Subversion Repositories FlightCtrl

Rev

Rev 2117 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2117 Rev 2164
1
#include <avr/io.h>
1
#include <avr/io.h>
2
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
3
#include "eeprom.h"
3
#include "eeprom.h"
4
#include "rc.h"
4
#include "rc.h"
5
#include "attitude.h"
5
#include "attitude.h"
6
 
6
 
7
#define COARSERESOLUTION 1
7
#define COARSERESOLUTION 1
8
 
8
 
9
#ifdef COARSERESOLUTION
9
#ifdef COARSERESOLUTION
10
#define NEUTRAL_PULSELENGTH 938
10
#define NEUTRAL_PULSELENGTH 938
11
#define STABILIZATION_LOG_DIVIDER 6
11
#define STABILIZATION_LOG_DIVIDER 6
12
#define SERVOLIMIT 500
12
#define SERVOLIMIT 500
13
#define SCALE_FACTOR 4
13
#define SCALE_FACTOR 4
14
#define CS2 ((1<<CS21)|(1<<CS20))
14
#define CS2 ((1<<CS21)|(1<<CS20))
15
 
15
 
16
#else
16
#else
17
 
17
 
18
#define NEUTRAL_PULSELENGTH 3750
18
#define NEUTRAL_PULSELENGTH 3750
19
#define STABILIZATION_LOG_DIVIDER 4
19
#define STABILIZATION_LOG_DIVIDER 4
20
#define SERVOLIMIT 2000
20
#define SERVOLIMIT 2000
21
#define SCALE_FACTOR 16
21
#define SCALE_FACTOR 16
22
#define CS2 (1<<CS21)
22
#define CS2 (1<<CS21)
23
#endif
23
#endif
24
 
24
 
25
#define MAX_SERVOS 8
25
#define MAX_SERVOS 8
26
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
26
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
27
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
27
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
28
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
28
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
29
 
29
 
30
//volatile uint8_t servoActive = 0;
30
//volatile uint8_t servoActive = 0;
31
volatile uint8_t recalculateServoTimes = 0;
31
volatile uint8_t recalculateServoTimes = 0;
32
volatile uint16_t servoValues[MAX_SERVOS];
32
volatile uint16_t servoValues[MAX_SERVOS];
33
volatile uint16_t previousManualValues[2];
33
volatile uint16_t previousManualValues[2];
34
 
34
 
35
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
35
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
36
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
36
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
37
 
37
 
38
/*****************************************************
38
/*****************************************************
39
 *              Initialize Timer 2
39
 *              Initialize Timer 2
40
 *****************************************************/
40
 *****************************************************/
41
void timer2_init(void) {
41
void timer2_init(void) {
42
    uint8_t sreg = SREG;
42
    uint8_t sreg = SREG;
43
 
43
 
44
    // disable all interrupts before reconfiguration
44
    // disable all interrupts before reconfiguration
45
    cli();
45
    cli();
46
 
46
 
47
    // set PD7 as output of the PWM for pitch servo
47
    // set PD7 as output of the PWM for pitch servo
48
    DDRD |= (1 << DDD7);
48
    DDRD |= (1 << DDD7);
49
    PORTD &= ~(1 << PORTD7); // set PD7 to low
49
    PORTD &= ~(1 << PORTD7); // set PD7 to low
50
 
50
 
51
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
51
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
52
    HEF4017R_ON; // enable reset
52
    HEF4017R_ON; // enable reset
53
 
53
 
54
    // Timer/Counter 2 Control Register A
54
    // Timer/Counter 2 Control Register A
55
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
55
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
56
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
56
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
57
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
57
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
58
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
58
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
59
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
59
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
60
 
60
 
61
    // Timer/Counter 2 Control Register B
61
    // Timer/Counter 2 Control Register B
62
 
62
 
63
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
63
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
64
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
64
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
65
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
65
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
66
 
66
 
67
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
67
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
68
    TCCR2B |= CS2;
68
    TCCR2B |= CS2;
69
 
69
 
70
    // Initialize the Timer/Counter 2 Register
70
    // Initialize the Timer/Counter 2 Register
71
    TCNT2 = 0;
71
    TCNT2 = 0;
72
 
72
 
73
    // Initialize the Output Compare Register A used for signal generation on port PD7.
73
    // Initialize the Output Compare Register A used for signal generation on port PD7.
74
    OCR2A = 255;
74
    OCR2A = 255;
75
 
75
 
76
    // Timer/Counter 2 Interrupt Mask Register
76
    // Timer/Counter 2 Interrupt Mask Register
77
    // Enable timer output compare match A Interrupt only
77
    // Enable timer output compare match A Interrupt only
78
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
78
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
79
    TIMSK2 |= (1 << OCIE2A);
79
    TIMSK2 |= (1 << OCIE2A);
80
 
80
 
81
    for (uint8_t axis=0; axis<2; axis++)
81
    for (uint8_t axis=0; axis<2; axis++)
82
      previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR;
82
      previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR;
83
 
83
 
84
    SREG = sreg;
84
    SREG = sreg;
85
}
85
}
86
 
86
 
87
/*
87
/*
88
void servo_On(void) {
88
void servo_On(void) {
89
    servoActive = 1;
89
    servoActive = 1;
90
}
90
}
91
void servo_Off(void) {
91
void servo_Off(void) {
92
    servoActive = 0;
92
    servoActive = 0;
93
    HEF4017R_ON; // enable reset
93
    HEF4017R_ON; // enable reset
94
}
94
}
95
*/
95
*/
96
 
96
 
97
/*****************************************************
97
/*****************************************************
98
 * Control Servo Position
98
 * Control Servo Position
99
 *****************************************************/
99
 *****************************************************/
100
int16_t calculateStabilizedServoAxis(uint8_t axis) {
100
int16_t calculateStabilizedServoAxis(uint8_t axis) {
101
  int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about
101
  int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about
102
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
102
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
103
  // That is a divisor of about 1<<14. Same conclusion as H&I.
103
  // That is a divisor of about 1<<14. Same conclusion as H&I.
104
  value *= staticParams.servoConfigurations[axis].stabilizationFactor;
104
  value *= staticParams.servoConfigurations[axis].stabilizationFactor;
105
  value = value >> 8;
105
  value = value >> 8;
106
  if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
106
  if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
107
    return -value;
107
    return -value;
108
  return value;
108
  return value;
109
}
109
}
110
 
110
 
111
// With constant-speed limitation.
111
// With constant-speed limitation.
112
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
112
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
113
  int16_t diff = manualValue - previousManualValues[axis];
113
  int16_t diff = manualValue - previousManualValues[axis];
114
  uint8_t maxSpeed = staticParams.servoManualMaxSpeed;
114
  uint8_t maxSpeed = staticParams.servoManualMaxSpeed;
115
  if (diff > maxSpeed) diff = maxSpeed;
115
  if (diff > maxSpeed) diff = maxSpeed;
116
  else if (diff < -maxSpeed) diff = -maxSpeed;
116
  else if (diff < -maxSpeed) diff = -maxSpeed;
117
  manualValue = previousManualValues[axis] + diff;
117
  manualValue = previousManualValues[axis] + diff;
118
  previousManualValues[axis] = manualValue;
118
  previousManualValues[axis] = manualValue;
119
  return manualValue;
119
  return manualValue;
120
}
120
}
121
 
121
 
122
// add stabilization and manual, apply soft position limits.
122
// add stabilization and manual, apply soft position limits.
123
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
123
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
124
int16_t featuredServoValue(uint8_t axis) {
124
int16_t featuredServoValue(uint8_t axis) {
125
  int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR);
125
  int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR);
126
  value += calculateStabilizedServoAxis(axis);
126
  value += calculateStabilizedServoAxis(axis);
127
  int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR;
127
  int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR;
128
  if (value < limit) value = limit;
128
  if (value < limit) value = limit;
129
  limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR;
129
  limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR;
130
  if (value > limit) value = limit;
130
  if (value > limit) value = limit;
131
  return value;
131
  return value;
132
}
132
}
133
 
133
 
134
uint16_t servoValue(uint8_t axis) {
134
uint16_t servoValue(uint8_t axis) {
135
  int16_t value;
135
  int16_t value;
136
  if (axis<2) value = featuredServoValue(axis);
136
  if (axis<2) value = featuredServoValue(axis);
137
  else value = 128 * SCALE_FACTOR; // dummy. Replace by something useful for servos 3..8.
137
  else value = 128 * SCALE_FACTOR; // dummy. Replace by something useful for servos 3..8.
138
  // Shift out of the [0..255*SCALE_FACTOR] space
138
  // Shift out of the [0..255*SCALE_FACTOR] space
139
  value -= (128 * SCALE_FACTOR);
139
  value -= (128 * SCALE_FACTOR);
140
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
140
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
141
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
141
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
142
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
142
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
143
  return value + NEUTRAL_PULSELENGTH;
143
  return value + NEUTRAL_PULSELENGTH;
144
}
144
}
145
 
145
 
146
void calculateServoValues(void) {
146
void calculateServoValues(void) {
147
  if (!recalculateServoTimes) return;
147
  if (!recalculateServoTimes) return;
148
  for (uint8_t axis=0; axis<MAX_SERVOS; axis++) {
148
  for (uint8_t axis=0; axis<MAX_SERVOS; axis++) {
149
    servoValues[axis] = servoValue(axis);
149
    servoValues[axis] = servoValue(axis);
150
  }
150
  }
151
  recalculateServoTimes = 0;
151
  recalculateServoTimes = 0;
152
}
152
}
-
 
153
 
-
 
154
uint8_t servoMap[] = {2,3,0,1,4,5,6,7};
153
 
155
 
154
ISR(TIMER2_COMPA_vect) {
156
ISR(TIMER2_COMPA_vect) {
155
  static uint16_t remainingPulseTime;
157
  static uint16_t remainingPulseTime;
156
  static uint8_t servoIndex = 0;
158
  static uint8_t servoIndex = 0;
157
  static uint16_t sumOfPulseTimes = 0;
159
  static uint16_t sumOfPulseTimes = 0;
158
 
160
 
159
  if (!remainingPulseTime) {
161
  if (!remainingPulseTime) {
160
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
162
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
161
    if (servoIndex < staticParams.servoCount) {
163
    if (servoIndex < staticParams.servoCount) {
162
      // There are more signals to output.
164
      // There are more signals to output.
163
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
165
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoMap[servoIndex]]);
164
      servoIndex++;
166
      servoIndex++;
165
    } else {
167
    } else {
166
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
168
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
167
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
169
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
168
      sumOfPulseTimes = servoIndex = 0;
170
      sumOfPulseTimes = servoIndex = 0;
169
      recalculateServoTimes = 1;
171
      recalculateServoTimes = 1;
170
      HEF4017R_ON;
172
      HEF4017R_ON;
171
    }
173
    }
172
  }
174
  }
173
 
175
 
174
  // Schedule the next OCR2A event. The counter is already reset at this time.
176
  // Schedule the next OCR2A event. The counter is already reset at this time.
175
  if (remainingPulseTime > 256+128) {
177
  if (remainingPulseTime > 256+128) {
176
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
178
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
177
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
179
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
178
    OCR2A = 255;
180
    OCR2A = 255;
179
    TCCR2A &= ~(1<<COM2A0);
181
    TCCR2A &= ~(1<<COM2A0);
180
    remainingPulseTime-=256;
182
    remainingPulseTime-=256;
181
  } else if (remainingPulseTime > 256) {
183
  } else if (remainingPulseTime > 256) {
182
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
184
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
183
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
185
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
184
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
186
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
185
    remainingPulseTime-=128;
187
    remainingPulseTime-=128;
186
    OCR2A=127;
188
    OCR2A=127;
187
  } else {
189
  } else {
188
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
190
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
189
    TCCR2A |= (1<<COM2A0);
191
    TCCR2A |= (1<<COM2A0);
190
    OCR2A = remainingPulseTime-1;
192
    OCR2A = remainingPulseTime-1;
191
    remainingPulseTime=0;
193
    remainingPulseTime=0;
192
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
194
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
193
  }
195
  }
194
}
196
}
195
 
197