Subversion Repositories FlightCtrl

Rev

Rev 2164 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2164 Rev 2189
1
#include <avr/io.h>
1
#include <avr/io.h>
2
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
3
#include "eeprom.h"
-
 
4
#include "rc.h"
3
#include "timer2.h"
5
#include "attitude.h"
-
 
6
 
-
 
7
#define COARSERESOLUTION 1
-
 
8
 
-
 
9
#ifdef COARSERESOLUTION
-
 
10
#define NEUTRAL_PULSELENGTH 938
-
 
11
#define STABILIZATION_LOG_DIVIDER 6
-
 
12
#define SERVOLIMIT 500
-
 
13
#define SCALE_FACTOR 4
-
 
14
#define CS2 ((1<<CS21)|(1<<CS20))
-
 
-
 
4
 
-
 
5
#if (SERVO_RESOLUTION == COARSE)
15
 
6
#define CS2 ((1<<CS21)|(1<<CS20))
16
#else
-
 
17
 
-
 
18
#define NEUTRAL_PULSELENGTH 3750
-
 
19
#define STABILIZATION_LOG_DIVIDER 4
-
 
20
#define SERVOLIMIT 2000
-
 
21
#define SCALE_FACTOR 16
7
#else
22
#define CS2 (1<<CS21)
8
#define CS2 (1<<CS21)
23
#endif
9
#endif
24
 
-
 
25
#define MAX_SERVOS 8
10
 
26
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
-
 
27
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
-
 
28
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
11
#define FRAMELEN (PULSELENGTH_2200 * staticParams.servoCount + 128)
29
 
12
 
30
//volatile uint8_t servoActive = 0;
13
// volatile uint8_t servoActive = 0;
31
volatile uint8_t recalculateServoTimes = 0;
14
// volatile uint8_t recalculateServoTimes = 0;
32
volatile uint16_t servoValues[MAX_SERVOS];
-
 
33
volatile uint16_t previousManualValues[2];
15
volatile uint16_t pwmChannels[MAX_PWMCHANNELS];
34
 
16
 
35
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
17
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
36
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
18
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
37
 
19
 
38
/*****************************************************
20
/*****************************************************
39
 *              Initialize Timer 2
21
 *              Initialize Timer 2
40
 *****************************************************/
22
 *****************************************************/
41
void timer2_init(void) {
23
void timer2_init(void) {
42
    uint8_t sreg = SREG;
24
    uint8_t sreg = SREG;
43
 
25
 
44
    // disable all interrupts before reconfiguration
26
    // disable all interrupts before reconfiguration
45
    cli();
27
    cli();
46
 
28
 
47
    // set PD7 as output of the PWM for pitch servo
29
    // set PD7 as output of the PWM for pitch servo
48
    DDRD |= (1 << DDD7);
30
    DDRD |= (1 << DDD7);
49
    PORTD &= ~(1 << PORTD7); // set PD7 to low
31
    PORTD &= ~(1 << PORTD7); // set PD7 to low
50
 
32
 
51
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
33
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
52
    HEF4017R_ON; // enable reset
34
    HEF4017R_ON; // enable reset
53
 
35
 
54
    // Timer/Counter 2 Control Register A
36
    // Timer/Counter 2 Control Register A
55
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
37
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
56
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
38
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
57
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
39
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
58
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
40
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
59
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
41
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
60
 
42
 
61
    // Timer/Counter 2 Control Register B
43
    // Timer/Counter 2 Control Register B
62
 
44
 
63
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
45
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
64
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
46
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
65
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
47
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
66
 
48
 
67
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
49
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
68
    TCCR2B |= CS2;
50
    TCCR2B |= CS2;
69
 
51
 
70
    // Initialize the Timer/Counter 2 Register
52
    // Initialize the Timer/Counter 2 Register
71
    TCNT2 = 0;
53
    TCNT2 = 0;
72
 
54
 
73
    // Initialize the Output Compare Register A used for signal generation on port PD7.
55
    // Initialize the Output Compare Register A used for signal generation on port PD7.
74
    OCR2A = 255;
56
    OCR2A = 255;
75
 
57
 
76
    // Timer/Counter 2 Interrupt Mask Register
58
    // Timer/Counter 2 Interrupt Mask Register
77
    // Enable timer output compare match A Interrupt only
59
    // Enable timer output compare match A Interrupt only
78
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
60
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
79
    TIMSK2 |= (1 << OCIE2A);
61
    TIMSK2 |= (1 << OCIE2A);
80
 
-
 
81
    for (uint8_t axis=0; axis<2; axis++)
-
 
82
      previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR;
-
 
83
 
62
 
84
    SREG = sreg;
63
    SREG = sreg;
85
}
64
}
86
 
65
 
87
/*
66
/*
88
void servo_On(void) {
67
void servo_On(void) {
89
    servoActive = 1;
68
    servoActive = 1;
90
}
69
}
91
void servo_Off(void) {
70
void servo_Off(void) {
92
    servoActive = 0;
71
    servoActive = 0;
93
    HEF4017R_ON; // enable reset
72
    HEF4017R_ON; // enable reset
94
}
73
}
95
*/
74
*/
96
 
75
 
97
/*****************************************************
76
/*****************************************************
98
 * Control Servo Position
77
 * Control Servo Position
99
 *****************************************************/
78
 *****************************************************/
100
int16_t calculateStabilizedServoAxis(uint8_t axis) {
-
 
101
  int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about
-
 
102
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
-
 
103
  // That is a divisor of about 1<<14. Same conclusion as H&I.
-
 
104
  value *= staticParams.servoConfigurations[axis].stabilizationFactor;
-
 
105
  value = value >> 8;
-
 
106
  if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
-
 
107
    return -value;
-
 
108
  return value;
-
 
109
}
-
 
110
 
-
 
111
// With constant-speed limitation.
-
 
112
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
-
 
113
  int16_t diff = manualValue - previousManualValues[axis];
-
 
114
  uint8_t maxSpeed = staticParams.servoManualMaxSpeed;
-
 
115
  if (diff > maxSpeed) diff = maxSpeed;
-
 
116
  else if (diff < -maxSpeed) diff = -maxSpeed;
-
 
117
  manualValue = previousManualValues[axis] + diff;
-
 
118
  previousManualValues[axis] = manualValue;
-
 
119
  return manualValue;
-
 
120
}
-
 
121
 
-
 
122
// add stabilization and manual, apply soft position limits.
-
 
123
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
-
 
124
int16_t featuredServoValue(uint8_t axis) {
-
 
125
  int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR);
-
 
126
  value += calculateStabilizedServoAxis(axis);
-
 
127
  int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR;
-
 
128
  if (value < limit) value = limit;
-
 
129
  limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR;
-
 
130
  if (value > limit) value = limit;
-
 
131
  return value;
-
 
132
}
-
 
133
 
-
 
134
uint16_t servoValue(uint8_t axis) {
-
 
135
  int16_t value;
-
 
136
  if (axis<2) value = featuredServoValue(axis);
-
 
137
  else value = 128 * SCALE_FACTOR; // dummy. Replace by something useful for servos 3..8.
-
 
138
  // Shift out of the [0..255*SCALE_FACTOR] space
-
 
139
  value -= (128 * SCALE_FACTOR);
-
 
140
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
-
 
141
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
-
 
142
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
-
 
143
  return value + NEUTRAL_PULSELENGTH;
-
 
144
}
-
 
-
 
79
 
145
 
80
/*
146
void calculateServoValues(void) {
81
void calculateServoValues(void) {
147
  if (!recalculateServoTimes) return;
82
  if (!recalculateServoTimes) return;
148
  for (uint8_t axis=0; axis<MAX_SERVOS; axis++) {
83
  for (uint8_t axis=0; axis<MAX_SERVOS; axis++) {
149
    servoValues[axis] = servoValue(axis);
84
    servoValues[axis] = servoValue(axis);
150
  }
85
  }
151
  recalculateServoTimes = 0;
86
  recalculateServoTimes = 0;
152
}
87
}
153
 
88
*/
154
uint8_t servoMap[] = {2,3,0,1,4,5,6,7};
-
 
155
 
89
 
156
ISR(TIMER2_COMPA_vect) {
90
ISR(TIMER2_COMPA_vect) {
157
  static uint16_t remainingPulseTime;
91
  static uint16_t remainingPulseTime;
158
  static uint8_t servoIndex = 0;
92
  static uint8_t servoIndex = 0;
159
  static uint16_t sumOfPulseTimes = 0;
93
  static uint16_t sumOfPulseTimes = 0;
160
 
94
 
161
  if (!remainingPulseTime) {
95
  if (!remainingPulseTime) {
162
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
96
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
163
    if (servoIndex < staticParams.servoCount) {
97
    if (servoIndex < staticParams.servoCount) {
164
      // There are more signals to output.
98
      // There are more signals to output.
165
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoMap[servoIndex]]);
99
      sumOfPulseTimes += (remainingPulseTime = pwmChannels[servoIndex]); //pwmChannels[servoMap[servoIndex]]);
166
      servoIndex++;
100
      servoIndex++;
167
    } else {
101
    } else {
168
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
102
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
169
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
103
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
170
      sumOfPulseTimes = servoIndex = 0;
104
      sumOfPulseTimes = servoIndex = 0;
171
      recalculateServoTimes = 1;
-
 
172
      HEF4017R_ON;
105
      HEF4017R_ON;
173
    }
106
    }
174
  }
107
  }
175
 
108
 
176
  // Schedule the next OCR2A event. The counter is already reset at this time.
109
  // Schedule the next OCR2A event. The counter is already reset at this time.
177
  if (remainingPulseTime > 256+128) {
110
  if (remainingPulseTime > 256+128) {
178
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
111
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
179
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
112
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
180
    OCR2A = 255;
113
    OCR2A = 255;
181
    TCCR2A &= ~(1<<COM2A0);
114
    TCCR2A &= ~(1<<COM2A0);
182
    remainingPulseTime-=256;
115
    remainingPulseTime -= 256;
183
  } else if (remainingPulseTime > 256) {
116
  } else if (remainingPulseTime > 256) {
184
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
117
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
185
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
118
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
186
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
119
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
187
    remainingPulseTime-=128;
-
 
188
    OCR2A=127;
120
    OCR2A=127;
-
 
121
    remainingPulseTime -= 128;
189
  } else {
122
  } else {
190
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
123
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
191
    TCCR2A |= (1<<COM2A0);
124
    TCCR2A |= (1<<COM2A0);
192
    OCR2A = remainingPulseTime-1;
125
    OCR2A = remainingPulseTime-1;
193
    remainingPulseTime=0;
126
    remainingPulseTime = 0;
194
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
127
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
195
  }
128
  }
196
}
129
}
197
 
130