Subversion Repositories FlightCtrl

Rev

Rev 2092 | Rev 2160 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2092 Rev 2098
1
#include <stdlib.h>
1
#include <stdlib.h>
2
#include <avr/io.h>
2
#include <avr/io.h>
3
#include "eeprom.h"
3
#include "eeprom.h"
4
#include "flight.h"
4
#include "flight.h"
5
#include "output.h"
5
#include "output.h"
6
#include "uart0.h"
6
#include "uart0.h"
7
 
7
 
8
// Necessary for external control and motor test
8
// Necessary for external control and motor test
9
#include "twimaster.h"
9
#include "twimaster.h"
10
#include "attitude.h"
10
#include "attitude.h"
11
#include "controlMixer.h"
11
#include "controlMixer.h"
12
#include "commands.h"
12
#include "commands.h"
13
#include "heightControl.h"
13
#include "heightControl.h"
14
 
14
 
15
#ifdef USE_MK3MAG
15
#ifdef USE_MK3MAG
16
#include "mk3mag.h"
16
#include "mk3mag.h"
17
#include "compassControl.h"
17
#include "compassControl.h"
18
#endif
18
#endif
19
 
19
 
20
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
20
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
21
 
21
 
22
/*
22
/*
23
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
23
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
24
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
24
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
25
 */
25
 */
26
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
26
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
27
uint8_t gyroPFactor, gyroIFactor; // the PD factors for the attitude control
27
uint8_t gyroPFactor, gyroIFactor; // the PD factors for the attitude control
28
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
28
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
29
uint8_t ki;
29
uint8_t ki;
30
int32_t IPart[2];
30
int32_t IPart[2];
31
 
31
 
32
/************************************************************************/
32
/************************************************************************/
33
/*  Filter for motor value smoothing (necessary???)                     */
33
/*  Filter for motor value smoothing (necessary???)                     */
34
/************************************************************************/
34
/************************************************************************/
35
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
35
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
36
  switch (staticParams.motorSmoothing) {
36
  switch (staticParams.motorSmoothing) {
37
  case 0:
37
  case 0:
38
    return newvalue;
38
    return newvalue;
39
  case 1:
39
  case 1:
40
    return (oldvalue + newvalue) / 2;
40
    return (oldvalue + newvalue) / 2;
41
  case 2:
41
  case 2:
42
    if (newvalue > oldvalue)
42
    if (newvalue > oldvalue)
43
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
43
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
44
    else
44
    else
45
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
45
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
46
  case 3:
46
  case 3:
47
    if (newvalue < oldvalue)
47
    if (newvalue < oldvalue)
48
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
48
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
49
    else
49
    else
50
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
50
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
51
  default:
51
  default:
52
    return newvalue;
52
    return newvalue;
53
  }
53
  }
54
}
54
}
55
 
55
 
56
void flight_setParameters(uint8_t _ki, uint8_t _gyroPFactor,
56
void flight_setParameters(uint8_t _ki, uint8_t _gyroPFactor,
57
    uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
57
    uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
58
  ki = _ki;
58
  ki = _ki;
59
  gyroPFactor = _gyroPFactor;
59
  gyroPFactor = _gyroPFactor;
60
  gyroIFactor = _gyroIFactor;
60
  gyroIFactor = _gyroIFactor;
61
  yawPFactor = _yawPFactor;
61
  yawPFactor = _yawPFactor;
62
  yawIFactor = _yawIFactor;
62
  yawIFactor = _yawIFactor;
63
}
63
}
64
 
64
 
65
void flight_setGround() {
65
void flight_setGround() {
66
  // Just reset all I terms.
66
  // Just reset all I terms.
67
  IPart[PITCH] = IPart[ROLL] = 0;
67
  IPart[PITCH] = IPart[ROLL] = 0;
68
  headingError = 0;
68
  headingError = 0;
69
}
69
}
70
 
70
 
71
void flight_takeOff() {
71
void flight_takeOff() {
72
  // This is for GPS module to mark home position.
72
  // This is for GPS module to mark home position.
73
  // TODO: What a disgrace, change it.
73
  // TODO: What a disgrace, change it.
74
  MKFlags |= MKFLAG_CALIBRATE;
74
  MKFlags |= MKFLAG_CALIBRATE;
75
 
-
 
76
  HC_setGround();
75
  HC_setGround();
77
#ifdef USE_MK3MAG
76
#ifdef USE_MK3MAG
78
  attitude_resetHeadingToMagnetic();
77
  attitude_resetHeadingToMagnetic();
79
  compass_setTakeoffHeading(heading);
78
  compass_setTakeoffHeading(heading);
80
#endif
79
#endif
81
}
80
}
82
 
81
 
83
/************************************************************************/
82
/************************************************************************/
84
/*  Main Flight Control                                                 */
83
/*  Main Flight Control                                                 */
85
/************************************************************************/
84
/************************************************************************/
86
void flight_control(void) {
85
void flight_control(void) {
87
  int16_t tmp_int;
86
  int16_t tmp_int;
88
  // Mixer Fractions that are combined for Motor Control
87
  // Mixer Fractions that are combined for Motor Control
89
  int16_t yawTerm, throttleTerm, term[2];
88
  int16_t yawTerm, throttleTerm, term[2];
90
 
89
 
91
  // PID controller variables
90
  // PID controller variables
92
  int16_t PDPart;
91
  int16_t PDPart;
93
  static int8_t debugDataTimer = 1;
92
  static int8_t debugDataTimer = 1;
94
 
93
 
95
  // High resolution motor values for smoothing of PID motor outputs
94
  // High resolution motor values for smoothing of PID motor outputs
96
  static int16_t motorFilters[MAX_MOTORS];
95
  static int16_t motorFilters[MAX_MOTORS];
97
 
96
 
98
  uint8_t i, axis;
97
  uint8_t i, axis;
99
 
98
 
100
  throttleTerm = controls[CONTROL_THROTTLE];
99
  throttleTerm = controls[CONTROL_THROTTLE];
101
 
100
 
102
  if (throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
101
  if (throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
103
    // increment flight-time counter until overflow.
102
    // increment flight-time counter until overflow.
104
    if (isFlying != 0xFFFF)
103
    if (isFlying != 0xFFFF)
105
      isFlying++;
104
      isFlying++;
106
  }
105
  }
107
  /*
106
  /*
108
   * When standing on the ground, do not apply I controls and zero the yaw stick.
107
   * When standing on the ground, do not apply I controls and zero the yaw stick.
109
   * Probably to avoid integration effects that will cause the copter to spin
108
   * Probably to avoid integration effects that will cause the copter to spin
110
   * or flip when taking off.
109
   * or flip when taking off.
111
   */
110
   */
112
  if (isFlying < 256) {
111
  if (isFlying < 256) {
113
    flight_setGround();
112
    flight_setGround();
114
    if (isFlying == 250)
113
    if (isFlying == 250)
115
      flight_takeOff();
114
      flight_takeOff();
116
  }
115
  }
117
 
116
 
118
  // This check removed. Is done on a per-motor basis, after output matrix multiplication.
117
  // This check removed. Is done on a per-motor basis, after output matrix multiplication.
119
  if (throttleTerm < staticParams.minThrottle + 10)
118
  if (throttleTerm < staticParams.minThrottle + 10)
120
    throttleTerm = staticParams.minThrottle + 10;
119
    throttleTerm = staticParams.minThrottle + 10;
121
  else if (throttleTerm > staticParams.maxThrottle - 20)
120
  else if (throttleTerm > staticParams.maxThrottle - 20)
122
    throttleTerm = (staticParams.maxThrottle - 20);
121
    throttleTerm = (staticParams.maxThrottle - 20);
123
 
122
 
124
  // Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
123
  // Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
125
  throttleTerm *= CONTROL_SCALING;
124
  throttleTerm *= CONTROL_SCALING;
126
 
125
 
127
// end part 1: 750-800 usec.
126
// end part 1: 750-800 usec.
128
// start part 3: 350 - 400 usec.
127
// start part 3: 350 - 400 usec.
129
#define YAW_I_LIMIT (45L * GYRO_DEG_FACTOR_YAW)
128
#define YAW_I_LIMIT (45L * GYRO_DEG_FACTOR_YAW)
130
// This is where control affects the target heading. It also (later) directly controls yaw.
129
// This is where control affects the target heading. It also (later) directly controls yaw.
131
  headingError -= controls[CONTROL_YAW];
130
  headingError -= controls[CONTROL_YAW];
132
 
131
 
133
  if (headingError < -YAW_I_LIMIT)
132
  if (headingError < -YAW_I_LIMIT)
134
    headingError = -YAW_I_LIMIT;
133
    headingError = -YAW_I_LIMIT;
135
  else if (headingError > YAW_I_LIMIT)
134
  else if (headingError > YAW_I_LIMIT)
136
    headingError = YAW_I_LIMIT;
135
    headingError = YAW_I_LIMIT;
137
 
136
 
138
  PDPart = (int32_t) (headingError * yawIFactor) / (GYRO_DEG_FACTOR_YAW << 4);
137
  PDPart = (int32_t) (headingError * yawIFactor) / (GYRO_DEG_FACTOR_YAW << 4);
139
// Ehhhhh here is something with desired yaw rate, not?? Ahh OK it gets added in later on.
138
// Ehhhhh here is something with desired yaw rate, not?? Ahh OK it gets added in later on.
140
  PDPart += (int32_t) (yawRate * yawPFactor) / (GYRO_DEG_FACTOR_YAW >> 5);
139
  PDPart += (int32_t) (yawRate * yawPFactor) / (GYRO_DEG_FACTOR_YAW >> 5);
141
 
140
 
142
  // Lets not limit P and D.
141
  // Lets not limit P and D.
143
// CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);
142
// CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);
144
 
143
 
145
  /*
144
  /*
146
   * Compose yaw term.
145
   * Compose yaw term.
147
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
146
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
148
   * However, at low throttle the yaw term is limited to a fixed value,
147
   * However, at low throttle the yaw term is limited to a fixed value,
149
   * and at high throttle it is limited by the throttle reserve (the difference
148
   * and at high throttle it is limited by the throttle reserve (the difference
150
   * between current throttle and maximum throttle).
149
   * between current throttle and maximum throttle).
151
   */
150
   */
152
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
151
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
153
  yawTerm = PDPart - controls[CONTROL_YAW] * CONTROL_SCALING;
152
  yawTerm = PDPart - controls[CONTROL_YAW] * CONTROL_SCALING;
154
// Limit yawTerm
153
// Limit yawTerm
155
  debugOut.digital[0] &= ~DEBUG_CLIP;
154
  debugOut.digital[0] &= ~DEBUG_CLIP;
156
  if (throttleTerm > MIN_YAWGAS) {
155
  if (throttleTerm > MIN_YAWGAS) {
157
    if (yawTerm < -throttleTerm / 2) {
156
    if (yawTerm < -throttleTerm / 2) {
158
      debugOut.digital[0] |= DEBUG_CLIP;
157
      debugOut.digital[0] |= DEBUG_CLIP;
159
      yawTerm = -throttleTerm / 2;
158
      yawTerm = -throttleTerm / 2;
160
    } else if (yawTerm > throttleTerm / 2) {
159
    } else if (yawTerm > throttleTerm / 2) {
161
      debugOut.digital[0] |= DEBUG_CLIP;
160
      debugOut.digital[0] |= DEBUG_CLIP;
162
      yawTerm = throttleTerm / 2;
161
      yawTerm = throttleTerm / 2;
163
    }
162
    }
164
  } else {
163
  } else {
165
    if (yawTerm < -MIN_YAWGAS / 2) {
164
    if (yawTerm < -MIN_YAWGAS / 2) {
166
      debugOut.digital[0] |= DEBUG_CLIP;
165
      debugOut.digital[0] |= DEBUG_CLIP;
167
      yawTerm = -MIN_YAWGAS / 2;
166
      yawTerm = -MIN_YAWGAS / 2;
168
    } else if (yawTerm > MIN_YAWGAS / 2) {
167
    } else if (yawTerm > MIN_YAWGAS / 2) {
169
      debugOut.digital[0] |= DEBUG_CLIP;
168
      debugOut.digital[0] |= DEBUG_CLIP;
170
      yawTerm = MIN_YAWGAS / 2;
169
      yawTerm = MIN_YAWGAS / 2;
171
    }
170
    }
172
  }
171
  }
173
 
172
 
174
  tmp_int = staticParams.maxThrottle * CONTROL_SCALING;
173
  tmp_int = staticParams.maxThrottle * CONTROL_SCALING;
175
 
174
 
176
  if (yawTerm < -(tmp_int - throttleTerm)) {
175
  if (yawTerm < -(tmp_int - throttleTerm)) {
177
    yawTerm = -(tmp_int - throttleTerm);
176
    yawTerm = -(tmp_int - throttleTerm);
178
    debugOut.digital[0] |= DEBUG_CLIP;
177
    debugOut.digital[0] |= DEBUG_CLIP;
179
  } else if (yawTerm > (tmp_int - throttleTerm)) {
178
  } else if (yawTerm > (tmp_int - throttleTerm)) {
180
    yawTerm = (tmp_int - throttleTerm);
179
    yawTerm = (tmp_int - throttleTerm);
181
    debugOut.digital[0] |= DEBUG_CLIP;
180
    debugOut.digital[0] |= DEBUG_CLIP;
182
  }
181
  }
183
 
182
 
184
  debugOut.digital[1] &= ~DEBUG_CLIP;
183
  debugOut.digital[1] &= ~DEBUG_CLIP;
185
 
184
 
186
  tmp_int = ((uint16_t)dynamicParams.dynamicStability * ((uint16_t)throttleTerm + (abs(yawTerm) >> 1)) >> 6);
185
  tmp_int = ((uint16_t)dynamicParams.dynamicStability * ((uint16_t)throttleTerm + (abs(yawTerm) >> 1)) >> 6);
187
  //tmp_int = (int32_t) ((int32_t) dynamicParams.dynamicStability * (int32_t) (throttleTerm + abs(yawTerm) / 2)) / 64;
186
  //tmp_int = (int32_t) ((int32_t) dynamicParams.dynamicStability * (int32_t) (throttleTerm + abs(yawTerm) / 2)) / 64;
188
 
187
 
189
  /************************************************************************/
188
  /************************************************************************/
190
  /* Calculate control feedback from angle (gyro integral)                */
189
  /* Calculate control feedback from angle (gyro integral)                */
191
  /* and angular velocity (gyro signal)                                   */
190
  /* and angular velocity (gyro signal)                                   */
192
  /************************************************************************/
191
  /************************************************************************/
193
  // The P-part is the P of the PID controller. That's the angle integrals (not rates).
192
  // The P-part is the P of the PID controller. That's the angle integrals (not rates).
194
  for (axis = PITCH; axis <= ROLL; axis++) {
193
  for (axis = PITCH; axis <= ROLL; axis++) {
195
    PDPart = (int32_t) rate_PID[axis] * gyroPFactor / (GYRO_DEG_FACTOR_PITCHROLL >> 4);
194
    PDPart = (int32_t) rate_PID[axis] * gyroPFactor / (GYRO_DEG_FACTOR_PITCHROLL >> 4);
196
    // In acc. mode the I part is summed only from the attitude (IFaktor) angle minus stick.
195
    // In acc. mode the I part is summed only from the attitude (IFaktor) angle minus stick.
197
    // In HH mode, the I part is summed from P and D of gyros minus stick.
196
    // In HH mode, the I part is summed from P and D of gyros minus stick.
198
    if (gyroIFactor) {
197
    if (gyroIFactor) {
199
      int16_t iDiff = attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 2);
198
      int16_t iDiff = attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 2);
200
      //if (axis == 0) debugOut.analog[28] = iDiff;
199
      //if (axis == 0) debugOut.analog[28] = iDiff;
201
      PDPart += iDiff;
200
      PDPart += iDiff;
202
      IPart[axis] += iDiff - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
201
      IPart[axis] += iDiff - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
203
    } else {
202
    } else {
204
      IPart[axis] += PDPart - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
203
      IPart[axis] += PDPart - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
205
    }
204
    }
206
 
205
 
207
    // So (int32_t) rate_PID[axis] * gyroPFactor / (GYRO_DEG_FACTOR_PITCHROLL >> 4) +
206
    // So (int32_t) rate_PID[axis] * gyroPFactor / (GYRO_DEG_FACTOR_PITCHROLL >> 4) +
208
    // attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 2) - controls[axis]
207
    // attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 2) - controls[axis]
209
    // We can ignore the rate: attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 2) - controls[axis]
208
    // We can ignore the rate: attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 2) - controls[axis]
210
    // That is: attitudeAngle[degrees] * gyroIFactor/4 - controls[axis]
209
    // That is: attitudeAngle[degrees] * gyroIFactor/4 - controls[axis]
211
    // So attitude attained at attitudeAngle[degrees] * gyroIFactor/4 == controls[axis]
210
    // So attitude attained at attitudeAngle[degrees] * gyroIFactor/4 == controls[axis]
212
 
211
 
213
    // With normal Ki, limit I parts to +/- 205 (of about 1024)
212
    // With normal Ki, limit I parts to +/- 205 (of about 1024)
214
    if (IPart[axis] < -64000) {
213
    if (IPart[axis] < -64000) {
215
      IPart[axis] = -64000;
214
      IPart[axis] = -64000;
216
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
215
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
217
    } else if (IPart[axis] > 64000) {
216
    } else if (IPart[axis] > 64000) {
218
      IPart[axis] = 64000;
217
      IPart[axis] = 64000;
219
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
218
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
220
    }
219
    }
221
 
220
 
222
    PDPart += (differential[axis] * (int16_t) dynamicParams.gyroD) / 16;
221
    PDPart += (differential[axis] * (int16_t) dynamicParams.gyroD) / 16;
223
 
222
 
224
    term[axis] = PDPart - controls[axis] + (((int32_t) IPart[axis] * ki) >> 14);
223
    term[axis] = PDPart - controls[axis] + (((int32_t) IPart[axis] * ki) >> 14);
225
    term[axis] += (dynamicParams.levelCorrection[axis] - 128);
224
    term[axis] += (dynamicParams.levelCorrection[axis] - 128);
226
 
225
 
227
    /*
226
    /*
228
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
227
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
229
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
228
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
230
     * (max. pitch or roll term is the throttle value).
229
     * (max. pitch or roll term is the throttle value).
231
     * OOPS: Is not applied at all.
230
     * OOPS: Is not applied at all.
232
     * TODO: Why a growing function of yaw?
231
     * TODO: Why a growing function of yaw?
233
     */
232
     */
234
    if (term[axis] < -tmp_int) {
233
    if (term[axis] < -tmp_int) {
235
      debugOut.digital[1] |= DEBUG_CLIP;
234
      debugOut.digital[1] |= DEBUG_CLIP;
236
      term[axis] = -tmp_int;
235
      term[axis] = -tmp_int;
237
    } else if (term[axis] > tmp_int) {
236
    } else if (term[axis] > tmp_int) {
238
      debugOut.digital[1] |= DEBUG_CLIP;
237
      debugOut.digital[1] |= DEBUG_CLIP;
239
      term[axis] = tmp_int;
238
      term[axis] = tmp_int;
240
    }
239
    }
241
  }
240
  }
242
 
241
 
243
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
242
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
244
  // Universal Mixer
243
  // Universal Mixer
245
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
244
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
246
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
245
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
247
 
246
 
248
  if (!(--debugDataTimer)) {
247
  if (!(--debugDataTimer)) {
249
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
248
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
250
    debugOut.analog[0] = attitude[PITCH] / (GYRO_DEG_FACTOR_PITCHROLL / 10); // in 0.1 deg
249
    debugOut.analog[0] = attitude[PITCH] / (GYRO_DEG_FACTOR_PITCHROLL / 10); // in 0.1 deg
251
    debugOut.analog[1] = attitude[ROLL]  / (GYRO_DEG_FACTOR_PITCHROLL / 10); // in 0.1 deg
250
    debugOut.analog[1] = attitude[ROLL]  / (GYRO_DEG_FACTOR_PITCHROLL / 10); // in 0.1 deg
252
    debugOut.analog[2] = heading / GYRO_DEG_FACTOR_YAW;
251
    debugOut.analog[2] = heading / GYRO_DEG_FACTOR_YAW;
253
 
252
 
254
    debugOut.analog[3] = rate_ATT[PITCH];
253
    debugOut.analog[3] = rate_ATT[PITCH];
255
    debugOut.analog[4] = rate_ATT[ROLL];
254
    debugOut.analog[4] = rate_ATT[ROLL];
256
    debugOut.analog[5] = yawRate;
255
    debugOut.analog[5] = yawRate;
257
  }
256
  }
258
 
257
 
259
  debugOut.analog[8] = yawTerm;
258
  debugOut.analog[8] = yawTerm;
260
  debugOut.analog[9] = throttleTerm;
259
  debugOut.analog[9] = throttleTerm;
261
 
260
 
262
  //debugOut.analog[16] = gyroActivity;
261
  //debugOut.analog[16] = gyroActivity;
263
 
262
 
264
  for (i = 0; i < MAX_MOTORS; i++) {
263
  for (i = 0; i < MAX_MOTORS; i++) {
265
    int32_t tmp;
264
    int32_t tmp;
266
    uint8_t throttle;
265
    uint8_t throttle;
267
 
266
 
268
    tmp = (int32_t) throttleTerm * mixerMatrix.motor[i][MIX_THROTTLE];
267
    tmp = (int32_t) throttleTerm * mixerMatrix.motor[i][MIX_THROTTLE];
269
    tmp += (int32_t) term[PITCH] * mixerMatrix.motor[i][MIX_PITCH];
268
    tmp += (int32_t) term[PITCH] * mixerMatrix.motor[i][MIX_PITCH];
270
    tmp += (int32_t) term[ROLL] * mixerMatrix.motor[i][MIX_ROLL];
269
    tmp += (int32_t) term[ROLL] * mixerMatrix.motor[i][MIX_ROLL];
271
    tmp += (int32_t) yawTerm * mixerMatrix.motor[i][MIX_YAW];
270
    tmp += (int32_t) yawTerm * mixerMatrix.motor[i][MIX_YAW];
272
    tmp = tmp >> 6;
271
    tmp = tmp >> 6;
273
    motorFilters[i] = motorFilter(tmp, motorFilters[i]);
272
    motorFilters[i] = motorFilter(tmp, motorFilters[i]);
274
    // Now we scale back down to a 0..255 range.
273
    // Now we scale back down to a 0..255 range.
275
    tmp = motorFilters[i] / MOTOR_SCALING;
274
    tmp = motorFilters[i] / MOTOR_SCALING;
276
 
275
 
277
    // So this was the THIRD time a throttle was limited. But should the limitation
276
    // So this was the THIRD time a throttle was limited. But should the limitation
278
    // apply to the common throttle signal (the one used for setting the "power" of
277
    // apply to the common throttle signal (the one used for setting the "power" of
279
    // all motors together) or should it limit the throttle set for each motor,
278
    // all motors together) or should it limit the throttle set for each motor,
280
    // including mix components of pitch, roll and yaw? I think only the common
279
    // including mix components of pitch, roll and yaw? I think only the common
281
    // throttle should be limited.
280
    // throttle should be limited.
282
    // --> WRONG. This caused motors to stall completely in tight maneuvers.
281
    // --> WRONG. This caused motors to stall completely in tight maneuvers.
283
    // Apply to individual signals instead.
282
    // Apply to individual signals instead.
284
    CHECK_MIN_MAX(tmp, 1, 255);
283
    CHECK_MIN_MAX(tmp, 1, 255);
285
    throttle = tmp;
284
    throttle = tmp;
286
 
285
 
287
    /*
286
    /*
288
    if (i < 4)
287
    if (i < 4)
289
      debugOut.analog[10 + i] = throttle;
288
      debugOut.analog[10 + i] = throttle;
290
      */
289
      */
291
 
290
 
292
    if ((MKFlags & MKFLAG_MOTOR_RUN) && mixerMatrix.motor[i][MIX_THROTTLE] > 0) {
291
    if ((MKFlags & MKFLAG_MOTOR_RUN) && mixerMatrix.motor[i][MIX_THROTTLE] > 0) {
293
      motor[i].throttle = throttle;
292
      motor[i].throttle = throttle;
294
    } else if (motorTestActive) {
293
    } else if (motorTestActive) {
295
      motor[i].throttle = motorTest[i];
294
      motor[i].throttle = motorTest[i];
296
    } else {
295
    } else {
297
      motor[i].throttle = 0;
296
      motor[i].throttle = 0;
298
    }
297
    }
299
  }
298
  }
300
 
299
 
301
  I2C_Start(TWI_STATE_MOTOR_TX);
300
  I2C_Start(TWI_STATE_MOTOR_TX);
302
}
301
}
303
 
302