Subversion Repositories FlightCtrl

Rev

Rev 2035 | Rev 2044 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2035 Rev 2039
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
 
51
 
52
#include <stdlib.h>
52
#include <stdlib.h>
53
#include <avr/io.h>
53
#include <avr/io.h>
54
#include "eeprom.h"
54
#include "eeprom.h"
55
#include "flight.h"
55
#include "flight.h"
56
#include "output.h"
56
#include "output.h"
57
 
57
 
58
// Necessary for external control and motor test
58
// Necessary for external control and motor test
59
#include "uart0.h"
59
#include "uart0.h"
60
#include "twimaster.h"
60
#include "twimaster.h"
61
#include "attitude.h"
61
#include "attitude.h"
62
#include "controlMixer.h"
62
#include "controlMixer.h"
63
#include "commands.h"
63
#include "commands.h"
64
#ifdef USE_MK3MAG
-
 
65
#include "gps.h"
-
 
66
#endif
-
 
67
 
64
 
68
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
65
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
69
 
66
 
70
/*
67
/*
71
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
68
 * These are no longer maintained, just left at 0. The original implementation just summed the acc.
72
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
69
 * value to them every 2 ms. No filtering or anything. Just a case for an eventual overflow?? Hey???
73
 */
70
 */
74
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
71
// int16_t naviAccPitch = 0, naviAccRoll = 0, naviCntAcc = 0;
75
 
72
 
76
uint8_t gyroPFactor, gyroIFactor; // the PD factors for the attitude control
73
uint8_t gyroPFactor, gyroIFactor; // the PD factors for the attitude control
77
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
74
uint8_t yawPFactor, yawIFactor; // the PD factors for the yaw control
78
 
75
 
79
// Some integral weight constant...
76
// Some integral weight constant...
80
uint16_t Ki = 10300 / 33;
77
uint16_t Ki = 10300 / 33;
81
 
78
 
82
/************************************************************************/
79
/************************************************************************/
83
/*  Filter for motor value smoothing (necessary???)                     */
80
/*  Filter for motor value smoothing (necessary???)                     */
84
/************************************************************************/
81
/************************************************************************/
85
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
82
int16_t motorFilter(int16_t newvalue, int16_t oldvalue) {
86
  switch (staticParams.motorSmoothing) {
83
  switch (staticParams.motorSmoothing) {
87
  case 0:
84
  case 0:
88
    return newvalue;
85
    return newvalue;
89
  case 1:
86
  case 1:
90
    return (oldvalue + newvalue) / 2;
87
    return (oldvalue + newvalue) / 2;
91
  case 2:
88
  case 2:
92
    if (newvalue > oldvalue)
89
    if (newvalue > oldvalue)
93
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
90
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
94
    else
91
    else
95
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
92
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
96
  case 3:
93
  case 3:
97
    if (newvalue < oldvalue)
94
    if (newvalue < oldvalue)
98
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
95
      return (1 * (int16_t) oldvalue + newvalue) / 2; //mean of old and new
99
    else
96
    else
100
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
97
      return newvalue - (oldvalue - newvalue) * 1; // 2 * new - old
101
  default:
98
  default:
102
    return newvalue;
99
    return newvalue;
103
  }
100
  }
104
}
101
}
105
 
102
 
106
/************************************************************************/
103
/************************************************************************/
107
/*  Neutral Readings                                                    */
104
/*  Neutral Readings                                                    */
108
/************************************************************************/
105
/************************************************************************/
109
void flight_setNeutral() {
106
void flight_setNeutral() {
110
  MKFlags |= MKFLAG_CALIBRATE;
107
  MKFlags |= MKFLAG_CALIBRATE;
111
  // not really used here any more.
108
  // not really used here any more.
112
  /*
109
  /*
113
  dynamicParams.KalmanK = -1;
110
  dynamicParams.KalmanK = -1;
114
  dynamicParams.KalmanMaxDrift = 0;
111
  dynamicParams.KalmanMaxDrift = 0;
115
  dynamicParams.KalmanMaxFusion = 32;
112
  dynamicParams.KalmanMaxFusion = 32;
116
  */
113
  */
117
  controlMixer_initVariables();
114
  controlMixer_initVariables();
118
}
115
}
119
 
116
 
120
void setFlightParameters(uint8_t _Ki, uint8_t _gyroPFactor,
117
void setFlightParameters(uint8_t _Ki, uint8_t _gyroPFactor,
121
    uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
118
    uint8_t _gyroIFactor, uint8_t _yawPFactor, uint8_t _yawIFactor) {
122
  Ki = 10300 / _Ki;
119
  Ki = 10300 / _Ki;
123
  gyroPFactor = _gyroPFactor;
120
  gyroPFactor = _gyroPFactor;
124
  gyroIFactor = _gyroIFactor;
121
  gyroIFactor = _gyroIFactor;
125
  yawPFactor = _yawPFactor;
122
  yawPFactor = _yawPFactor;
126
  yawIFactor = _yawIFactor;
123
  yawIFactor = _yawIFactor;
127
}
124
}
128
 
125
 
129
void setNormalFlightParameters(void) {
126
void setNormalFlightParameters(void) {
130
  setFlightParameters(
127
  setFlightParameters(
131
                      staticParams.IFactor,
128
                      staticParams.IFactor,
132
                      dynamicParams.gyroP,
129
                      dynamicParams.gyroP,
133
                      staticParams.bitConfig & CFG_HEADING_HOLD ? 0 : dynamicParams.gyroI,
130
                      staticParams.bitConfig & CFG_HEADING_HOLD ? 0 : dynamicParams.gyroI,
134
                      dynamicParams.gyroP,
131
                      dynamicParams.gyroP,
135
                      staticParams.yawIFactor
132
                      staticParams.yawIFactor
136
                      );
133
                      );
137
}
134
}
138
 
135
 
139
void setStableFlightParameters(void) {
136
void setStableFlightParameters(void) {
140
  setFlightParameters(33, 90, 120, 90, 120);
137
  setFlightParameters(33, 90, 120, 90, 120);
141
}
138
}
142
 
139
 
143
/************************************************************************/
140
/************************************************************************/
144
/*  Main Flight Control                                                 */
141
/*  Main Flight Control                                                 */
145
/************************************************************************/
142
/************************************************************************/
146
void flight_control(void) {
143
void flight_control(void) {
147
  int16_t tmp_int;
144
  int16_t tmp_int;
148
  // Mixer Fractions that are combined for Motor Control
145
  // Mixer Fractions that are combined for Motor Control
149
  int16_t yawTerm, throttleTerm, term[2];
146
  int16_t yawTerm, throttleTerm, term[2];
150
 
147
 
151
  // PID controller variables
148
  // PID controller variables
152
  int16_t PDPart[2],/* DPart[2],*/ PDPartYaw /*, DPartYaw */;
149
  int16_t PDPart[2],/* DPart[2],*/ PDPartYaw /*, DPartYaw */;
153
  static int32_t IPart[2] = { 0, 0 };
150
  static int32_t IPart[2] = { 0, 0 };
154
  static uint16_t emergencyFlightTime;
151
  static uint16_t emergencyFlightTime;
155
  static int8_t debugDataTimer = 1;
152
  static int8_t debugDataTimer = 1;
156
 
153
 
157
  // High resolution motor values for smoothing of PID motor outputs
154
  // High resolution motor values for smoothing of PID motor outputs
158
  static int16_t motorFilters[MAX_MOTORS];
155
  static int16_t motorFilters[MAX_MOTORS];
159
 
156
 
160
  uint8_t i, axis;
157
  uint8_t i, axis;
161
 
-
 
162
  // Fire the main flight attitude calculation, including integration of angles.
-
 
163
  // We want that to kick as early as possible, not to delay new AD sampling further.
-
 
164
  calculateFlightAttitude();
-
 
165
  controlMixer_update();
158
 
166
  throttleTerm = controls[CONTROL_THROTTLE];
159
  throttleTerm = controls[CONTROL_THROTTLE];
167
 
160
 
168
  // This check removed. Is done on a per-motor basis, after output matrix multiplication.
161
  // This check removed. Is done on a per-motor basis, after output matrix multiplication.
169
  if (throttleTerm < staticParams.minThrottle + 10)
162
  if (throttleTerm < staticParams.minThrottle + 10)
170
    throttleTerm = staticParams.minThrottle + 10;
163
    throttleTerm = staticParams.minThrottle + 10;
171
  else if (throttleTerm > staticParams.maxThrottle - 20)
164
  else if (throttleTerm > staticParams.maxThrottle - 20)
172
    throttleTerm = (staticParams.maxThrottle - 20);
165
    throttleTerm = (staticParams.maxThrottle - 20);
173
 
166
 
174
  /************************************************************************/
167
  /************************************************************************/
175
  /* RC-signal is bad                                                     */
168
  /* RC-signal is bad                                                     */
176
  /* This part could be abstracted, as having yet another control input   */
169
  /* This part could be abstracted, as having yet another control input   */
177
  /* to the control mixer: An emergency autopilot control.                */
170
  /* to the control mixer: An emergency autopilot control.                */
178
  /************************************************************************/
171
  /************************************************************************/
179
 
172
 
180
  if (controlMixer_getSignalQuality() <= SIGNAL_BAD) { // the rc-frame signal is not reveived or noisy
173
  if (controlMixer_getSignalQuality() <= SIGNAL_BAD) { // the rc-frame signal is not reveived or noisy
181
    if (controlMixer_didReceiveSignal) beepRCAlarm();
174
    if (controlMixer_didReceiveSignal) beepRCAlarm();
182
    if (emergencyFlightTime) {
175
    if (emergencyFlightTime) {
183
      // continue emergency flight
176
      // continue emergency flight
184
      emergencyFlightTime--;
177
      emergencyFlightTime--;
185
      if (isFlying > 256) {
178
      if (isFlying > 256) {
186
        // We're probably still flying. Descend slowly.
179
        // We're probably still flying. Descend slowly.
187
        throttleTerm = staticParams.emergencyThrottle; // Set emergency throttle
180
        throttleTerm = staticParams.emergencyThrottle; // Set emergency throttle
188
        MKFlags |= (MKFLAG_EMERGENCY_FLIGHT); // Set flag for emergency landing
181
        MKFlags |= (MKFLAG_EMERGENCY_FLIGHT); // Set flag for emergency landing
189
        setStableFlightParameters();
182
        setStableFlightParameters();
190
      } else {
183
      } else {
191
        MKFlags &= ~(MKFLAG_MOTOR_RUN); // Probably not flying, and bad R/C signal. Kill motors.
184
        MKFlags &= ~(MKFLAG_MOTOR_RUN); // Probably not flying, and bad R/C signal. Kill motors.
192
      }
185
      }
193
    } else {
186
    } else {
194
      // end emergency flight (just cut the motors???)
187
      // end emergency flight (just cut the motors???)
195
      MKFlags &= ~(MKFLAG_MOTOR_RUN | MKFLAG_EMERGENCY_FLIGHT);
188
      MKFlags &= ~(MKFLAG_MOTOR_RUN | MKFLAG_EMERGENCY_FLIGHT);
196
    }
189
    }
197
  } else {
190
  } else {
198
    // signal is acceptable
191
    // signal is acceptable
199
    if (controlMixer_getSignalQuality() > SIGNAL_BAD) {
192
    if (controlMixer_getSignalQuality() > SIGNAL_BAD) {
200
      // Reset emergency landing control variables.
193
      // Reset emergency landing control variables.
201
      MKFlags &= ~(MKFLAG_EMERGENCY_FLIGHT); // clear flag for emergency landing
194
      MKFlags &= ~(MKFLAG_EMERGENCY_FLIGHT); // clear flag for emergency landing
202
      // The time is in whole seconds.
195
      // The time is in whole seconds.
203
      emergencyFlightTime = (uint16_t) staticParams.emergencyFlightDuration * 488;
196
      emergencyFlightTime = (uint16_t) staticParams.emergencyFlightDuration * 488;
204
    }
197
    }
205
 
198
 
206
    // If some throttle is given, and the motor-run flag is on, increase the probability that we are flying.
199
    // If some throttle is given, and the motor-run flag is on, increase the probability that we are flying.
207
    if (throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
200
    if (throttleTerm > 40 && (MKFlags & MKFLAG_MOTOR_RUN)) {
208
      // increment flight-time counter until overflow.
201
      // increment flight-time counter until overflow.
209
      if (isFlying != 0xFFFF)
202
      if (isFlying != 0xFFFF)
210
        isFlying++;
203
        isFlying++;
211
    } else
204
    } else
212
    /*
205
    /*
213
     * When standing on the ground, do not apply I controls and zero the yaw stick.
206
     * When standing on the ground, do not apply I controls and zero the yaw stick.
214
     * Probably to avoid integration effects that will cause the copter to spin
207
     * Probably to avoid integration effects that will cause the copter to spin
215
     * or flip when taking off.
208
     * or flip when taking off.
216
     */
209
     */
217
      if (isFlying < 256) {
210
      if (isFlying < 256) {
218
        IPart[PITCH] = IPart[ROLL] = 0;
211
        IPart[PITCH] = IPart[ROLL] = 0;
219
        PDPartYaw = 0;
212
        PDPartYaw = 0;
220
        if (isFlying == 250) {
213
        if (isFlying == 250) {
221
          // HC_setGround();
214
          // HC_setGround();
222
          updateCompassCourse = 1;
215
          updateCompassCourse = 1;
223
          yawAngleDiff = 0;
216
          yawAngleDiff = 0;
224
        }
217
        }
225
      } else {
218
      } else {
226
        // Set fly flag. TODO: Hmmm what can we trust - the isFlying counter or the flag?
219
        // Set fly flag. TODO: Hmmm what can we trust - the isFlying counter or the flag?
227
        // Answer: The counter. The flag is not read from anywhere anyway... except the NC maybe.
220
        // Answer: The counter. The flag is not read from anywhere anyway... except the NC maybe.
228
        MKFlags |= (MKFLAG_FLY);
221
        MKFlags |= (MKFLAG_FLY);
229
      }
222
      }
230
   
223
   
231
    commands_handleCommands();
224
    commands_handleCommands();
232
    setNormalFlightParameters();
225
    setNormalFlightParameters();
233
  } // end else (not bad signal case)
226
  } // end else (not bad signal case)
234
 
227
 
235
  /************************************************************************/
228
  /************************************************************************/
236
  /*  Yawing                                                              */
229
  /*  Yawing                                                              */
237
  /************************************************************************/
230
  /************************************************************************/
238
  if (abs(controls[CONTROL_YAW]) > 4 * staticParams.stickYawP) { // yaw stick is activated
231
  if (abs(controls[CONTROL_YAW]) > 4 * staticParams.stickYawP) { // yaw stick is activated
239
    ignoreCompassTimer = 1000;
232
    ignoreCompassTimer = 1000;
240
    if (!(staticParams.bitConfig & CFG_COMPASS_FIX)) {
233
    if (!(staticParams.bitConfig & CFG_COMPASS_FIX)) {
241
      updateCompassCourse = 1;
234
      updateCompassCourse = 1;
242
    }
235
    }
243
  }
236
  }
244
 
237
 
245
  // yawControlRate = controlYaw;
238
  // yawControlRate = controlYaw;
246
  // Trim drift of yawAngleDiff with controlYaw.
239
  // Trim drift of yawAngleDiff with controlYaw.
247
  // TODO: We want NO feedback of control related stuff to the attitude related stuff.
240
  // TODO: We want NO feedback of control related stuff to the attitude related stuff.
248
  // This seems to be used as: Difference desired <--> real heading.
241
  // This seems to be used as: Difference desired <--> real heading.
249
  yawAngleDiff -= controls[CONTROL_YAW];
242
  yawAngleDiff -= controls[CONTROL_YAW];
250
 
243
 
251
  // limit the effect
244
  // limit the effect
252
  CHECK_MIN_MAX(yawAngleDiff, -50000, 50000);
245
  CHECK_MIN_MAX(yawAngleDiff, -50000, 50000);
253
 
246
 
254
  /************************************************************************/
247
  /************************************************************************/
255
  /* Compass is currently not supported.                                  */
248
  /* Compass is currently not supported.                                  */
256
  /************************************************************************/
249
  /************************************************************************/
257
  if (staticParams.bitConfig & (CFG_COMPASS_ACTIVE | CFG_GPS_ACTIVE)) {
250
  if (staticParams.bitConfig & (CFG_COMPASS_ACTIVE | CFG_GPS_ACTIVE)) {
258
    updateCompass();
251
    updateCompass();
259
  }
252
  }
260
 
253
 
261
#if defined (USE_NAVICTRL)
254
#if defined (USE_NAVICTRL)
262
  /************************************************************************/
255
  /************************************************************************/
263
  /* GPS is currently not supported.                                      */
256
  /* GPS is currently not supported.                                      */
264
  /************************************************************************/
257
  /************************************************************************/
265
  if(staticParams.GlobalConfig & CFG_GPS_ACTIVE) {
258
  if(staticParams.GlobalConfig & CFG_GPS_ACTIVE) {
266
    GPS_Main();
259
    GPS_Main();
267
    MKFlags &= ~(MKFLAG_CALIBRATE | MKFLAG_START);
260
    MKFlags &= ~(MKFLAG_CALIBRATE | MKFLAG_START);
268
  } else {
261
  } else {
269
  }
262
  }
270
#endif
263
#endif
271
  // end part 1: 750-800 usec.
264
  // end part 1: 750-800 usec.
272
  // start part 3: 350 - 400 usec.
265
  // start part 3: 350 - 400 usec.
273
#define SENSOR_LIMIT  (4096 * 4)
266
#define SENSOR_LIMIT  (4096 * 4)
274
  /************************************************************************/
267
  /************************************************************************/
275
 
268
 
276
  /* Calculate control feedback from angle (gyro integral)                */
269
  /* Calculate control feedback from angle (gyro integral)                */
277
  /* and angular velocity (gyro signal)                                   */
270
  /* and angular velocity (gyro signal)                                   */
278
  /************************************************************************/
271
  /************************************************************************/
279
  // The P-part is the P of the PID controller. That's the angle integrals (not rates).
272
  // The P-part is the P of the PID controller. That's the angle integrals (not rates).
280
  for (axis = PITCH; axis <= ROLL; axis++) {
273
  for (axis = PITCH; axis <= ROLL; axis++) {
281
    PDPart[axis] = angle[axis] * gyroIFactor / (44000 / CONTROL_SCALING); // P-Part - Proportional to Integral
274
    PDPart[axis] = angle[axis] * gyroIFactor / (44000 / CONTROL_SCALING); // P-Part - Proportional to Integral
282
    PDPart[axis] += ((int32_t) rate_PID[axis] * gyroPFactor / (256L / CONTROL_SCALING));
275
    PDPart[axis] += ((int32_t) rate_PID[axis] * gyroPFactor / (256L / CONTROL_SCALING));
283
    PDPart[axis] += (differential[axis] * (int16_t) dynamicParams.gyroD) / 16;
276
    PDPart[axis] += (differential[axis] * (int16_t) dynamicParams.gyroD) / 16;
284
    CHECK_MIN_MAX(PDPart[axis], -SENSOR_LIMIT, SENSOR_LIMIT);
277
    CHECK_MIN_MAX(PDPart[axis], -SENSOR_LIMIT, SENSOR_LIMIT);
285
  }
278
  }
286
 
279
 
287
  PDPartYaw = (int32_t) (yawAngleDiff * yawIFactor) / (2 * (44000 / CONTROL_SCALING));
280
  PDPartYaw = (int32_t) (yawAngleDiff * yawIFactor) / (2 * (44000 / CONTROL_SCALING));
288
  PDPartYaw += (int32_t) (yawRate * 2 * (int32_t) yawPFactor) / (256L / CONTROL_SCALING);
281
  PDPartYaw += (int32_t) (yawRate * 2 * (int32_t) yawPFactor) / (256L / CONTROL_SCALING);
289
 
282
 
290
  // limit control feedback
283
  // limit control feedback
291
  // CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);
284
  // CHECK_MIN_MAX(PDPartYaw, -SENSOR_LIMIT, SENSOR_LIMIT);
292
 
285
 
293
  /*
286
  /*
294
   * Compose throttle term.
287
   * Compose throttle term.
295
   * If a Bl-Ctrl is missing, prevent takeoff.
288
   * If a Bl-Ctrl is missing, prevent takeoff.
296
   */
289
   */
297
  if (missingMotor) {
290
  if (missingMotor) {
298
    // if we are in the lift off condition. Hmmmmmm when is throttleTerm == 0 anyway???
291
    // if we are in the lift off condition. Hmmmmmm when is throttleTerm == 0 anyway???
299
    if (isFlying > 1 && isFlying < 50 && throttleTerm > 0)
292
    if (isFlying > 1 && isFlying < 50 && throttleTerm > 0)
300
      isFlying = 1; // keep within lift off condition
293
      isFlying = 1; // keep within lift off condition
301
    throttleTerm = staticParams.minThrottle; // reduce gas to min to avoid lift of
294
    throttleTerm = staticParams.minThrottle; // reduce gas to min to avoid lift of
302
  }
295
  }
303
 
296
 
304
  // Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
297
  // Scale up to higher resolution. Hmm why is it not (from controlMixer and down) scaled already?
305
  throttleTerm *= CONTROL_SCALING;
298
  throttleTerm *= CONTROL_SCALING;
306
 
299
 
307
  /*
300
  /*
308
   * Compose yaw term.
301
   * Compose yaw term.
309
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
302
   * The yaw term is limited: Absolute value is max. = the throttle term / 2.
310
   * However, at low throttle the yaw term is limited to a fixed value,
303
   * However, at low throttle the yaw term is limited to a fixed value,
311
   * and at high throttle it is limited by the throttle reserve (the difference
304
   * and at high throttle it is limited by the throttle reserve (the difference
312
   * between current throttle and maximum throttle).
305
   * between current throttle and maximum throttle).
313
   */
306
   */
314
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
307
#define MIN_YAWGAS (40 * CONTROL_SCALING)  // yaw also below this gas value
315
  yawTerm = PDPartYaw - controls[CONTROL_YAW] * CONTROL_SCALING;
308
  yawTerm = PDPartYaw - controls[CONTROL_YAW] * CONTROL_SCALING;
316
  // Limit yawTerm
309
  // Limit yawTerm
317
  debugOut.digital[0] &= ~DEBUG_CLIP;
310
  debugOut.digital[0] &= ~DEBUG_CLIP;
318
  if (throttleTerm > MIN_YAWGAS) {
311
  if (throttleTerm > MIN_YAWGAS) {
319
    if (yawTerm < -throttleTerm / 2) {
312
    if (yawTerm < -throttleTerm / 2) {
320
      debugOut.digital[0] |= DEBUG_CLIP;
313
      debugOut.digital[0] |= DEBUG_CLIP;
321
      yawTerm = -throttleTerm / 2;
314
      yawTerm = -throttleTerm / 2;
322
    } else if (yawTerm > throttleTerm / 2) {
315
    } else if (yawTerm > throttleTerm / 2) {
323
      debugOut.digital[0] |= DEBUG_CLIP;
316
      debugOut.digital[0] |= DEBUG_CLIP;
324
      yawTerm = throttleTerm / 2;
317
      yawTerm = throttleTerm / 2;
325
    }
318
    }
326
  } else {
319
  } else {
327
    if (yawTerm < -MIN_YAWGAS / 2) {
320
    if (yawTerm < -MIN_YAWGAS / 2) {
328
      debugOut.digital[0] |= DEBUG_CLIP;
321
      debugOut.digital[0] |= DEBUG_CLIP;
329
      yawTerm = -MIN_YAWGAS / 2;
322
      yawTerm = -MIN_YAWGAS / 2;
330
    } else if (yawTerm > MIN_YAWGAS / 2) {
323
    } else if (yawTerm > MIN_YAWGAS / 2) {
331
      debugOut.digital[0] |= DEBUG_CLIP;
324
      debugOut.digital[0] |= DEBUG_CLIP;
332
      yawTerm = MIN_YAWGAS / 2;
325
      yawTerm = MIN_YAWGAS / 2;
333
    }
326
    }
334
  }
327
  }
335
 
328
 
336
  tmp_int = staticParams.maxThrottle * CONTROL_SCALING;
329
  tmp_int = staticParams.maxThrottle * CONTROL_SCALING;
337
  if (yawTerm < -(tmp_int - throttleTerm)) {
330
  if (yawTerm < -(tmp_int - throttleTerm)) {
338
    yawTerm = -(tmp_int - throttleTerm);
331
    yawTerm = -(tmp_int - throttleTerm);
339
    debugOut.digital[0] |= DEBUG_CLIP;
332
    debugOut.digital[0] |= DEBUG_CLIP;
340
  } else if (yawTerm > (tmp_int - throttleTerm)) {
333
  } else if (yawTerm > (tmp_int - throttleTerm)) {
341
    yawTerm = (tmp_int - throttleTerm);
334
    yawTerm = (tmp_int - throttleTerm);
342
    debugOut.digital[0] |= DEBUG_CLIP;
335
    debugOut.digital[0] |= DEBUG_CLIP;
343
  }
336
  }
344
 
337
 
345
  // CHECK_MIN_MAX(yawTerm, -(tmp_int - throttleTerm), (tmp_int - throttleTerm));
338
  // CHECK_MIN_MAX(yawTerm, -(tmp_int - throttleTerm), (tmp_int - throttleTerm));
346
  debugOut.digital[1] &= ~DEBUG_CLIP;
339
  debugOut.digital[1] &= ~DEBUG_CLIP;
347
  for (axis = PITCH; axis <= ROLL; axis++) {
340
  for (axis = PITCH; axis <= ROLL; axis++) {
348
    /*
341
    /*
349
     * Compose pitch and roll terms. This is finally where the sticks come into play.
342
     * Compose pitch and roll terms. This is finally where the sticks come into play.
350
     */
343
     */
351
    if (gyroIFactor) {
344
    if (gyroIFactor) {
352
      // Integration mode: Integrate (angle - stick) = the difference between angle and stick pos.
345
      // Integration mode: Integrate (angle - stick) = the difference between angle and stick pos.
353
      // That means: Holding the stick a little forward will, at constant flight attitude, cause this to grow (decline??) over time.
346
      // That means: Holding the stick a little forward will, at constant flight attitude, cause this to grow (decline??) over time.
354
      // TODO: Find out why this seems to be proportional to stick position - not integrating it at all.
347
      // TODO: Find out why this seems to be proportional to stick position - not integrating it at all.
355
      IPart[axis] += PDPart[axis] - controls[axis]; // Integrate difference between P part (the angle) and the stick pos.
348
      IPart[axis] += PDPart[axis] - controls[axis]; // Integrate difference between P part (the angle) and the stick pos.
356
    } else {
349
    } else {
357
      // "HH" mode: Integrate (rate - stick) = the difference between rotation rate and stick pos.
350
      // "HH" mode: Integrate (rate - stick) = the difference between rotation rate and stick pos.
358
      // To keep up with a full stick PDPart should be about 156...
351
      // To keep up with a full stick PDPart should be about 156...
359
      IPart[axis] += PDPart[axis] - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
352
      IPart[axis] += PDPart[axis] - controls[axis]; // With gyroIFactor == 0, PDPart is really just a D-part. Integrate D-part (the rot. rate) and the stick pos.
360
    }
353
    }
361
 
354
 
362
    tmp_int = (int32_t) ((int32_t) dynamicParams.dynamicStability
355
    tmp_int = (int32_t) ((int32_t) dynamicParams.dynamicStability
363
        * (int32_t) (throttleTerm + abs(yawTerm) / 2)) / 64;
356
        * (int32_t) (throttleTerm + abs(yawTerm) / 2)) / 64;
364
 
357
 
365
    // TODO: From which planet comes the 16000?
358
    // TODO: From which planet comes the 16000?
366
    CHECK_MIN_MAX(IPart[axis], -(CONTROL_SCALING * 16000L), (CONTROL_SCALING * 16000L));
359
    CHECK_MIN_MAX(IPart[axis], -(CONTROL_SCALING * 16000L), (CONTROL_SCALING * 16000L));
367
    // Add (P, D) parts minus stick pos. to the scaled-down I part.
360
    // Add (P, D) parts minus stick pos. to the scaled-down I part.
368
    term[axis] = PDPart[axis] - controls[axis] + IPart[axis] / Ki; // PID-controller for pitch
361
    term[axis] = PDPart[axis] - controls[axis] + IPart[axis] / Ki; // PID-controller for pitch
369
        term[axis] += (dynamicParams.levelCorrection[axis] - 128);
362
        term[axis] += (dynamicParams.levelCorrection[axis] - 128);
370
    /*
363
    /*
371
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
364
     * Apply "dynamic stability" - that is: Limit pitch and roll terms to a growing function of throttle and yaw(!).
372
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
365
     * The higher the dynamic stability parameter, the wider the bounds. 64 seems to be a kind of unity
373
     * (max. pitch or roll term is the throttle value).
366
     * (max. pitch or roll term is the throttle value).
374
     * TODO: Why a growing function of yaw?
367
     * TODO: Why a growing function of yaw?
375
     */
368
     */
376
    if (term[axis] < -tmp_int) {
369
    if (term[axis] < -tmp_int) {
377
      debugOut.digital[1] |= DEBUG_CLIP;
370
      debugOut.digital[1] |= DEBUG_CLIP;
378
    } else if (term[axis] > tmp_int) {
371
    } else if (term[axis] > tmp_int) {
379
      debugOut.digital[1] |= DEBUG_CLIP;
372
      debugOut.digital[1] |= DEBUG_CLIP;
380
    }
373
    }
381
  }
374
  }
382
 
375
 
383
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
376
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
384
  // Universal Mixer
377
  // Universal Mixer
385
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
378
  // Each (pitch, roll, throttle, yaw) term is in the range [0..255 * CONTROL_SCALING].
386
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
379
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
387
 
380
 
388
  debugOut.analog[3]  = rate_ATT[PITCH];
381
  debugOut.analog[3]  = rate_ATT[PITCH];
389
  debugOut.analog[4]  = rate_ATT[ROLL];
382
  debugOut.analog[4]  = rate_ATT[ROLL];
390
  debugOut.analog[5]  = yawRate;
383
  debugOut.analog[5]  = yawRate;
391
 
384
 
392
  debugOut.analog[6]  = filteredAcc[PITCH];
385
  debugOut.analog[6]  = filteredAcc[PITCH];
393
  debugOut.analog[7]  = filteredAcc[ROLL];
386
  debugOut.analog[7]  = filteredAcc[ROLL];
394
  debugOut.analog[8]  = filteredAcc[Z];
387
  debugOut.analog[8]  = filteredAcc[Z];
395
 
388
 
396
  debugOut.analog[12] = term[PITCH];
389
  debugOut.analog[12] = term[PITCH];
397
  debugOut.analog[13] = term[ROLL];
390
  debugOut.analog[13] = term[ROLL];
398
  debugOut.analog[14] = yawTerm;
391
  debugOut.analog[14] = yawTerm;
399
  debugOut.analog[15] = throttleTerm;
392
  debugOut.analog[15] = throttleTerm;
400
 
393
 
401
  for (i = 0; i < MAX_MOTORS; i++) {
394
  for (i = 0; i < MAX_MOTORS; i++) {
402
    int32_t tmp;
395
    int32_t tmp;
403
    uint8_t throttle;
396
    uint8_t throttle;
404
 
397
 
405
    tmp = (int32_t)throttleTerm * mixerMatrix.motor[i][MIX_THROTTLE];
398
    tmp = (int32_t)throttleTerm * mixerMatrix.motor[i][MIX_THROTTLE];
406
    tmp += (int32_t)term[PITCH] * mixerMatrix.motor[i][MIX_PITCH];
399
    tmp += (int32_t)term[PITCH] * mixerMatrix.motor[i][MIX_PITCH];
407
    tmp += (int32_t)term[ROLL] * mixerMatrix.motor[i][MIX_ROLL];
400
    tmp += (int32_t)term[ROLL] * mixerMatrix.motor[i][MIX_ROLL];
408
    tmp += (int32_t)yawTerm * mixerMatrix.motor[i][MIX_YAW];
401
    tmp += (int32_t)yawTerm * mixerMatrix.motor[i][MIX_YAW];
409
    tmp = tmp >> 6;
402
    tmp = tmp >> 6;
410
    motorFilters[i] = motorFilter(tmp, motorFilters[i]);
403
    motorFilters[i] = motorFilter(tmp, motorFilters[i]);
411
    // Now we scale back down to a 0..255 range.
404
    // Now we scale back down to a 0..255 range.
412
    tmp = motorFilters[i] / MOTOR_SCALING;
405
    tmp = motorFilters[i] / MOTOR_SCALING;
413
 
406
 
414
    // So this was the THIRD time a throttle was limited. But should the limitation
407
    // So this was the THIRD time a throttle was limited. But should the limitation
415
    // apply to the common throttle signal (the one used for setting the "power" of
408
    // apply to the common throttle signal (the one used for setting the "power" of
416
    // all motors together) or should it limit the throttle set for each motor,
409
    // all motors together) or should it limit the throttle set for each motor,
417
    // including mix components of pitch, roll and yaw? I think only the common
410
    // including mix components of pitch, roll and yaw? I think only the common
418
    // throttle should be limited.
411
    // throttle should be limited.
419
    // --> WRONG. This caused motors to stall completely in tight maneuvers.
412
    // --> WRONG. This caused motors to stall completely in tight maneuvers.
420
    // Apply to individual signals instead.
413
    // Apply to individual signals instead.
421
    CHECK_MIN_MAX(tmp, 1, 255);
414
    CHECK_MIN_MAX(tmp, 1, 255);
422
    throttle = tmp;
415
    throttle = tmp;
423
 
416
 
424
    // if (i < 4) debugOut.analog[22 + i] = throttle;
417
    // if (i < 4) debugOut.analog[22 + i] = throttle;
425
 
418
 
426
    if ((MKFlags & MKFLAG_MOTOR_RUN) && mixerMatrix.motor[i][MIX_THROTTLE] > 0) {
419
    if ((MKFlags & MKFLAG_MOTOR_RUN) && mixerMatrix.motor[i][MIX_THROTTLE] > 0) {
427
      motor[i].throttle = throttle;
420
      motor[i].throttle = throttle;
428
    } else if (motorTestActive) {
421
    } else if (motorTestActive) {
429
      motor[i].throttle = motorTest[i];
422
      motor[i].throttle = motorTest[i];
430
    } else {
423
    } else {
431
      motor[i].throttle = 0;
424
      motor[i].throttle = 0;
432
    }
425
    }
433
  }
426
  }
434
 
427
 
435
  I2C_Start(TWI_STATE_MOTOR_TX);
428
  I2C_Start(TWI_STATE_MOTOR_TX);
436
 
429
 
437
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
430
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
438
  // Debugging
431
  // Debugging
439
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
432
  // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
440
  if (!(--debugDataTimer)) {
433
  if (!(--debugDataTimer)) {
441
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
434
    debugDataTimer = 24; // update debug outputs at 488 / 24 = 20.3 Hz.
442
    debugOut.analog[0] = (10 * angle[PITCH]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
435
    debugOut.analog[0] = (10 * angle[PITCH]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
443
    debugOut.analog[1] = (10 * angle[ROLL]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
436
    debugOut.analog[1] = (10 * angle[ROLL]) / GYRO_DEG_FACTOR_PITCHROLL; // in 0.1 deg
444
    debugOut.analog[2] = yawGyroHeading / GYRO_DEG_FACTOR_YAW;
437
    debugOut.analog[2] = yawGyroHeading / GYRO_DEG_FACTOR_YAW;
445
  }
438
  }
446
}
439
}
447
 
440