCHROLL;
419
    _pitchOffset += rawGyroSum[PITCH];
Line 401... Line 420...
401
    _rollOffset  += rawRollGyroSum * GYRO_FACTOR_PITCHROLL;
420
    _rollOffset  += rawGyroSum[ROLL];
402
    _yawOffset   += rawYawGyroSum;
421
    _yawOffset   += rawYawGyroSum;
403
  }
422
  }
Line 404... Line 423...
404
 
423
 
405
  pitchOffset = (_pitchOffset + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
-
 
406
  rollOffset  = (_rollOffset  + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
-
 
407
  yawOffset   = (_yawOffset   + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
424
  gyroOffset[PITCH] = (_pitchOffset + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
408
 
-
 
Line 409... Line 425...
409
  filteredHiResPitchGyro = filteredHiResRollGyro = 0;
425
  gyroOffset[ROLL] = (_rollOffset  + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
410
 
426
  yawGyroOffset   = (_yawOffset   + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
411
  pitchAxisAccOffset = (int16_t)GetParamWord(PID_ACC_NICK);
427
 
Line 412... Line 428...
412
  rollAxisAccOffset  = (int16_t)GetParamWord(PID_ACC_ROLL);
428
  gyro_PID[PITCH] = gyro_PID[ROLL] = 0;
413
  ZAxisAccOffset     = (int16_t)GetParamWord(PID_ACC_TOP);
429
  gyro_ATT[PITCH] = gyro_ATT[ROLL] = 0;
414
 
430
 
415
  // Noise is relative to offset. So, reset noise measurements when
431
  // Noise is relative to offset. So, reset noise measurements when
Line 416... Line 432...
416
  // changing offsets.
432
  // changing offsets.
417
  pitchGyroNoisePeak = rollGyroNoisePeak = 0;
433
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
418
 
434
 
Line 430... Line 446...
430
 */
446
 */
431
void analog_calibrateAcc(void) {
447
void analog_calibrateAcc(void) {
432
#define ACC_OFFSET_CYCLES 10
448
#define ACC_OFFSET_CYCLES 10
433
  uint8_t i;
449
  uint8_t i;
434
  int32_t _pitchAxisOffset = 0, _rollAxisOffset = 0, _ZAxisOffset = 0;
450
  int32_t _pitchAxisOffset = 0, _rollAxisOffset = 0, _ZAxisOffset = 0;
-
 
451
  // int16_t pressureDiff, savedRawAirPressure;
Line 435... Line 452...
435
 
452
 
Line 436... Line 453...
436
  pitchAxisAccOffset = rollAxisAccOffset = ZAxisAccOffset = 0;
453
  accOffset[PITCH] = accOffset[ROLL] = ZAccOffset = 0;
437
 
454
 
438
  for(i=0; i < ACC_OFFSET_CYCLES; i++) {
455
  for(i=0; i < ACC_OFFSET_CYCLES; i++) {
439
    Delay_ms_Mess(10);
456
    Delay_ms_Mess(10);
440
    _pitchAxisOffset += pitchAxisAcc;
457
    _pitchAxisOffset += acc[PITCH];
441
    _rollAxisOffset += rollAxisAcc;
458
    _rollAxisOffset  += acc[ROLL];
Line 442... Line 459...
442
    _ZAxisOffset += ZAxisAcc;
459
    _ZAxisOffset += ZAcc;
443
  }
460
  }
444
 
461
 
445
  // Save ACC neutral settings to eeprom
462
  // Save ACC neutral settings to eeprom
Line 446... Line 463...
446
  SetParamWord(PID_ACC_NICK, (uint16_t)((_pitchAxisOffset + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES));
463
  SetParamWord(PID_ACC_PITCH, (uint16_t)((_pitchAxisOffset + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES));
447
  SetParamWord(PID_ACC_ROLL, (uint16_t)((_rollAxisOffset  + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES));
464
  SetParamWord(PID_ACC_ROLL, (uint16_t)((_rollAxisOffset  + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES));
448
  SetParamWord(PID_ACC_TOP,  (uint16_t)((_ZAxisOffset     + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES));
465
  SetParamWord(PID_ACC_TOP,  (uint16_t)((_ZAxisOffset     + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES));
-
 
466
 
-
 
467
  // Noise is relative to offset. So, reset noise measurements when
-
 
468
  // changing offsets.
-
 
469
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
-
 
470
  // Setting offset values has an influence in the analog.c ISR
-
 
471
  // Therefore run measurement for 100ms to achive stable readings
-
 
472
  // Delay_ms_Mess(100);
-
 
473
 
-
 
474
  // Set the feedback so that air pressure ends up in the middle of the range.
-
 
475
  // (raw pressure high --> OCR0A also high...)
-
 
476
  // OCR0A += (rawAirPressure - 512) / rangewidth;
-
 
477
  // Delay_ms_Mess(500);
-
 
478
 
-
 
479
  /*
-
 
480
    pressureDiff = 0;
-
 
481
    DebugOut.Analog[16] = rawAirPressure;
-
 
482
 
-
 
483
    #define PRESSURE_CAL_CYCLE_COUNT 2
-
 
484
    for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
-
 
485
    savedRawAirPressure = rawAirPressure;
-
 
486
    OCR0A++;
-
 
487
    Delay_ms_Mess(200);
-
 
488
    // raw pressure will decrease.
-
 
489
    pressureDiff += (savedRawAirPressure - rawAirPressure);
-
 
490
 
-
 
491
    savedRawAirPressure = rawAirPressure;
-
 
492
    OCR0A--;
-
 
493
    Delay_ms_Mess(200);
-
 
494
    // raw pressure will increase.
-
 
495
    pressureDiff += (rawAirPressure - savedRawAirPressure);
-
 
496
    }
449
 
497