Subversion Repositories FlightCtrl

Rev

Rev 2069 | Rev 2164 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2069 Rev 2070
1
#include <avr/io.h>
1
#include <avr/io.h>
2
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
3
#include "eeprom.h"
3
#include "eeprom.h"
4
#include "rc.h"
4
#include "rc.h"
5
#include "attitude.h"
5
#include "attitude.h"
6
 
6
 
7
#define COARSERESOLUTION 1
7
#define COARSERESOLUTION 1
8
 
8
 
9
#ifdef COARSERESOLUTION
9
#ifdef COARSERESOLUTION
10
#define NEUTRAL_PULSELENGTH 938
10
#define NEUTRAL_PULSELENGTH 938
-
 
11
#define STABILIZATION_LOG_DIVIDER 6
11
#define SERVOLIMIT 500
12
#define SERVOLIMIT 500
12
#define SCALE_FACTOR 4
13
#define SCALE_FACTOR 4
13
#define CS2 ((1<<CS21)|(1<<CS20))
14
#define CS2 ((1<<CS21)|(1<<CS20))
14
 
15
 
15
#else
16
#else
16
 
17
 
17
#define NEUTRAL_PULSELENGTH 3750
18
#define NEUTRAL_PULSELENGTH 3750
-
 
19
#define STABILIZATION_LOG_DIVIDER 4
18
#define SERVOLIMIT 2000
20
#define SERVOLIMIT 2000
19
#define SCALE_FACTOR 16
21
#define SCALE_FACTOR 16
20
#define CS2 (1<<CS21)
22
#define CS2 (1<<CS21)
21
#endif
23
#endif
22
 
24
 
23
#define MAX_SERVOS 8
25
#define MAX_SERVOS 8
24
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
26
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
25
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
27
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
26
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
28
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
27
 
29
 
28
//volatile uint8_t servoActive = 0;
30
//volatile uint8_t servoActive = 0;
29
volatile uint8_t recalculateServoTimes = 0;
31
volatile uint8_t recalculateServoTimes = 0;
30
volatile uint16_t servoValues[MAX_SERVOS];
32
volatile uint16_t servoValues[MAX_SERVOS];
31
volatile uint16_t previousManualValues[2];
33
volatile uint16_t previousManualValues[2];
32
 
34
 
33
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
35
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
34
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
36
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
35
 
37
 
36
/*****************************************************
38
/*****************************************************
37
 *              Initialize Timer 2
39
 *              Initialize Timer 2
38
 *****************************************************/
40
 *****************************************************/
39
void timer2_init(void) {
41
void timer2_init(void) {
40
    uint8_t sreg = SREG;
42
    uint8_t sreg = SREG;
41
 
43
 
42
    // disable all interrupts before reconfiguration
44
    // disable all interrupts before reconfiguration
43
    cli();
45
    cli();
44
 
46
 
45
    // set PD7 as output of the PWM for pitch servo
47
    // set PD7 as output of the PWM for pitch servo
46
    DDRD |= (1 << DDD7);
48
    DDRD |= (1 << DDD7);
47
    PORTD &= ~(1 << PORTD7); // set PD7 to low
49
    PORTD &= ~(1 << PORTD7); // set PD7 to low
48
 
50
 
49
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
51
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
50
    HEF4017R_ON; // enable reset
52
    HEF4017R_ON; // enable reset
51
 
53
 
52
    // Timer/Counter 2 Control Register A
54
    // Timer/Counter 2 Control Register A
53
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
55
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
54
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
56
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
55
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
57
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
56
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
58
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
57
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
59
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
58
 
60
 
59
    // Timer/Counter 2 Control Register B
61
    // Timer/Counter 2 Control Register B
60
 
62
 
61
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
63
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
62
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
64
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
63
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
65
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
64
 
66
 
65
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
67
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
66
    TCCR2B |= CS2;
68
    TCCR2B |= CS2;
67
 
69
 
68
    // Initialize the Timer/Counter 2 Register
70
    // Initialize the Timer/Counter 2 Register
69
    TCNT2 = 0;
71
    TCNT2 = 0;
70
 
72
 
71
    // Initialize the Output Compare Register A used for signal generation on port PD7.
73
    // Initialize the Output Compare Register A used for signal generation on port PD7.
72
    OCR2A = 255;
74
    OCR2A = 255;
73
 
75
 
74
    // Timer/Counter 2 Interrupt Mask Register
76
    // Timer/Counter 2 Interrupt Mask Register
75
    // Enable timer output compare match A Interrupt only
77
    // Enable timer output compare match A Interrupt only
76
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
78
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
77
    TIMSK2 |= (1 << OCIE2A);
79
    TIMSK2 |= (1 << OCIE2A);
78
 
80
 
79
    for (uint8_t axis=0; axis<2; axis++)
81
    for (uint8_t axis=0; axis<2; axis++)
80
      previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR;
82
      previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR;
81
 
83
 
82
    SREG = sreg;
84
    SREG = sreg;
83
}
85
}
84
 
86
 
85
/*
87
/*
86
void servo_On(void) {
88
void servo_On(void) {
87
    servoActive = 1;
89
    servoActive = 1;
88
}
90
}
89
void servo_Off(void) {
91
void servo_Off(void) {
90
    servoActive = 0;
92
    servoActive = 0;
91
    HEF4017R_ON; // enable reset
93
    HEF4017R_ON; // enable reset
92
}
94
}
93
*/
95
*/
94
 
96
 
95
/*****************************************************
97
/*****************************************************
96
 * Control Servo Position
98
 * Control Servo Position
97
 *****************************************************/
99
 *****************************************************/
98
 
100
 
99
/*typedef struct {
101
/*typedef struct {
100
  uint8_t manualControl;
102
  uint8_t manualControl;
101
  uint8_t compensationFactor;
103
  uint8_t compensationFactor;
102
  uint8_t minValue;
104
  uint8_t minValue;
103
  uint8_t maxValue;
105
  uint8_t maxValue;
104
  uint8_t flags;
106
  uint8_t flags;
105
} servo_t;*/
107
} servo_t;*/
106
 
108
 
107
int16_t calculateStabilizedServoAxis(uint8_t axis) {
109
int16_t calculateStabilizedServoAxis(uint8_t axis) {
108
  int32_t value = attitude[axis] / 64L; // between -500000 to 500000 extreme limits. Just about
110
  int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about
109
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
111
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
110
  // That is a divisor of about 1<<14. Same conclusion as H&I.
112
  // That is a divisor of about 1<<14. Same conclusion as H&I.
111
  value *= staticParams.servoConfigurations[axis].stabilizationFactor;
113
  value *= staticParams.servoConfigurations[axis].stabilizationFactor;
112
  value /= 256L;
114
  value = value >> 8;
113
  if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
115
  if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
114
    return -value;
116
    return -value;
115
  return value;
117
  return value;
116
}
118
}
117
 
119
 
118
// With constant-speed limitation.
120
// With constant-speed limitation.
119
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
121
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
120
  int16_t diff = manualValue - previousManualValues[axis];
122
  int16_t diff = manualValue - previousManualValues[axis];
121
  uint8_t maxSpeed = staticParams.servoManualMaxSpeed;
123
  uint8_t maxSpeed = staticParams.servoManualMaxSpeed;
122
  if (diff > maxSpeed) diff = maxSpeed;
124
  if (diff > maxSpeed) diff = maxSpeed;
123
  else if (diff < -maxSpeed) diff = -maxSpeed;
125
  else if (diff < -maxSpeed) diff = -maxSpeed;
124
  manualValue = previousManualValues[axis] + diff;
126
  manualValue = previousManualValues[axis] + diff;
125
  previousManualValues[axis] = manualValue;
127
  previousManualValues[axis] = manualValue;
126
  return manualValue;
128
  return manualValue;
127
}
129
}
128
 
130
 
129
// add stabilization and manual, apply soft position limits.
131
// add stabilization and manual, apply soft position limits.
130
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
132
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
131
int16_t featuredServoValue(uint8_t axis) {
133
int16_t featuredServoValue(uint8_t axis) {
132
  int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR);
134
  int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR);
133
  value += calculateStabilizedServoAxis(axis);
135
  value += calculateStabilizedServoAxis(axis);
134
  int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR;
136
  int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR;
135
  if (value < limit) value = limit;
137
  if (value < limit) value = limit;
136
  limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR;
138
  limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR;
137
  if (value > limit) value = limit;
139
  if (value > limit) value = limit;
138
  return value;
140
  return value;
139
}
141
}
140
 
142
 
141
uint16_t servoValue(uint8_t axis) {
143
uint16_t servoValue(uint8_t axis) {
142
  int16_t value;
144
  int16_t value;
143
  if (axis<2) value = featuredServoValue(axis);
145
  if (axis<2) value = featuredServoValue(axis);
144
  else value = 128 * SCALE_FACTOR; // dummy. Replace by something useful for servos 3..8.
146
  else value = 128 * SCALE_FACTOR; // dummy. Replace by something useful for servos 3..8.
145
  // Shift out of the [0..255*SCALE_FACTOR] space
147
  // Shift out of the [0..255*SCALE_FACTOR] space
146
  value -= (128 * SCALE_FACTOR);
148
  value -= (128 * SCALE_FACTOR);
147
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
149
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
148
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
150
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
149
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
151
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
150
  return value + NEUTRAL_PULSELENGTH;
152
  return value + NEUTRAL_PULSELENGTH;
151
}
153
}
152
 
154
 
153
void calculateServoValues(void) {
155
void calculateServoValues(void) {
154
  if (!recalculateServoTimes) return;
156
  if (!recalculateServoTimes) return;
155
  for (uint8_t axis=0; axis<MAX_SERVOS; axis++) {
157
  for (uint8_t axis=0; axis<MAX_SERVOS; axis++) {
156
    servoValues[axis] = servoValue(axis);
158
    servoValues[axis] = servoValue(axis);
157
  }
159
  }
158
  recalculateServoTimes = 0;
160
  recalculateServoTimes = 0;
159
}
161
}
160
 
162
 
161
ISR(TIMER2_COMPA_vect) {
163
ISR(TIMER2_COMPA_vect) {
162
  static uint16_t remainingPulseTime;
164
  static uint16_t remainingPulseTime;
163
  static uint8_t servoIndex = 0;
165
  static uint8_t servoIndex = 0;
164
  static uint16_t sumOfPulseTimes = 0;
166
  static uint16_t sumOfPulseTimes = 0;
165
 
167
 
166
  if (!remainingPulseTime) {
168
  if (!remainingPulseTime) {
167
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
169
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
168
    if (servoIndex < staticParams.servoCount) {
170
    if (servoIndex < staticParams.servoCount) {
169
      // There are more signals to output.
171
      // There are more signals to output.
170
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
172
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
171
      servoIndex++;
173
      servoIndex++;
172
    } else {
174
    } else {
173
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
175
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
174
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
176
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
175
      sumOfPulseTimes = servoIndex = 0;
177
      sumOfPulseTimes = servoIndex = 0;
176
      recalculateServoTimes = 1;
178
      recalculateServoTimes = 1;
177
      HEF4017R_ON;
179
      HEF4017R_ON;
178
    }
180
    }
179
  }
181
  }
180
 
182
 
181
  // Schedule the next OCR2A event. The counter is already reset at this time.
183
  // Schedule the next OCR2A event. The counter is already reset at this time.
182
  if (remainingPulseTime > 256+128) {
184
  if (remainingPulseTime > 256+128) {
183
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
185
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
184
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
186
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
185
    OCR2A = 255;
187
    OCR2A = 255;
186
    TCCR2A &= ~(1<<COM2A0);
188
    TCCR2A &= ~(1<<COM2A0);
187
    remainingPulseTime-=256;
189
    remainingPulseTime-=256;
188
  } else if (remainingPulseTime > 256) {
190
  } else if (remainingPulseTime > 256) {
189
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
191
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
190
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
192
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
191
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
193
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
192
    remainingPulseTime-=128;
194
    remainingPulseTime-=128;
193
    OCR2A=127;
195
    OCR2A=127;
194
  } else {
196
  } else {
195
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
197
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
196
    TCCR2A |= (1<<COM2A0);
198
    TCCR2A |= (1<<COM2A0);
197
    OCR2A = remainingPulseTime-1;
199
    OCR2A = remainingPulseTime-1;
198
    remainingPulseTime=0;
200
    remainingPulseTime=0;
199
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
201
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
200
  }
202
  }
201
}
203
}
202
 
204