Subversion Repositories FlightCtrl

Rev

Rev 1796 | Rev 1854 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1796 Rev 1821
Line 75... Line 75...
75
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
75
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
76
 * the offsets with the DAC.
76
 * the offsets with the DAC.
77
 */
77
 */
78
volatile int16_t rawGyroSum[3];
78
volatile int16_t rawGyroSum[3];
79
volatile int16_t acc[3];
79
volatile int16_t acc[3];
80
volatile int16_t filteredAcc[2]={0,0};
80
volatile int16_t filteredAcc[2] = { 0, 0 };
Line 81... Line 81...
81
 
81
 
82
/*
82
/*
83
 * These 4 exported variables are zero-offset. The "PID" ones are used
83
 * These 4 exported variables are zero-offset. The "PID" ones are used
84
 * in the attitude control as rotation rates. The "ATT" ones are for
84
 * in the attitude control as rotation rates. The "ATT" ones are for
Line 92... Line 92...
92
/*
92
/*
93
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
93
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
94
 * standing still. They are used for adjusting the gyro and acc. meter values
94
 * standing still. They are used for adjusting the gyro and acc. meter values
95
 * to be centered on zero.
95
 * to be centered on zero.
96
 */
96
 */
97
volatile int16_t gyroOffset[3] = {
-
 
98
        512 * GYRO_SUMMATION_FACTOR_PITCHROLL,
97
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
99
        512 * GYRO_SUMMATION_FACTOR_PITCHROLL,
98
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
100
        512 * GYRO_SUMMATION_FACTOR_YAW
-
 
101
};
-
 
102
 
99
 
103
volatile int16_t accOffset[3] = {
-
 
104
        512 * ACC_SUMMATION_FACTOR_PITCHROLL,
100
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
105
        512 * ACC_SUMMATION_FACTOR_PITCHROLL,
101
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
106
        512 * ACC_SUMMATION_FACTOR_Z
-
 
107
};
-
 
Line 108... Line 102...
108
 
102
 
109
/*
103
/*
110
 * This allows some experimentation with the gyro filters.
104
 * This allows some experimentation with the gyro filters.
111
 * Should be replaced by #define's later on...
105
 * Should be replaced by #define's later on...
Line 174... Line 168...
174
 * re-enabling ADC, the real limit is (how much?) lower.
168
 * re-enabling ADC, the real limit is (how much?) lower.
175
 * The acc. sensor is sampled even if not used - or installed
169
 * The acc. sensor is sampled even if not used - or installed
176
 * at all. The cost is not significant.
170
 * at all. The cost is not significant.
177
 */
171
 */
Line 178... Line 172...
178
 
172
 
179
const uint8_t channelsForStates[] PROGMEM = {
-
 
180
  AD_GYRO_PITCH,
-
 
181
  AD_GYRO_ROLL,
173
const uint8_t channelsForStates[] PROGMEM = { AD_GYRO_PITCH, AD_GYRO_ROLL,
182
  AD_GYRO_YAW,
174
                AD_GYRO_YAW,
183
 
-
 
184
  AD_ACC_PITCH,
-
 
185
  AD_ACC_ROLL,
175
 
186
  AD_AIRPRESSURE,
176
                AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
187
 
-
 
188
  AD_GYRO_PITCH,
-
 
189
  AD_GYRO_ROLL,
177
 
190
  AD_ACC_Z,       // at 8, measure Z acc.
178
                AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
191
 
-
 
192
  AD_GYRO_PITCH,
-
 
193
  AD_GYRO_ROLL,
179
 
194
  AD_GYRO_YAW,    // at 11, finish yaw gyro
180
                AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
195
 
181
 
196
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
182
                AD_ACC_PITCH, // at 12, finish pitch axis acc.
197
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
183
                AD_ACC_ROLL, // at 13, finish roll axis acc.
198
  AD_AIRPRESSURE, // at 14, finish air pressure.
184
                AD_AIRPRESSURE, // at 14, finish air pressure.
199
 
185
 
200
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
186
                AD_GYRO_PITCH, // at 15, finish pitch gyro
201
  AD_GYRO_ROLL,   // at 16, finish roll gyro
187
                AD_GYRO_ROLL, // at 16, finish roll gyro
202
  AD_UBAT         // at 17, measure battery.
188
                AD_UBAT // at 17, measure battery.
Line 203... Line 189...
203
};
189
                };
204
 
190
 
Line 205... Line 191...
205
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
191
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
206
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
192
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
207
 
193
 
208
void analog_init(void) {
194
void analog_init(void) {
209
  uint8_t sreg = SREG;
195
        uint8_t sreg = SREG;
210
  // disable all interrupts before reconfiguration
196
        // disable all interrupts before reconfiguration
211
  cli();
197
        cli();
212
 
198
 
213
  //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
199
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
214
  DDRA = 0x00;
200
        DDRA = 0x00;
215
  PORTA = 0x00;
201
        PORTA = 0x00;
216
  // Digital Input Disable Register 0
202
        // Digital Input Disable Register 0
217
  // Disable digital input buffer for analog adc_channel pins
203
        // Disable digital input buffer for analog adc_channel pins
218
  DIDR0 = 0xFF;
204
        DIDR0 = 0xFF;
219
  // external reference, adjust data to the right
205
        // external reference, adjust data to the right
220
  ADMUX &= ~((1 << REFS1)|(1 << REFS0)|(1 << ADLAR));
206
        ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR));
221
  // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
207
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
222
  ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
208
        ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
-
 
209
        //Set ADC Control and Status Register A
223
  //Set ADC Control and Status Register A
210
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
224
  //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
211
        ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1
225
  ADCSRA = (0<<ADEN)|(0<<ADSC)|(0<<ADATE)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0)|(0<<ADIE);
212
                        << ADPS1) | (1 << ADPS0) | (0 << ADIE);
226
  //Set ADC Control and Status Register B
213
        //Set ADC Control and Status Register B
227
  //Trigger Source to Free Running Mode
214
        //Trigger Source to Free Running Mode
228
  ADCSRB &= ~((1 << ADTS2)|(1 << ADTS1)|(1 << ADTS0));
215
        ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));
229
  // Start AD conversion
216
        // Start AD conversion
230
  analog_start();
217
        analog_start();
Line -... Line 218...
-
 
218
        // restore global interrupt flags
231
  // restore global interrupt flags
219
        SREG = sreg;
232
  SREG = sreg;
220
}
233
}
221
 
234
 
222
void measureNoise(const int16_t sensor,
235
void measureNoise(const int16_t sensor, volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
223
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
236
  if (sensor > (int16_t)(*noiseMeasurement)) {
224
        if (sensor > (int16_t) (*noiseMeasurement)) {
237
    *noiseMeasurement = sensor;
225
                *noiseMeasurement = sensor;
238
  } else if (-sensor > (int16_t)(*noiseMeasurement)) {
226
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
239
    *noiseMeasurement = -sensor;
227
                *noiseMeasurement = -sensor;
240
  } else if (*noiseMeasurement > damping) {
228
        } else if (*noiseMeasurement > damping) {
241
    *noiseMeasurement -= damping;
229
                *noiseMeasurement -= damping;
Line 242... Line 230...
242
  } else {
230
        } else {
243
    *noiseMeasurement = 0;
231
                *noiseMeasurement = 0;
244
  }
232
        }
245
}
233
}
246
 
234
 
247
/*
235
/*
248
 * Min.: 0
236
 * Min.: 0
Line 249... Line 237...
249
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
237
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
250
 */
238
 */
251
uint16_t getSimplePressure(int advalue) {
239
uint16_t getSimplePressure(int advalue) {
252
  return (uint16_t)OCR0A * (uint16_t)rangewidth + advalue;
240
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
253
}
241
}
254
 
242
 
328
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 + 
447
                for (i = 0; i < 8; i++) {
329
        OCR0A = newrange;
-
 
330
      } else {
-
 
331
        if (OCR0A) {
-
 
332
          OCR0A--;
-
 
333
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
334
        }
-
 
335
      }
-
 
336
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
-
 
337
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
-
 
338
      // If near the end, make a limited increase
-
 
339
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
-
 
340
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
-
 
341
      pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
-
 
342
      OCR0A = newrange;
-
 
343
      } else {
-
 
Line 344... Line -...
344
        if (OCR0A<254) {
-
 
345
          OCR0A++;
-
 
346
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
347
        }
-
 
348
      }
-
 
349
    }
-
 
350
 
-
 
351
    // Even if the sample is off-range, use it.
-
 
352
    simpleAirPressure = getSimplePressure(rawAirPressure);
-
 
353
    DebugOut.Analog[27] = (uint16_t)OCR0A;
-
 
354
    DebugOut.Analog[31] = simpleAirPressure;
-
 
355
 
-
 
356
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
-
 
357
      // Danger: pressure near lower end of range. If the measurement saturates, the 
-
 
358
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
-
 
359
      airPressureSum += (int16_t)MIN_RANGES_EXTRAPOLATION * rangewidth + (simpleAirPressure - (int16_t)MIN_RANGES_EXTRAPOLATION * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
360
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
-
 
361
      // Danger: pressure near upper end of range. If the measurement saturates, the 
-
 
362
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
-
 
363
      airPressureSum += (int16_t)MAX_RANGES_EXTRAPOLATION * rangewidth + (simpleAirPressure - (int16_t)MAX_RANGES_EXTRAPOLATION * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
364
    } else {
-
 
365
      // normal case.
-
 
366
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
-
 
367
      // The 2 cases above (end of range) are ignored for this.
-
 
368
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
-
 
369
        airPressureSum += simpleAirPressure / 2;
-
 
370
      else
-
 
371
        airPressureSum += simpleAirPressure;
-
 
372
    }
-
 
373
 
-
 
374
    // 2 samples were added.
-
 
375
    pressureMeasurementCount += 2;
-
 
376
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
-
 
377
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER-1) + airPressureSum + AIRPRESSURE_FILTER/2) / AIRPRESSURE_FILTER;
-
 
378
      pressureMeasurementCount = airPressureSum = 0;
-
 
379
    }
-
 
380
 
-
 
381
    break;
-
 
382
 
-
 
383
  case 15:
-
 
384
  case 16: // pitch or roll gyro.
-
 
385
    axis = state - 16;
-
 
386
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
-
 
387
        // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
-
 
388
    /*
-
 
389
     * Process the gyro data for the PID controller.
-
 
390
     */
-
 
391
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
-
 
392
    //    gyro with a wider range, and helps counter saturation at full control.
-
 
393
 
-
 
394
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
-
 
395
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
-
 
396
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
-
 
397
      }
-
 
398
      else if (tempGyro > SENSOR_MAX_PITCHROLL) {
-
 
399
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
-
 
400
      }
-
 
401
    }
-
 
402
 
-
 
403
    // 2) Apply sign and offset, scale before filtering.
-
 
404
    if (GYRO_REVERSED[axis]) {
-
 
405
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
-
 
406
    } else {
-
 
407
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
408
    }
-
 
409
 
-
 
410
    // 3) Scale and filter.
-
 
411
    tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER-1) + tempOffsetGyro) / GYROS_PID_FILTER;
-
 
412
 
-
 
413
    // 4) Measure noise.
-
 
414
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
-
 
415
 
-
 
416
    // 5) Differential measurement. 
-
 
417
    gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER-1) + (tempOffsetGyro - gyro_PID[axis])) / GYROS_D_FILTER;
-
 
418
 
-
 
419
    // 6) Done.
-
 
420
    gyro_PID[axis] = tempOffsetGyro;
-
 
421
 
-
 
422
    /*
-
 
423
     * Now process the data for attitude angles.
-
 
424
     */
-
 
425
    tempGyro = rawGyroSum[axis];
-
 
426
   
-
 
427
    // 1) Apply sign and offset, scale before filtering.
-
 
428
    if (GYRO_REVERSED[axis]) {
-
 
429
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
-
 
430
    } else {
-
 
431
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
432
    }
-
 
433
   
-
 
434
    // 2) Filter.
-
 
435
    gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER-1) + tempOffsetGyro) / GYROS_ATT_FILTER;
-
 
436
    break;
-
 
437
   
-
 
438
  case 17:
-
 
439
    // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
-
 
440
    // This is divided by 3 --> 10.34 counts per volt.
-
 
441
    UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
-
 
442
    DebugOut.Analog[11] = UBat;
-
 
443
    analogDataReady = 1; // mark
-
 
444
    ADCycleCount++;
-
 
445
    // Stop the sampling. Cycle is over.
-
 
446
    state = 0;
-
 
447
    for (i=0; i<8; i++) {
448
                        sensorInputs[i] = 0;
448
      sensorInputs[i] = 0;
449
                }
449
    }
450
                break;
450
    break;
451
        default: {
451
  default: {} // do nothing.
452
        } // do nothing.
452
  }
453
        }
453
 
454
 
-
 
455
        // set up for next state.
454
  // set up for next state.
456
        ad_channel = pgm_read_byte(&channelsForStates[state]);
455
  ad_channel = pgm_read_byte(&channelsForStates[state]);
457
        // ad_channel = channelsForStates[state];
Line 456... Line 458...
456
  // ad_channel = channelsForStates[state];
458
 
457
     
459
        // set adc muxer to next ad_channel
458
  // set adc muxer to next ad_channel
460
        ADMUX = (ADMUX & 0xE0) | ad_channel;
459
  ADMUX = (ADMUX & 0xE0) | ad_channel;
461
        // after full cycle stop further interrupts
Line 460... Line 462...
460
  // after full cycle stop further interrupts
462
        if (state)
461
  if(state) analog_start();
463
                analog_start();
462
}
464
}
463
 
465
 
464
void analog_calibrate(void) {
466
void analog_calibrate(void) {
465
#define GYRO_OFFSET_CYCLES 32
467
#define GYRO_OFFSET_CYCLES 32
466
  uint8_t i, axis;
468
        uint8_t i, axis;
467
  int32_t deltaOffsets[3] = {0,0,0};
469
        int32_t deltaOffsets[3] = { 0, 0, 0 };
468
 
470
 
469
  // Set the filters... to be removed again, once some good settings are found.
471
        // Set the filters... to be removed again, once some good settings are found.
470
  GYROS_PID_FILTER = (dynamicParams.UserParams[4]   & 0b00000011)       + 1;
472
        GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
471
  GYROS_ATT_FILTER = ((dynamicParams.UserParams[4]  & 0b00001100) >> 2) + 1;
473
        GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
472
  GYROS_D_FILTER = ((dynamicParams.UserParams[4]    & 0b00110000) >> 4) + 1;
474
        GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
473
  ACC_FILTER = ((dynamicParams.UserParams[4]        & 0b11000000) >> 6) + 1;
-
 
474
 
475
        ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
475
  gyro_calibrate();
-
 
476
 
-
 
477
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
-
 
478
  for(i=0; i < GYRO_OFFSET_CYCLES; i++) {
-
 
479
    Delay_ms_Mess(20);
476
 
480
    for (axis=PITCH; axis<=YAW; axis++) {
-
 
481
      deltaOffsets[axis] += rawGyroSum[axis];
-
 
482
    }
-
 
483
  }
-
 
484
 
-
 
485
  for (axis=PITCH; axis<=YAW; axis++) {
-
 
486
    gyroOffset[axis] =  (deltaOffsets[axis] + GYRO_OFFSET_CYCLES/2) / GYRO_OFFSET_CYCLES;
-
 
487
    DebugOut.Analog[20+axis] = gyroOffset[axis];
-
 
488
  }
-
 
489
 
-
 
490
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
-
 
Line -... Line 477...
-
 
477
        gyro_calibrate();
-
 
478
 
-
 
479
        // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
-
 
480
        for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
-
 
481
                Delay_ms_Mess(20);
-
 
482
                for (axis = PITCH; axis <= YAW; axis++) {
-
 
483
                        deltaOffsets[axis] += rawGyroSum[axis];
-
 
484
                }
-
 
485
        }
-
 
486
 
-
 
487
        for (axis = PITCH; axis <= YAW; axis++) {
-
 
488
                gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2)
-
 
489
                                / GYRO_OFFSET_CYCLES;
-
 
490
                DebugOut.Analog[20 + axis] = gyroOffset[axis];
-
 
491
        }
-
 
492
 
-
 
493
        // Noise is relative to offset. So, reset noise measurements when changing offsets.
491
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
494
        gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
492
 
495
 
Line 493... Line 496...
493
  accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
496
        accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
494
  accOffset[ROLL]  = GetParamWord(PID_ACC_ROLL);
497
        accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
495
  accOffset[Z]     = GetParamWord(PID_ACC_Z);
498
        accOffset[Z] = GetParamWord(PID_ACC_Z);
Line 508... Line 511...
508
 * anyway. There would be nothing wrong with updating the variables
511
 * anyway. There would be nothing wrong with updating the variables
509
 * directly from here, though.
512
 * directly from here, though.
510
 */
513
 */
511
void analog_calibrateAcc(void) {
514
void analog_calibrateAcc(void) {
512
#define ACC_OFFSET_CYCLES 10
515
#define ACC_OFFSET_CYCLES 10
513
  uint8_t i, axis;
516
        uint8_t i, axis;
514
  int32_t deltaOffset[3] = {0,0,0};
517
        int32_t deltaOffset[3] = { 0, 0, 0 };
515
  int16_t filteredDelta;
518
        int16_t filteredDelta;
516
  // int16_t pressureDiff, savedRawAirPressure;
519
        // int16_t pressureDiff, savedRawAirPressure;
517
 
520
 
518
  for(i=0; i < ACC_OFFSET_CYCLES; i++) {
521
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
519
    Delay_ms_Mess(10);
522
                Delay_ms_Mess(10);
520
    for (axis=PITCH; axis<=YAW; axis++) {
523
                for (axis = PITCH; axis <= YAW; axis++) {
521
      deltaOffset[axis] += acc[axis];
524
                        deltaOffset[axis] += acc[axis];
522
    }
525
                }
523
  }
526
        }
524
 
527
 
525
  for (axis=PITCH; axis<=YAW; axis++) {
528
        for (axis = PITCH; axis <= YAW; axis++) {
526
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
529
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
-
 
530
                                / ACC_OFFSET_CYCLES;
527
    accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
531
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
528
  }
532
        }
529
 
533
 
530
  // Save ACC neutral settings to eeprom
534
        // Save ACC neutral settings to eeprom
531
  SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
535
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
532
  SetParamWord(PID_ACC_ROLL,  accOffset[ROLL]);
536
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
533
  SetParamWord(PID_ACC_Z,     accOffset[Z]);
537
        SetParamWord(PID_ACC_Z, accOffset[Z]);
534
 
538
 
535
  // Noise is relative to offset. So, reset noise measurements when
539
        // Noise is relative to offset. So, reset noise measurements when
536
  // changing offsets.
540
        // changing offsets.
537
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
541
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
538
 
542
 
539
  // Setting offset values has an influence in the analog.c ISR
543
        // Setting offset values has an influence in the analog.c ISR
540
  // Therefore run measurement for 100ms to achive stable readings
544
        // Therefore run measurement for 100ms to achive stable readings
541
  Delay_ms_Mess(100);
545
        Delay_ms_Mess(100);
542
 
546
 
543
  // Set the feedback so that air pressure ends up in the middle of the range.
547
        // Set the feedback so that air pressure ends up in the middle of the range.
544
  // (raw pressure high --> OCR0A also high...)
548
        // (raw pressure high --> OCR0A also high...)
545
  /*
549
        /*
546
  OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
550
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
547
  Delay_ms_Mess(1000);
551
         Delay_ms_Mess(1000);
548
 
552
 
549
  pressureDiff = 0;
553
         pressureDiff = 0;
550
  // DebugOut.Analog[16] = rawAirPressure;
554
         // DebugOut.Analog[16] = rawAirPressure;
551
 
555
 
552
#define PRESSURE_CAL_CYCLE_COUNT 5
556
         #define PRESSURE_CAL_CYCLE_COUNT 5
553
  for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
557
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
554
    savedRawAirPressure = rawAirPressure;
558
         savedRawAirPressure = rawAirPressure;
555
    OCR0A+=2;
559
         OCR0A+=2;
556
    Delay_ms_Mess(500);
560
         Delay_ms_Mess(500);
557
    // raw pressure will decrease.
561
         // raw pressure will decrease.
558
    pressureDiff += (savedRawAirPressure - rawAirPressure);
562
         pressureDiff += (savedRawAirPressure - rawAirPressure);
559
    savedRawAirPressure = rawAirPressure;
563
         savedRawAirPressure = rawAirPressure;
560
    OCR0A-=2;
564
         OCR0A-=2;
561
    Delay_ms_Mess(500);
565
         Delay_ms_Mess(500);
562
    // raw pressure will increase.
566
         // raw pressure will increase.
563
    pressureDiff += (rawAirPressure - savedRawAirPressure);
567
         pressureDiff += (rawAirPressure - savedRawAirPressure);
564
  }
568
         }
565
 
569
 
566
  rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
570
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
567
  DebugOut.Analog[27] = rangewidth;
571
         DebugOut.Analog[27] = rangewidth;
568
  */
572
         */
569
}
573
}