Subversion Repositories FlightCtrl

Rev

Rev 2052 | Rev 2055 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2052 Rev 2053
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
 
51
 
52
#include <stdlib.h>
52
#include <stdlib.h>
53
#include <avr/io.h>
53
#include <avr/io.h>
54
#include "eeprom.h"
54
#include "eeprom.h"
55
#include "flight.h"
55
#include "flight.h"
56
#include "output.h"
56
#include "output.h"
57
#include "uart0.h"
57
#include "uart0.h"
58
 
58
 
59
// Necessary for external control and motor test
59
// Necessary for external control and motor test
60
#include "twimaster.h"
60
#include "twimaster.h"
61
#include "attitude.h"
61
#include "attitude.h"
62
#include "controlMixer.h"
62
#include "controlMixer.h"
63
#include "commands.h"
63
#include "commands.h"
64
#include "heightControl.h"
64
#include "heightControl.h"
65
 
65
 
66
#ifdef USE_MK3MAG
66
#ifdef USE_MK3MAG
67
#include "mk3mag.h"
67
#include "mk3mag.h"
68
#include "compassControl.h"
68
#include "compassControl.h"
69
#endif
69
#endif
70
 
70
 
71
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
71
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
72
 
72
 
73
/*
73
/*
74
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
74
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
75
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
75
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
76
 */
76
 */
77
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
77
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
78
 
78
 
79
uint8_t gyroPFactor, gyroIFactor; // the PD factors for the attitude control
79
uint8_t gyroPFactor, gyroIFactor; // the PD factors for the attitude control
80
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
80
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
81
 
-
 
82
// Some integral weight constant...
-
 
83
uint16_t Ki = 10300 / 33;
81
uint8_t invKi = 64;
84
 
82
 
85
/************************************************************************/
83
/************************************************************************/
86
/*  Filter for motor value smoothing (necessary???)                     */
84
/*  Filter for motor value smoothing (necessary???)                     */
87
/************************************************************************/
85
/************************************************************************/
88
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
86
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
89
  switch (staticParams.motorSmoothing) {
87
  switch (staticParams.motorSmoothing) {
90
  case 0:
88
  case 0:
91
    return newvalue;
89
    return newvalue;
92
  case 1:
90
  case 1:
93
    return (oldvalue + newvalue) / 2;
91
    return (oldvalue + newvalue) / 2;
94
  case 2:
92
  case 2:
95
    if (newvalue > oldvalue)
93
    if (newvalue > oldvalue)
96
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
94
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
97
    else
95
    else
98
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
96
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
99
  case 3:
97
  case 3:
100
    if (newvalue < oldvalue)
98
    if (newvalue < oldvalue)
101
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
99
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
102
    else
100
    else
103
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
101
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
104
  default:
102
  default:
105
    return newvalue;
103
    return newvalue;
106
  }
104
  }
107
}
105
}
108
 
106
 
109
/************************************************************************/
107
/************************************************************************/
110
/*  Neutral Readings                                                    */
108
/*  Neutral Readings                                                    */
111
/************************************************************************/
109
/************************************************************************/
112
void flight_setNeutral() {
110
void flight_setNeutral() {
113
  MKFlags |= MKFLAG_CALIBRATE;
111
  MKFlags |= MKFLAG_CALIBRATE;
114
  // not really used here any more.
112
  // not really used here any more.
115
  /*
113
  /*
116
  dynamicParams.KalmanK = -1;
114
  dynamicParams.KalmanK = -1;
117
  dynamicParams.KalmanMaxDrift = 0;
115
  dynamicParams.KalmanMaxDrift = 0;
118
  dynamicParams.KalmanMaxFusion = 32;
116
  dynamicParams.KalmanMaxFusion = 32;
119
  */
117
  */
120
  controlMixer_initVariables();
118
  controlMixer_initVariables();
121
}
119
}
122
 
120
 
123
void setFlightParameters(uint8_t _Ki, uint8_t _gyroPFactor,
121
void setFlightParameters(uint8_t _invKi, uint8_t _gyroPFactor,
124
    uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
122
    uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
125
  Ki = 10300 / _Ki;
123
  invKi = _invKi;
126
  gyroPFactor = _gyroPFactor;
124
  gyroPFactor = _gyroPFactor;
127
  gyroIFactor = _gyroIFactor;
125
  gyroIFactor = _gyroIFactor;
128
  yawPFactor = _yawPFactor;
126
  yawPFactor = _yawPFactor;
129
  yawIFactor = _yawIFactor;
127
  yawIFactor = _yawIFactor;
130
}
128
}
131
 
129
 
132
void setNormalFlightParameters(void) {
130
void setNormalFlightParameters(void) {
133
  setFlightParameters(
131
  setFlightParameters(
134
                      staticParams.IFactor,
132
                      staticParams.IFactor,
135
                      dynamicParams.gyroP,
133
                      dynamicParams.gyroP,
136
                      staticParams.bitConfig & CFG_HEADING_HOLD ? 0 : dynamicParams.gyroI,
134
                      staticParams.bitConfig & CFG_HEADING_HOLD ? 0 : dynamicParams.gyroI,
137
                      dynamicParams.gyroP,
135
                      dynamicParams.gyroP,
138
                      staticParams.yawIFactor
136
                      staticParams.yawIFactor
139
                      );
137
                      );
140
}
138
}
141
 
139
 
142
void setStableFlightParameters(void) {
140
void setStableFlightParameters(void) {
143
  setFlightParameters(33, 90, 120, 90, 120);
141
  setFlightParameters(0, 90, 120, 90, 120);
144
}
142
}
145
 
143
 
146
/************************************************************************/
144
/************************************************************************/
147
/*  Main Flight Control                                                 */
145
/*  Main Flight Control                                                 */
148
/************************************************************************/
146
/************************************************************************/
149
void flight_control(void) {
147
void flight_control(void) {
150
  int16_t tmp_int;
148
  uint16_t tmp_int;
151
  // Mixer Fractions that are combined for Motor Control
149
  // Mixer Fractions that are combined for Motor Control
152
  int16_t yawTerm, throttleTerm, term[2];
150
  int16_t yawTerm, throttleTerm, term[2];
153
 
151
 
154
  // PID controller variables
152
  // PID controller variables
155
  int16_t PDPart[2],/* DPart[2],*/ PDPartYaw /*, DPartYaw */;
153
  int16_t PDPart;
156
  static int32_t IPart[2] = {0, 0};
154
  static int32_t IPart[2] = {0, 0};
157
  static uint16_t emergencyFlightTime;
155
  static uint16_t emergencyFlightTime;
158
  static int8_t debugDataTimer = 1;
156
  static int8_t debugDataTimer = 1;
159
 
157
 
160
  // High resolution motor values for smoothing of PID motor outputs
158
  // High resolution motor values for smoothing of PID motor outputs
161
  static int16_t motorFilters[MAX_MOTORS];
159
  static int16_t motorFilters[MAX_MOTORS];
162
 
160
 
163
  uint8_t i, axis;
161
  uint8_t i, axis;
164
 
162
 
165
  throttleTerm = controls[CONTROL_THROTTLE];
163
  throttleTerm = controls[CONTROL_THROTTLE];
166
 
164
 
167
  // This check removed. Is done on a per-motor basis, after output matrix multiplication.
165
  // This check removed. Is done on a per-motor basis, after output matrix multiplication.
168
  if (throttleTerm < staticParams.minThrottle + 10)
166
  if (throttleTerm < staticParams.minThrottle + 10)
169
    throttleTerm = staticParams.minThrottle + 10;
167
    throttleTerm = staticParams.minThrottle + 10;
170
  else if (throttleTerm > staticParams.maxThrottle - 20)
168
  else if (throttleTerm > staticParams.maxThrottle - 20)
171
    throttleTerm = (staticParams.maxThrottle - 20);
169
    throttleTerm = (staticParams.maxThrottle - 20);
172
 
170
 
173
  /************************************************************************/
171
  /************************************************************************/
174
  /* RC-signal is bad                                                     */
172
  /* RC-signal is bad                                                     */
175
  /* This part could be abstracted, as having yet another control input   */
173
  /* This part could be abstracted, as having yet another control input   */
176
  /* to the control mixer: An emergency autopilot control.                */
174
  /* to the control mixer: An emergency autopilot control.                */
177
  /************************************************************************/
175
  /************************************************************************/
178
 
176
 
179
  if (controlMixer_getSignalQuality() <= SIGNAL_BAD) { // the rc-frame signal is not reveived or noisy
177
  if (controlMixer_getSignalQuality() <= SIGNAL_BAD) { // the rc-frame signal is not reveived or noisy
180
    if (controlMixer_didReceiveSignal) beepRCAlarm();  // Only make alarm if a control signal was received before the signal loss.
178
    if (controlMixer_didReceiveSignal) beepRCAlarm();  // Only make alarm if a control signal was received before the signal loss.
181
    if (emergencyFlightTime) {
179
    if (emergencyFlightTime) {
182
      // continue emergency flight
180
      // continue emergency flight
183
      emergencyFlightTime--;
181
      emergencyFlightTime--;
184
      if (isFlying > 256) {
182
      if (isFlying > 256) {
185
        // We're probably still flying. Descend slowly.
183
        // We're probably still flying. Descend slowly.
186
        throttleTerm = staticParams.emergencyThrottle; // Set emergency throttle
184
        throttleTerm = staticParams.emergencyThrottle; // Set emergency throttle
187
        MKFlags |= (MKFLAG_EMERGENCY_FLIGHT); // Set flag for emergency landing
185
        MKFlags |= (MKFLAG_EMERGENCY_FLIGHT); // Set flag for emergency landing
188
        setStableFlightParameters();
186
        setStableFlightParameters();
189
      } else {
187
      } else {
190
        MKFlags &= ~(MKFLAG_MOTOR_RUN); // Probably not flying, and bad R/C signal. Kill motors.
188
        MKFlags &= ~(MKFLAG_MOTOR_RUN); // Probably not flying, and bad R/C signal. Kill motors.
191
      }
189
      }
192
    } else {
190
    } else {
193
      // end emergency flight (just cut the motors???)
191
      // end emergency flight (just cut the motors???)
194
      MKFlags &= ~(MKFLAG_MOTOR_RUN | MKFLAG_EMERGENCY_FLIGHT);
192
      MKFlags &= ~(MKFLAG_MOTOR_RUN | MKFLAG_EMERGENCY_FLIGHT);
195
    }
193
    }
196
  } else {
194
  } else {
197
    // signal is acceptable
195
    // signal is acceptable
198
    if (controlMixer_getSignalQuality() > SIGNAL_BAD) {
196
    if (controlMixer_getSignalQuality() > SIGNAL_BAD) {
199
      // Reset emergency landing control variables.
197
      // Reset emergency landing control variables.
200
      MKFlags &= ~(MKFLAG_EMERGENCY_FLIGHT); // clear flag for emergency landing
198
      MKFlags &= ~(MKFLAG_EMERGENCY_FLIGHT); // clear flag for emergency landing
201
      // The time is in whole seconds.
199
      // The time is in whole seconds.
202
      if (staticParams.emergencyFlightDuration > (65535-F_MAINLOOP)/F_MAINLOOP)
200
      if (staticParams.emergencyFlightDuration > (65535-F_MAINLOOP)/F_MAINLOOP)
203
        emergencyFlightTime = 0xffff;
201
        emergencyFlightTime = 0xffff;
204
      else
202
      else
205
        emergencyFlightTime = (uint16_t)staticParams.emergencyFlightDuration * F_MAINLOOP;
203
        emergencyFlightTime = (uint16_t)staticParams.emergencyFlightDuration * F_MAINLOOP;
206
    }
204
    }
207
 
205
 
208
    // If some throttle is given, and the motor-run flag is on, increase the probability that we are flying.
206
    // If some throttle is given, and the motor-run flag is on, increase the probability that we are flying.
209
    if (throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
207
    if (throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
210
      // increment flight-time counter until overflow.
208
      // increment flight-time counter until overflow.
211
      if (isFlying != 0xFFFF)
209
      if (isFlying != 0xFFFF)
212
        isFlying++;
210
        isFlying++;
213
    } else
211
    } else
214
    /*
212
    /*
215
     * When standing on the ground, do not apply I controls and zero the yaw stick.
213
     * When standing on the ground, do not apply I controls and zero the yaw stick.
216
     * Probably to avoid integration effects that will cause the copter to spin
214
     * Probably to avoid integration effects that will cause the copter to spin
217
     * or flip when taking off.
215
     * or flip when taking off.
218
     */
216
     */
219
      if (isFlying < 256) {
217
    if (isFlying < 256) {
220
        IPart[PITCH] = IPart[ROLL] = 0;
218
      IPart[PITCH] = IPart[ROLL] = 0;
221
        PDPartYaw = 0;
-
 
222
        if (isFlying == 250) {
219
        if (isFlying == 250) {
223
          HC_setGround();
220
          HC_setGround();
224
#ifdef USE_MK3MAG
221
#ifdef USE_MK3MAG
225
          attitude_resetHeadingToMagnetic();
222
          attitude_resetHeadingToMagnetic();
226
          compass_setTakeoffHeading(heading);
223
          compass_setTakeoffHeading(heading);
227
#endif
224
#endif
228
          // Set target heading to the one just gotten off compass.
225
          // Set target heading to the one just gotten off compass.
229
          // targetHeading = heading;
226
          // targetHeading = heading;
230
        }
227
        }
231
      } else {
228
   } else {
232
        // Set fly flag. TODO: Hmmm what can we trust - the isFlying counter or the flag?
229
   // Set fly flag. TODO: Hmmm what can we trust - the isFlying counter or the flag?
233
        // Answer: The counter. The flag is not read from anywhere anyway... except the NC maybe.
230
   // Answer: The counter. The flag is not read from anywhere anyway... except the NC maybe.
234
        MKFlags |= (MKFLAG_FLY);
231
     MKFlags |= (MKFLAG_FLY);
235
      }
232
   }
236
   
233
   
237
    commands_handleCommands();
234
    commands_handleCommands();
238
    setNormalFlightParameters();
235
    setNormalFlightParameters();
239
  } // end else (not bad signal case)
236
  } // end else (not bad signal case)
240
 
-
 
241
#if defined (USE_NAVICTRL)
-
 
242
  /************************************************************************/
-
 
243
  /* GPS is currently not supported.                                      */
-
 
244
  /************************************************************************/
-
 
245
  if(staticParams.GlobalConfig & CFG_GPS_ENABLED) {
-
 
246
    GPS_Main();
-
 
247
    MKFlags &= ~(MKFLAG_CALIBRATE | MKFLAG_START);
-
 
248
  } else {
-
 
249
  }
-
 
250
#endif
237
 
251
  // end part 1: 750-800 usec.
238
  // end part 1: 750-800 usec.
252
  // start part 3: 350 - 400 usec.
-
 
253
  /************************************************************************/
-
 
254
 
-
 
255
  /* Calculate control feedback from angle (gyro integral)                */
-
 
256
  /* and angular velocity (gyro signal)                                   */
-
 
257
  /************************************************************************/
-
 
258
  // The P-part is the P of the PID controller. That's the angle integrals (not rates).
-
 
259
  for (axis = PITCH; axis <= ROLL; axis++) {
-
 
260
    PDPart[axis] = attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 2); // P-Part - Proportional to Integral
-
 
261
    PDPart[axis] += (int32_t)rate_PID[axis] * gyroPFactor / (GYRO_DEG_FACTOR_PITCHROLL >> 5);
-
 
262
    PDPart[axis] += (differential[axis] * (int16_t) dynamicParams.gyroD) / 16;
-
 
263
 
-
 
264
    //CHECK_MIN_MAX(PDPart[axis], -6L*GYRO_DEG_FACTOR_PITCHROLL, 6L*GYRO_DEG_FACTOR_PITCHROLL);
-
 
265
    if (PDPart[axis] < -6L*GYRO_DEG_FACTOR_PITCHROLL) {
-
 
266
      PDPart[axis] =- 6L*GYRO_DEG_FACTOR_PITCHROLL;
-
 
267
      debugOut.digital[0] |= DEBUG_FLIGHTCLIP;
-
 
268
    } else if (PDPart[axis] > 6L*GYRO_DEG_FACTOR_PITCHROLL) {
-
 
269
      PDPart[axis] = 6L*GYRO_DEG_FACTOR_PITCHROLL;
-
 
270
      debugOut.digital[0] |= DEBUG_FLIGHTCLIP;
-
 
271
    }
-
 
272
  }
-
 
273
 
239
  // start part 3: 350 - 400 usec.
274
#define YAW_I_LIMIT (45L * GYRO_DEG_FACTOR_YAW)
240
#define YAW_I_LIMIT (45L * GYRO_DEG_FACTOR_YAW)
275
  // This is where control affects the target heading. It also (later) directly controls yaw.
241
  // This is where control affects the target heading. It also (later) directly controls yaw.
276
  headingError -= controls[CONTROL_YAW];
242
  headingError -= controls[CONTROL_YAW];
277
  debugOut.analog[28] = headingError / 100;
243
  debugOut.analog[28] = headingError / 100;
278
  if (headingError < -YAW_I_LIMIT) headingError = -YAW_I_LIMIT;
244
  if (headingError < -YAW_I_LIMIT) headingError = -YAW_I_LIMIT;
279
  if (headingError > YAW_I_LIMIT) headingError = YAW_I_LIMIT;
245
  if (headingError > YAW_I_LIMIT) headingError = YAW_I_LIMIT;
280
 
246
 
281
  PDPartYaw =  (int32_t)(headingError * yawIFactor) / (GYRO_DEG_FACTOR_PITCHROLL << 3);
247
  PDPart =  (int32_t)(headingError * yawIFactor) / (GYRO_DEG_FACTOR_YAW << 4);
282
  // Ehhhhh here is something with desired yaw rate, not?? Ahh OK it gets added in later on.
248
  // Ehhhhh here is something with desired yaw rate, not?? Ahh OK it gets added in later on.
283
  PDPartYaw += (int32_t)(yawRate * yawPFactor) /  (GYRO_DEG_FACTOR_PITCHROLL >> 6);
-
 
284
 
-
 
285
  // limit control feedback
-
 
286
  // CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);
249
  PDPart += (int32_t)(yawRate * yawPFactor) /  (GYRO_DEG_FACTOR_YAW >> 5);
287
 
250
 
288
  /*
251
  /*
289
   * Compose throttle term.
252
   * Compose throttle term.
290
   * If a Bl-Ctrl is missing, prevent takeoff.
253
   * If a Bl-Ctrl is missing, prevent takeoff.
291
   */
254
   */
292
  if (missingMotor) {
255
  if (missingMotor) {
293
    // if we are in the lift off condition. Hmmmmmm when is throttleTerm == 0 anyway???
256
    // if we are in the lift off condition. Hmmmmmm when is throttleTerm == 0 anyway???
294
    if (isFlying > 1 && isFlying < 50 && throttleTerm > 0)
257
    if (isFlying > 1 && isFlying < 50 && throttleTerm > 0)
295
      isFlying = 1; // keep within lift off condition
258
      isFlying = 1; // keep within lift off condition
296
    throttleTerm = staticParams.minThrottle; // reduce gas to min to avoid lift of
259
    throttleTerm = staticParams.minThrottle; // reduce gas to min to avoid lift of
297
  }
260
  }
298
 
261
 
299
  // Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
262
  // Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
300
  throttleTerm *= CONTROL_SCALING;
263
  throttleTerm *= CONTROL_SCALING;
301
 
264
 
302
  /*
265
  /*
303
   * Compose yaw term.
266
   * Compose yaw term.
304
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
267
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
305
   * However, at low throttle the yaw term is limited to a fixed value,
268
   * However, at low throttle the yaw term is limited to a fixed value,
306
   * and at high throttle it is limited by the throttle reserve (the difference
269
   * and at high throttle it is limited by the throttle reserve (the difference
307
   * between current throttle and maximum throttle).
270
   * between current throttle and maximum throttle).
308
   */
271
   */
309
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
272
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
310
  yawTerm = PDPartYaw - controls[CONTROL_YAW] * CONTROL_SCALING;
273
  yawTerm = PDPart - controls[CONTROL_YAW] * CONTROL_SCALING;
311
  // Limit yawTerm
274
  // Limit yawTerm
312
  debugOut.digital[0] &= ~DEBUG_CLIP;
275
  debugOut.digital[0] &= ~DEBUG_CLIP;
313
  if (throttleTerm > MIN_YAWGAS) {
276
  if (throttleTerm > MIN_YAWGAS) {
314
    if (yawTerm < -throttleTerm / 2) {
277
    if (yawTerm < -throttleTerm / 2) {
315
      debugOut.digital[0] |= DEBUG_CLIP;
278
      debugOut.digital[0] |= DEBUG_CLIP;
316
      yawTerm = -throttleTerm / 2;
279
      yawTerm = -throttleTerm / 2;
317
    } else if (yawTerm > throttleTerm / 2) {
280
    } else if (yawTerm > throttleTerm / 2) {
318
      debugOut.digital[0] |= DEBUG_CLIP;
281
      debugOut.digital[0] |= DEBUG_CLIP;
319
      yawTerm = throttleTerm / 2;
282
      yawTerm = throttleTerm / 2;
320
    }
283
    }
321
  } else {
284
  } else {
322
    if (yawTerm < -MIN_YAWGAS / 2) {
285
    if (yawTerm < -MIN_YAWGAS / 2) {
323
      debugOut.digital[0] |= DEBUG_CLIP;
286
      debugOut.digital[0] |= DEBUG_CLIP;
324
      yawTerm = -MIN_YAWGAS / 2;
287
      yawTerm = -MIN_YAWGAS / 2;
325
    } else if (yawTerm > MIN_YAWGAS / 2) {
288
    } else if (yawTerm > MIN_YAWGAS / 2) {
326
      debugOut.digital[0] |= DEBUG_CLIP;
289
      debugOut.digital[0] |= DEBUG_CLIP;
327
      yawTerm = MIN_YAWGAS / 2;
290
      yawTerm = MIN_YAWGAS / 2;
328
    }
291
    }
329
  }
292
  }
330
 
293
 
331
  tmp_int = staticParams.maxThrottle * CONTROL_SCALING;
294
  tmp_int = staticParams.maxThrottle * CONTROL_SCALING;
332
  if (yawTerm < -(tmp_int - throttleTerm)) {
295
  if (yawTerm < -(tmp_int - throttleTerm)) {
333
    yawTerm = -(tmp_int - throttleTerm);
296
    yawTerm = -(tmp_int - throttleTerm);
334
    debugOut.digital[0] |= DEBUG_CLIP;
297
    debugOut.digital[0] |= DEBUG_CLIP;
335
  } else if (yawTerm > (tmp_int - throttleTerm)) {
298
  } else if (yawTerm > (tmp_int - throttleTerm)) {
336
    yawTerm = (tmp_int - throttleTerm);
299
    yawTerm = (tmp_int - throttleTerm);
337
    debugOut.digital[0] |= DEBUG_CLIP;
300
    debugOut.digital[0] |= DEBUG_CLIP;
338
  }
301
  }
339
 
-
 
340
  // CHECK_MIN_MAX(yawTerm, -(tmp_int - throttleTerm), (tmp_int - throttleTerm));
302
 
-
 
303
  debugOut.digital[1] &= ~DEBUG_CLIP;
-
 
304
 
-
 
305
  tmp_int = ((uint16_t)dynamicParams.dynamicStability * ((uint16_t)throttleTerm + abs(yawTerm) / 2)) >> 6;
-
 
306
 
-
 
307
  /************************************************************************/
-
 
308
  /* Calculate control feedback from angle (gyro integral)                */
-
 
309
  /* and angular velocity (gyro signal)                                   */
-
 
310
  /************************************************************************/
341
  debugOut.digital[1] &= ~DEBUG_CLIP;
311
  // The P-part is the P of the PID controller. That's the angle integrals (not rates).
342
  for (axis = PITCH; axis <= ROLL; axis++) {
312
  for (axis = PITCH; axis <= ROLL; axis++) {
-
 
313
    int16_t iDiff;
-
 
314
    iDiff = PDPart = attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 3);
-
 
315
    PDPart += (int32_t)rate_PID[axis] * gyroPFactor / (GYRO_DEG_FACTOR_PITCHROLL >> 4);
343
    /*
316
    PDPart += (differential[axis] * (int16_t) dynamicParams.gyroD) / 16;
344
     * Compose pitch and roll terms. This is finally where the sticks come into play.
-
 
-
 
317
    // In acc. mode the I part is summed only from the attitude (IFaktor) angle minus stick.
345
     */
318
    // In HH mode, the I part is summed from P and D of gyros minus stick.
346
    if (gyroIFactor) {
-
 
347
      // Integration mode: Integrate (angle - stick) = the difference between angle and stick pos.
-
 
348
      // That means: Holding the stick a little forward will, at constant flight attitude, cause this to grow (decline??) over time.
-
 
349
      // TODO: Find out why this seems to be proportional to stick position - not integrating it at all.
319
    if (gyroIFactor) {
350
      IPart[axis] += PDPart[axis] - controls[axis]; // Integrate difference between P part (the angle) and the stick pos.
320
      IPart[axis] += iDiff - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
351
    } else {
-
 
352
      // "HH" mode: Integrate (rate - stick) = the difference between rotation rate and stick pos.
-
 
353
      // To keep up with a full stick PDPart should be about 156...
321
    } else {
354
      IPart[axis] += PDPart[axis] - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
322
      IPart[axis] += PDPart - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
355
    }
-
 
356
 
323
    }
357
    tmp_int = (int32_t) ((int32_t) dynamicParams.dynamicStability
-
 
358
        * (int32_t) (throttleTerm + abs(yawTerm) / 2)) / 64;
-
 
359
 
324
 
360
    //CHECK_MIN_MAX(IPart[axis], -25L*GYRO_DEG_FACTOR_PITCHROLL, 25L*GYRO_DEG_FACTOR_PITCHROLL);
325
    // With normal Ki, limit effect to +/- 205 (of 1024!!!)
361
    if (IPart[axis] < -25L*GYRO_DEG_FACTOR_PITCHROLL) {
326
    if (IPart[axis] < -64000) {
362
      IPart[axis] =- 25L*GYRO_DEG_FACTOR_PITCHROLL;
327
      IPart[axis] = -64000;
363
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
328
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
364
    } else if (PDPart[axis] > 25L*GYRO_DEG_FACTOR_PITCHROLL) {
329
    } else if (IPart[axis] > 64000) {
365
      PDPart[axis] = 25L*GYRO_DEG_FACTOR_PITCHROLL;
330
      IPart[axis] = 64000;
366
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
331
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
367
    }
332
    }
368
 
-
 
369
    // Add (P, D) parts minus stick pos. to the scaled-down I part.
333
 
370
    term[axis] = PDPart[axis] - controls[axis] + IPart[axis] / Ki; // PID-controller for pitch
334
    term[axis] = PDPart - controls[axis] + ((int32_t)IPart[axis] * invKi) >> 14;
371
        term[axis] += (dynamicParams.levelCorrection[axis] - 128);
335
        term[axis] += (dynamicParams.levelCorrection[axis] - 128);
372
        /*
336
        /*
373
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
337
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
374
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
338
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
375
     * (max. pitch or roll term is the throttle value).
339
     * (max. pitch or roll term is the throttle value).
376
     * TODO: Why a growing function of yaw?
340
     * TODO: Why a growing function of yaw?
377
     */
341
     */
378
    if (term[axis] < -tmp_int) {
342
    if (term[axis] < -tmp_int) {
379
      debugOut.digital[1] |= DEBUG_CLIP;
343
      debugOut.digital[1] |= DEBUG_CLIP;
380
    } else if (term[axis] > tmp_int) {
344
    } else if (term[axis] > tmp_int) {
381
      debugOut.digital[1] |= DEBUG_CLIP;
345
      debugOut.digital[1] |= DEBUG_CLIP;
382
    }
346
    }
383
  }
347
  }
384
 
348
 
385
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
349
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
386
  // Universal Mixer
350
  // Universal Mixer
387
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
351
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
388
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
352
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
389
 
353
 
390
  debugOut.analog[3]  = rate_ATT[PITCH];
354
  debugOut.analog[3]  = rate_ATT[PITCH];
391
  debugOut.analog[4]  = rate_ATT[ROLL];
355
  debugOut.analog[4]  = rate_ATT[ROLL];
392
  debugOut.analog[5]  = yawRate;
356
  debugOut.analog[5]  = yawRate;
393
 
357
 
394
  debugOut.analog[6]  = filteredAcc[PITCH];
358
  debugOut.analog[6]  = filteredAcc[PITCH];
395
  debugOut.analog[7]  = filteredAcc[ROLL];
359
  debugOut.analog[7]  = filteredAcc[ROLL];
396
  debugOut.analog[8]  = filteredAcc[Z];
360
  debugOut.analog[8]  = filteredAcc[Z];
397
 
361
 
398
  debugOut.analog[13] = term[PITCH];
362
  debugOut.analog[13] = term[PITCH];
399
  debugOut.analog[14] = term[ROLL];
363
  debugOut.analog[14] = term[ROLL];
400
  debugOut.analog[15] = yawTerm;
364
  debugOut.analog[15] = yawTerm;
401
  debugOut.analog[16] = throttleTerm;
365
  debugOut.analog[16] = throttleTerm;
402
 
366
 
403
  for (i = 0; i < MAX_MOTORS; i++) {
367
  for (i = 0; i < MAX_MOTORS; i++) {
404
    int32_t tmp;
368
    int32_t tmp;
405
    uint8_t throttle;
369
    uint8_t throttle;
406
 
370
 
407
    tmp = (int32_t)throttleTerm * mixerMatrix.motor[i][MIX_THROTTLE];
371
    tmp = (int32_t)throttleTerm * mixerMatrix.motor[i][MIX_THROTTLE];
408
    tmp += (int32_t)term[PITCH] * mixerMatrix.motor[i][MIX_PITCH];
372
    tmp += (int32_t)term[PITCH] * mixerMatrix.motor[i][MIX_PITCH];
409
    tmp += (int32_t)term[ROLL] * mixerMatrix.motor[i][MIX_ROLL];
373
    tmp += (int32_t)term[ROLL] * mixerMatrix.motor[i][MIX_ROLL];
410
    tmp += (int32_t)yawTerm * mixerMatrix.motor[i][MIX_YAW];
374
    tmp += (int32_t)yawTerm * mixerMatrix.motor[i][MIX_YAW];
411
    tmp = tmp >> 6;
375
    tmp = tmp >> 6;
412
    motorFilters[i] = motorFilter(tmp, motorFilters[i]);
376
    motorFilters[i] = motorFilter(tmp, motorFilters[i]);
413
    // Now we scale back down to a 0..255 range.
377
    // Now we scale back down to a 0..255 range.
414
    tmp = motorFilters[i] / MOTOR_SCALING;
378
    tmp = motorFilters[i] / MOTOR_SCALING;
415
 
379
 
416
    // So this was the THIRD time a throttle was limited. But should the limitation
380
    // So this was the THIRD time a throttle was limited. But should the limitation
417
    // apply to the common throttle signal (the one used for setting the "power" of
381
    // apply to the common throttle signal (the one used for setting the "power" of
418
    // all motors together) or should it limit the throttle set for each motor,
382
    // all motors together) or should it limit the throttle set for each motor,
419
    // including mix components of pitch, roll and yaw? I think only the common
383
    // including mix components of pitch, roll and yaw? I think only the common
420
    // throttle should be limited.
384
    // throttle should be limited.
421
    // --> WRONG. This caused motors to stall completely in tight maneuvers.
385
    // --> WRONG. This caused motors to stall completely in tight maneuvers.
422
    // Apply to individual signals instead.
386
    // Apply to individual signals instead.
423
    CHECK_MIN_MAX(tmp, 1, 255);
387
    CHECK_MIN_MAX(tmp, 1, 255);
424
    throttle = tmp;
388
    throttle = tmp;
425
 
389
 
426
    // if (i < 4) debugOut.analog[22 + i] = throttle;
390
    // if (i < 4) debugOut.analog[22 + i] = throttle;
427
 
391
 
428
    if ((MKFlags & MKFLAG_MOTOR_RUN) && mixerMatrix.motor[i][MIX_THROTTLE] > 0) {
392
    if ((MKFlags & MKFLAG_MOTOR_RUN) && mixerMatrix.motor[i][MIX_THROTTLE] > 0) {
429
      motor[i].throttle = throttle;
393
      motor[i].throttle = throttle;
430
    } else if (motorTestActive) {
394
    } else if (motorTestActive) {
431
      motor[i].throttle = motorTest[i];
395
      motor[i].throttle = motorTest[i];
432
    } else {
396
    } else {
433
      motor[i].throttle = 0;
397
      motor[i].throttle = 0;
434
    }
398
    }
435
  }
399
  }
436
 
400
 
437
  I2C_Start(TWI_STATE_MOTOR_TX);
401
  I2C_Start(TWI_STATE_MOTOR_TX);
438
 
402
 
439
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
403
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
440
  // Debugging
404
  // Debugging
441
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
405
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
442
  if (!(--debugDataTimer)) {
406
  if (!(--debugDataTimer)) {
443
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
407
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
444
    debugOut.analog[0] = attitude[PITCH] / (GYRO_DEG_FACTOR_PITCHROLL/10); // in 0.1 deg
408
    debugOut.analog[0] = attitude[PITCH] / (GYRO_DEG_FACTOR_PITCHROLL/10); // in 0.1 deg
445
    debugOut.analog[1] = attitude[ROLL]  / (GYRO_DEG_FACTOR_PITCHROLL/10); // in 0.1 deg
409
    debugOut.analog[1] = attitude[ROLL]  / (GYRO_DEG_FACTOR_PITCHROLL/10); // in 0.1 deg
446
    debugOut.analog[2] = heading / GYRO_DEG_FACTOR_YAW;
410
    debugOut.analog[2] = heading / GYRO_DEG_FACTOR_YAW;
447
  }
411
  }
448
}
412
}
449
 
413