Subversion Repositories FlightCtrl

Rev

Rev 2085 | Rev 2092 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2085 Rev 2086
1
#include <stdlib.h>
1
#include <stdlib.h>
2
#include <avr/io.h>
2
#include <avr/io.h>
3
#include "eeprom.h"
3
#include "eeprom.h"
4
#include "flight.h"
4
#include "flight.h"
5
#include "output.h"
5
#include "output.h"
6
#include "uart0.h"
6
#include "uart0.h"
7
 
7
 
8
// Necessary for external control and motor test
8
// Necessary for external control and motor test
9
#include "twimaster.h"
9
#include "twimaster.h"
10
#include "attitude.h"
10
#include "attitude.h"
11
#include "controlMixer.h"
11
#include "controlMixer.h"
12
#include "commands.h"
12
#include "commands.h"
13
#include "heightControl.h"
13
#include "heightControl.h"
14
 
14
 
15
#ifdef USE_MK3MAG
15
#ifdef USE_MK3MAG
16
#include "mk3mag.h"
16
#include "mk3mag.h"
17
#include "compassControl.h"
17
#include "compassControl.h"
18
#endif
18
#endif
19
 
19
 
20
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
20
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
21
 
21
 
22
/*
22
/*
23
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
23
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
24
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
24
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
25
 */
25
 */
26
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
26
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
27
uint8_t gyroPFactor, gyroIFactor; // the PD factors for the attitude control
27
uint8_t gyroPFactor, gyroIFactor; // the PD factors for the attitude control
28
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
28
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
29
uint8_t ki;
29
uint8_t ki;
30
int32_t IPart[2];
30
int32_t IPart[2];
31
 
31
 
32
/************************************************************************/
32
/************************************************************************/
33
/*  Filter for motor value smoothing (necessary???)                     */
33
/*  Filter for motor value smoothing (necessary???)                     */
34
/************************************************************************/
34
/************************************************************************/
35
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
35
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
36
  switch (staticParams.motorSmoothing) {
36
  switch (staticParams.motorSmoothing) {
37
  case 0:
37
  case 0:
38
    return newvalue;
38
    return newvalue;
39
  case 1:
39
  case 1:
40
    return (oldvalue + newvalue) / 2;
40
    return (oldvalue + newvalue) / 2;
41
  case 2:
41
  case 2:
42
    if (newvalue > oldvalue)
42
    if (newvalue > oldvalue)
43
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
43
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
44
    else
44
    else
45
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
45
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
46
  case 3:
46
  case 3:
47
    if (newvalue < oldvalue)
47
    if (newvalue < oldvalue)
48
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
48
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
49
    else
49
    else
50
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
50
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
51
  default:
51
  default:
52
    return newvalue;
52
    return newvalue;
53
  }
53
  }
54
}
54
}
55
 
55
 
56
void flight_setParameters(uint8_t _ki, uint8_t _gyroPFactor,
56
void flight_setParameters(uint8_t _ki, uint8_t _gyroPFactor,
57
    uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
57
    uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
58
  ki = _ki;
58
  ki = _ki;
59
  gyroPFactor = _gyroPFactor;
59
  gyroPFactor = _gyroPFactor;
60
  gyroIFactor = _gyroIFactor;
60
  gyroIFactor = _gyroIFactor;
61
  yawPFactor = _yawPFactor;
61
  yawPFactor = _yawPFactor;
62
  yawIFactor = _yawIFactor;
62
  yawIFactor = _yawIFactor;
63
}
63
}
64
 
64
 
65
void flight_setGround() {
65
void flight_setGround() {
66
  // Just reset all I terms.
66
  // Just reset all I terms.
67
  IPart[PITCH] = IPart[ROLL] = 0;
67
  IPart[PITCH] = IPart[ROLL] = 0;
68
  headingError = 0;
68
  headingError = 0;
69
}
69
}
70
 
70
 
71
void flight_takeOff() {
71
void flight_takeOff() {
72
  // This is for GPS module to mark home position.
72
  // This is for GPS module to mark home position.
73
  // TODO: What a disgrace, change it.
73
  // TODO: What a disgrace, change it.
74
  MKFlags |= MKFLAG_CALIBRATE;
74
  MKFlags |= MKFLAG_CALIBRATE;
75
 
75
 
76
  HC_setGround();
76
  HC_setGround();
77
#ifdef USE_MK3MAG
77
#ifdef USE_MK3MAG
78
  attitude_resetHeadingToMagnetic();
78
  attitude_resetHeadingToMagnetic();
79
  compass_setTakeoffHeading(heading);
79
  compass_setTakeoffHeading(heading);
80
#endif
80
#endif
81
}
81
}
82
 
82
 
83
/************************************************************************/
83
/************************************************************************/
84
/*  Main Flight Control                                                 */
84
/*  Main Flight Control                                                 */
85
/************************************************************************/
85
/************************************************************************/
86
void flight_control(void) {
86
void flight_control(void) {
87
  int16_t tmp_int;
87
  int16_t tmp_int;
88
  // Mixer Fractions that are combined for Motor Control
88
  // Mixer Fractions that are combined for Motor Control
89
  int16_t yawTerm, throttleTerm, term[2];
89
  int16_t yawTerm, throttleTerm, term[2];
90
 
90
 
91
  // PID controller variables
91
  // PID controller variables
92
  int16_t PDPart;
92
  int16_t PDPart;
93
  static int8_t debugDataTimer = 1;
93
  static int8_t debugDataTimer = 1;
94
 
94
 
95
  // High resolution motor values for smoothing of PID motor outputs
95
  // High resolution motor values for smoothing of PID motor outputs
96
  static int16_t motorFilters[MAX_MOTORS];
96
  static int16_t motorFilters[MAX_MOTORS];
97
 
97
 
98
  uint8_t i, axis;
98
  uint8_t i, axis;
99
 
99
 
100
  throttleTerm = controls[CONTROL_THROTTLE];
100
  throttleTerm = controls[CONTROL_THROTTLE];
101
 
101
 
102
  if (throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
102
  if (throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
103
    // increment flight-time counter until overflow.
103
    // increment flight-time counter until overflow.
104
    if (isFlying != 0xFFFF)
104
    if (isFlying != 0xFFFF)
105
      isFlying++;
105
      isFlying++;
106
  }
106
  }
107
  /*
107
  /*
108
   * When standing on the ground, do not apply I controls and zero the yaw stick.
108
   * When standing on the ground, do not apply I controls and zero the yaw stick.
109
   * Probably to avoid integration effects that will cause the copter to spin
109
   * Probably to avoid integration effects that will cause the copter to spin
110
   * or flip when taking off.
110
   * or flip when taking off.
111
   */
111
   */
112
  if (isFlying < 256) {
112
  if (isFlying < 256) {
113
    flight_setGround();
113
    flight_setGround();
114
    if (isFlying == 250)
114
    if (isFlying == 250)
115
      flight_takeOff();
115
      flight_takeOff();
116
  }
116
  }
117
 
117
 
118
  // This check removed. Is done on a per-motor basis, after output matrix multiplication.
118
  // This check removed. Is done on a per-motor basis, after output matrix multiplication.
119
  if (throttleTerm < staticParams.minThrottle + 10)
119
  if (throttleTerm < staticParams.minThrottle + 10)
120
    throttleTerm = staticParams.minThrottle + 10;
120
    throttleTerm = staticParams.minThrottle + 10;
121
  else if (throttleTerm > staticParams.maxThrottle - 20)
121
  else if (throttleTerm > staticParams.maxThrottle - 20)
122
    throttleTerm = (staticParams.maxThrottle - 20);
122
    throttleTerm = (staticParams.maxThrottle - 20);
123
 
123
 
124
  // Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
124
  // Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
125
  throttleTerm *= CONTROL_SCALING;
125
  throttleTerm *= CONTROL_SCALING;
126
 
126
 
127
// end part 1: 750-800 usec.
127
// end part 1: 750-800 usec.
128
// start part 3: 350 - 400 usec.
128
// start part 3: 350 - 400 usec.
129
#define YAW_I_LIMIT (45L * GYRO_DEG_FACTOR_YAW)
129
#define YAW_I_LIMIT (45L * GYRO_DEG_FACTOR_YAW)
130
// This is where control affects the target heading. It also (later) directly controls yaw.
130
// This is where control affects the target heading. It also (later) directly controls yaw.
131
  headingError -= controls[CONTROL_YAW];
131
  headingError -= controls[CONTROL_YAW];
132
 
132
 
133
  if (headingError < -YAW_I_LIMIT)
133
  if (headingError < -YAW_I_LIMIT)
134
    headingError = -YAW_I_LIMIT;
134
    headingError = -YAW_I_LIMIT;
135
  else if (headingError > YAW_I_LIMIT)
135
  else if (headingError > YAW_I_LIMIT)
136
    headingError = YAW_I_LIMIT;
136
    headingError = YAW_I_LIMIT;
137
 
137
 
138
  PDPart = (int32_t) (headingError * yawIFactor) / (GYRO_DEG_FACTOR_YAW << 4);
138
  PDPart = (int32_t) (headingError * yawIFactor) / (GYRO_DEG_FACTOR_YAW << 4);
139
// Ehhhhh here is something with desired yaw rate, not?? Ahh OK it gets added in later on.
139
// Ehhhhh here is something with desired yaw rate, not?? Ahh OK it gets added in later on.
140
  PDPart += (int32_t) (yawRate * yawPFactor) / (GYRO_DEG_FACTOR_YAW >> 5);
140
  PDPart += (int32_t) (yawRate * yawPFactor) / (GYRO_DEG_FACTOR_YAW >> 5);
141
 
141
 
142
  // Lets not limit P and D.
142
  // Lets not limit P and D.
143
// CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);
143
// CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);
144
 
144
 
145
  /*
145
  /*
146
   * Compose yaw term.
146
   * Compose yaw term.
147
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
147
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
148
   * However, at low throttle the yaw term is limited to a fixed value,
148
   * However, at low throttle the yaw term is limited to a fixed value,
149
   * and at high throttle it is limited by the throttle reserve (the difference
149
   * and at high throttle it is limited by the throttle reserve (the difference
150
   * between current throttle and maximum throttle).
150
   * between current throttle and maximum throttle).
151
   */
151
   */
152
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
152
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
153
  yawTerm = PDPart - controls[CONTROL_YAW] * CONTROL_SCALING;
153
  yawTerm = PDPart - controls[CONTROL_YAW] * CONTROL_SCALING;
154
// Limit yawTerm
154
// Limit yawTerm
155
  debugOut.digital[0] &= ~DEBUG_CLIP;
155
  debugOut.digital[0] &= ~DEBUG_CLIP;
156
  if (throttleTerm > MIN_YAWGAS) {
156
  if (throttleTerm > MIN_YAWGAS) {
157
    if (yawTerm < -throttleTerm / 2) {
157
    if (yawTerm < -throttleTerm / 2) {
158
      debugOut.digital[0] |= DEBUG_CLIP;
158
      debugOut.digital[0] |= DEBUG_CLIP;
159
      yawTerm = -throttleTerm / 2;
159
      yawTerm = -throttleTerm / 2;
160
    } else if (yawTerm > throttleTerm / 2) {
160
    } else if (yawTerm > throttleTerm / 2) {
161
      debugOut.digital[0] |= DEBUG_CLIP;
161
      debugOut.digital[0] |= DEBUG_CLIP;
162
      yawTerm = throttleTerm / 2;
162
      yawTerm = throttleTerm / 2;
163
    }
163
    }
164
  } else {
164
  } else {
165
    if (yawTerm < -MIN_YAWGAS / 2) {
165
    if (yawTerm < -MIN_YAWGAS / 2) {
166
      debugOut.digital[0] |= DEBUG_CLIP;
166
      debugOut.digital[0] |= DEBUG_CLIP;
167
      yawTerm = -MIN_YAWGAS / 2;
167
      yawTerm = -MIN_YAWGAS / 2;
168
    } else if (yawTerm > MIN_YAWGAS / 2) {
168
    } else if (yawTerm > MIN_YAWGAS / 2) {
169
      debugOut.digital[0] |= DEBUG_CLIP;
169
      debugOut.digital[0] |= DEBUG_CLIP;
170
      yawTerm = MIN_YAWGAS / 2;
170
      yawTerm = MIN_YAWGAS / 2;
171
    }
171
    }
172
  }
172
  }
173
 
173
 
174
  tmp_int = staticParams.maxThrottle * CONTROL_SCALING;
174
  tmp_int = staticParams.maxThrottle * CONTROL_SCALING;
175
 
175
 
176
  if (yawTerm < -(tmp_int - throttleTerm)) {
176
  if (yawTerm < -(tmp_int - throttleTerm)) {
177
    yawTerm = -(tmp_int - throttleTerm);
177
    yawTerm = -(tmp_int - throttleTerm);
178
    debugOut.digital[0] |= DEBUG_CLIP;
178
    debugOut.digital[0] |= DEBUG_CLIP;
179
  } else if (yawTerm > (tmp_int - throttleTerm)) {
179
  } else if (yawTerm > (tmp_int - throttleTerm)) {
180
    yawTerm = (tmp_int - throttleTerm);
180
    yawTerm = (tmp_int - throttleTerm);
181
    debugOut.digital[0] |= DEBUG_CLIP;
181
    debugOut.digital[0] |= DEBUG_CLIP;
182
  }
182
  }
183
 
183
 
184
  debugOut.digital[1] &= ~DEBUG_CLIP;
184
  debugOut.digital[1] &= ~DEBUG_CLIP;
185
 
185
 
186
  tmp_int = ((uint16_t)dynamicParams.dynamicStability * ((uint16_t)throttleTerm + (abs(yawTerm) >> 1)) >> 6);
186
  tmp_int = ((uint16_t)dynamicParams.dynamicStability * ((uint16_t)throttleTerm + (abs(yawTerm) >> 1)) >> 6);
187
  //tmp_int = (int32_t) ((int32_t) dynamicParams.dynamicStability * (int32_t) (throttleTerm + abs(yawTerm) / 2)) / 64;
187
  //tmp_int = (int32_t) ((int32_t) dynamicParams.dynamicStability * (int32_t) (throttleTerm + abs(yawTerm) / 2)) / 64;
188
 
188
 
189
  /************************************************************************/
189
  /************************************************************************/
190
  /* Calculate control feedback from angle (gyro integral)                */
190
  /* Calculate control feedback from angle (gyro integral)                */
191
  /* and angular velocity (gyro signal)                                   */
191
  /* and angular velocity (gyro signal)                                   */
192
  /************************************************************************/
192
  /************************************************************************/
193
  // The P-part is the P of the PID controller. That's the angle integrals (not rates).
193
  // The P-part is the P of the PID controller. That's the angle integrals (not rates).
194
  for (axis = PITCH; axis <= ROLL; axis++) {
194
  for (axis = PITCH; axis <= ROLL; axis++) {
195
    PDPart = (int32_t) rate_PID[axis] * gyroPFactor / (GYRO_DEG_FACTOR_PITCHROLL >> 4);
195
    PDPart = (int32_t) rate_PID[axis] * gyroPFactor / (GYRO_DEG_FACTOR_PITCHROLL >> 4);
196
    // In acc. mode the I part is summed only from the attitude (IFaktor) angle minus stick.
196
    // In acc. mode the I part is summed only from the attitude (IFaktor) angle minus stick.
197
    // In HH mode, the I part is summed from P and D of gyros minus stick.
197
    // In HH mode, the I part is summed from P and D of gyros minus stick.
198
    if (gyroIFactor) {
198
    if (gyroIFactor) {
199
      int16_t iDiff = attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 2);
199
      int16_t iDiff = attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 2);
200
      if (axis == 0) debugOut.analog[28] = iDiff;
200
      if (axis == 0) debugOut.analog[28] = iDiff;
201
      PDPart += iDiff;
201
      PDPart += iDiff;
202
      IPart[axis] += iDiff - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
202
      IPart[axis] += iDiff - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
203
    } else {
203
    } else {
204
      IPart[axis] += PDPart - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
204
      IPart[axis] += PDPart - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
205
    }
205
    }
-
 
206
 
-
 
207
    // So (int32_t) rate_PID[axis] * gyroPFactor / (GYRO_DEG_FACTOR_PITCHROLL >> 4) +
-
 
208
    // attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 2) - controls[axis]
-
 
209
    // We can ignore the rate: attitude[axis] * gyroIFactor / (GYRO_DEG_FACTOR_PITCHROLL << 2) - controls[axis]
-
 
210
    // That is: attitudeAngle[degrees] * gyroIFactor/4 - controls[axis]
-
 
211
    // So attitude attained at attitudeAngle[degrees] * gyroIFactor/4 == controls[axis]
206
 
212
 
207
    // With normal Ki, limit I parts to +/- 205 (of about 1024)
213
    // With normal Ki, limit I parts to +/- 205 (of about 1024)
208
    if (IPart[axis] < -64000) {
214
    if (IPart[axis] < -64000) {
209
      IPart[axis] = -64000;
215
      IPart[axis] = -64000;
210
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
216
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
211
    } else if (IPart[axis] > 64000) {
217
    } else if (IPart[axis] > 64000) {
212
      IPart[axis] = 64000;
218
      IPart[axis] = 64000;
213
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
219
      debugOut.digital[1] |= DEBUG_FLIGHTCLIP;
214
    }
220
    }
215
 
221
 
216
    PDPart += (differential[axis] * (int16_t) dynamicParams.gyroD) / 16;
222
    PDPart += (differential[axis] * (int16_t) dynamicParams.gyroD) / 16;
217
 
223
 
218
    term[axis] = PDPart - controls[axis] + (((int32_t) IPart[axis] * ki) >> 14);
224
    term[axis] = PDPart - controls[axis] + (((int32_t) IPart[axis] * ki) >> 14);
219
    term[axis] += (dynamicParams.levelCorrection[axis] - 128);
225
    term[axis] += (dynamicParams.levelCorrection[axis] - 128);
220
 
226
 
221
    /*
227
    /*
222
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
228
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
223
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
229
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
224
     * (max. pitch or roll term is the throttle value).
230
     * (max. pitch or roll term is the throttle value).
225
     * OOPS: Is not applied at all.
231
     * OOPS: Is not applied at all.
226
     * TODO: Why a growing function of yaw?
232
     * TODO: Why a growing function of yaw?
227
     */
233
     */
228
    if (term[axis] < -tmp_int) {
234
    if (term[axis] < -tmp_int) {
229
      debugOut.digital[1] |= DEBUG_CLIP;
235
      debugOut.digital[1] |= DEBUG_CLIP;
230
      term[axis] = -tmp_int;
236
      term[axis] = -tmp_int;
231
    } else if (term[axis] > tmp_int) {
237
    } else if (term[axis] > tmp_int) {
232
      debugOut.digital[1] |= DEBUG_CLIP;
238
      debugOut.digital[1] |= DEBUG_CLIP;
233
      term[axis] = tmp_int;
239
      term[axis] = tmp_int;
234
    }
240
    }
235
  }
241
  }
236
 
242
 
237
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
243
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
238
  // Universal Mixer
244
  // Universal Mixer
239
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
245
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
240
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
246
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
241
 
247
 
242
  if (!(--debugDataTimer)) {
248
  if (!(--debugDataTimer)) {
243
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
249
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
244
    debugOut.analog[0] = attitude[PITCH] / (GYRO_DEG_FACTOR_PITCHROLL / 10); // in 0.1 deg
250
    debugOut.analog[0] = attitude[PITCH] / (GYRO_DEG_FACTOR_PITCHROLL / 10); // in 0.1 deg
245
    debugOut.analog[1] = attitude[ROLL]  / (GYRO_DEG_FACTOR_PITCHROLL / 10); // in 0.1 deg
251
    debugOut.analog[1] = attitude[ROLL]  / (GYRO_DEG_FACTOR_PITCHROLL / 10); // in 0.1 deg
246
    debugOut.analog[2] = heading / GYRO_DEG_FACTOR_YAW;
252
    debugOut.analog[2] = heading / GYRO_DEG_FACTOR_YAW;
247
 
253
 
248
    debugOut.analog[3] = rate_ATT[PITCH];
254
    debugOut.analog[3] = rate_ATT[PITCH];
249
    debugOut.analog[4] = rate_ATT[ROLL];
255
    debugOut.analog[4] = rate_ATT[ROLL];
250
    debugOut.analog[5] = yawRate;
256
    debugOut.analog[5] = yawRate;
251
  }
257
  }
252
 
258
 
253
  debugOut.analog[8] = yawTerm;
259
  debugOut.analog[8] = yawTerm;
254
  debugOut.analog[9] = throttleTerm;
260
  debugOut.analog[9] = throttleTerm;
255
 
261
 
256
  //debugOut.analog[16] = gyroActivity;
262
  //debugOut.analog[16] = gyroActivity;
257
 
263
 
258
  for (i = 0; i < MAX_MOTORS; i++) {
264
  for (i = 0; i < MAX_MOTORS; i++) {
259
    int32_t tmp;
265
    int32_t tmp;
260
    uint8_t throttle;
266
    uint8_t throttle;
261
 
267
 
262
    tmp = (int32_t) throttleTerm * mixerMatrix.motor[i][MIX_THROTTLE];
268
    tmp = (int32_t) throttleTerm * mixerMatrix.motor[i][MIX_THROTTLE];
263
    tmp += (int32_t) term[PITCH] * mixerMatrix.motor[i][MIX_PITCH];
269
    tmp += (int32_t) term[PITCH] * mixerMatrix.motor[i][MIX_PITCH];
264
    tmp += (int32_t) term[ROLL] * mixerMatrix.motor[i][MIX_ROLL];
270
    tmp += (int32_t) term[ROLL] * mixerMatrix.motor[i][MIX_ROLL];
265
    tmp += (int32_t) yawTerm * mixerMatrix.motor[i][MIX_YAW];
271
    tmp += (int32_t) yawTerm * mixerMatrix.motor[i][MIX_YAW];
266
    tmp = tmp >> 6;
272
    tmp = tmp >> 6;
267
    motorFilters[i] = motorFilter(tmp, motorFilters[i]);
273
    motorFilters[i] = motorFilter(tmp, motorFilters[i]);
268
    // Now we scale back down to a 0..255 range.
274
    // Now we scale back down to a 0..255 range.
269
    tmp = motorFilters[i] / MOTOR_SCALING;
275
    tmp = motorFilters[i] / MOTOR_SCALING;
270
 
276
 
271
    // So this was the THIRD time a throttle was limited. But should the limitation
277
    // So this was the THIRD time a throttle was limited. But should the limitation
272
    // apply to the common throttle signal (the one used for setting the "power" of
278
    // apply to the common throttle signal (the one used for setting the "power" of
273
    // all motors together) or should it limit the throttle set for each motor,
279
    // all motors together) or should it limit the throttle set for each motor,
274
    // including mix components of pitch, roll and yaw? I think only the common
280
    // including mix components of pitch, roll and yaw? I think only the common
275
    // throttle should be limited.
281
    // throttle should be limited.
276
    // --> WRONG. This caused motors to stall completely in tight maneuvers.
282
    // --> WRONG. This caused motors to stall completely in tight maneuvers.
277
    // Apply to individual signals instead.
283
    // Apply to individual signals instead.
278
    CHECK_MIN_MAX(tmp, 1, 255);
284
    CHECK_MIN_MAX(tmp, 1, 255);
279
    throttle = tmp;
285
    throttle = tmp;
280
 
286
 
281
    /*
287
    /*
282
    if (i < 4)
288
    if (i < 4)
283
      debugOut.analog[10 + i] = throttle;
289
      debugOut.analog[10 + i] = throttle;
284
      */
290
      */
285
 
291
 
286
    if ((MKFlags & MKFLAG_MOTOR_RUN) && mixerMatrix.motor[i][MIX_THROTTLE] > 0) {
292
    if ((MKFlags & MKFLAG_MOTOR_RUN) && mixerMatrix.motor[i][MIX_THROTTLE] > 0) {
287
      motor[i].throttle = throttle;
293
      motor[i].throttle = throttle;
288
    } else if (motorTestActive) {
294
    } else if (motorTestActive) {
289
      motor[i].throttle = motorTest[i];
295
      motor[i].throttle = motorTest[i];
290
    } else {
296
    } else {
291
      motor[i].throttle = 0;
297
      motor[i].throttle = 0;
292
    }
298
    }
293
  }
299
  }
294
 
300
 
295
  I2C_Start(TWI_STATE_MOTOR_TX);
301
  I2C_Start(TWI_STATE_MOTOR_TX);
296
}
302
}
297
 
303