Subversion Repositories FlightCtrl

Rev

Rev 1960 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1960 Rev 1961
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
 
51
 
52
/************************************************************************/
52
/************************************************************************/
53
/* Flight Attitude                                                      */
53
/* Flight Attitude                                                      */
54
/************************************************************************/
54
/************************************************************************/
55
 
55
 
56
#include <stdlib.h>
56
#include <stdlib.h>
57
#include <avr/io.h>
57
#include <avr/io.h>
58
 
58
 
59
#include "attitude.h"
59
#include "attitude.h"
60
#include "dongfangMath.h"
60
#include "dongfangMath.h"
61
 
61
 
62
// For scope debugging only!
62
// For scope debugging only!
63
#include "rc.h"
63
#include "rc.h"
64
 
64
 
65
// where our main data flow comes from.
65
// where our main data flow comes from.
66
#include "analog.h"
66
#include "analog.h"
67
 
67
 
68
#include "configuration.h"
68
#include "configuration.h"
69
#include "output.h"
69
#include "output.h"
70
 
70
 
71
// Some calculations are performed depending on some stick related things.
71
// Some calculations are performed depending on some stick related things.
72
#include "controlMixer.h"
72
#include "controlMixer.h"
73
 
73
 
74
// For Servo_On / Off
74
// For Servo_On / Off
75
// #include "timer2.h"
75
// #include "timer2.h"
76
 
76
 
77
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
77
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
78
 
78
 
79
/*
79
/*
80
 * Gyro readings, as read from the analog module. It would have been nice to flow
80
 * Gyro readings, as read from the analog module. It would have been nice to flow
81
 * them around between the different calculations as a struct or array (doing
81
 * them around between the different calculations as a struct or array (doing
82
 * things functionally without side effects) but this is shorter and probably
82
 * things functionally without side effects) but this is shorter and probably
83
 * faster too.
83
 * faster too.
84
 * The variables are overwritten at each attitude calculation invocation - the values
84
 * The variables are overwritten at each attitude calculation invocation - the values
85
 * are not preserved or reused.
85
 * are not preserved or reused.
86
 */
86
 */
87
int16_t rate_ATT[2], yawRate;
87
int16_t rate_ATT[2], yawRate;
88
 
88
 
89
// With different (less) filtering
89
// With different (less) filtering
90
int16_t rate_PID[2];
90
int16_t rate_PID[2];
91
int16_t differential[2];
91
int16_t differential[2];
92
 
92
 
93
/*
93
/*
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
97
 * copied into these directly.
97
 * copied into these directly.
98
 * These are global for the same pragmatic reason as with the gyro readings.
98
 * These are global for the same pragmatic reason as with the gyro readings.
99
 * The variables are overwritten at each attitude calculation invocation - the values
99
 * The variables are overwritten at each attitude calculation invocation - the values
100
 * are not preserved or reused.
100
 * are not preserved or reused.
101
 */
101
 */
102
int16_t ACRate[2], ACYawRate;
102
int16_t ACRate[2], ACYawRate;
103
 
103
 
104
/*
104
/*
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
106
 * horizontal plane, yaw relative to yaw at start.
106
 * horizontal plane, yaw relative to yaw at start.
107
 */
107
 */
108
int32_t angle[2], yawAngleDiff;
108
int32_t angle[2], yawAngleDiff;
109
 
109
 
110
int readingHeight = 0;
110
int readingHeight = 0;
111
 
111
 
112
// Yaw angle and compass stuff.
112
// Yaw angle and compass stuff.
113
 
113
 
114
// This is updated/written from MM3. Negative angle indicates invalid data.
114
// This is updated/written from MM3. Negative angle indicates invalid data.
115
int16_t compassHeading = -1;
115
int16_t compassHeading = -1;
116
 
116
 
117
// This is NOT updated from MM3. Negative angle indicates invalid data.
117
// This is NOT updated from MM3. Negative angle indicates invalid data.
118
int16_t compassCourse = -1;
118
int16_t compassCourse = -1;
119
 
119
 
120
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
120
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
121
// Not necessary. Never read anywhere.
121
// Not necessary. Never read anywhere.
122
// int16_t compassOffCourse = 0;
122
// int16_t compassOffCourse = 0;
123
 
123
 
124
uint8_t updateCompassCourse = 0;
124
uint8_t updateCompassCourse = 0;
125
uint8_t compassCalState = 0;
125
uint8_t compassCalState = 0;
126
uint16_t ignoreCompassTimer = 500;
126
uint16_t ignoreCompassTimer = 500;
127
 
127
 
128
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
128
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
129
int16_t yawGyroDrift;
129
int16_t yawGyroDrift;
130
 
130
 
131
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
131
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
132
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
132
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
133
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
133
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
134
 
134
 
135
int16_t correctionSum[2] = { 0, 0 };
135
int16_t correctionSum[2] = { 0, 0 };
136
 
136
 
137
// For NaviCTRL use.
137
// For NaviCTRL use.
138
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
138
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
139
 
139
 
140
/*
140
/*
141
 * Experiment: Compensating for dynamic-induced gyro biasing.
141
 * Experiment: Compensating for dynamic-induced gyro biasing.
142
 */
142
 */
143
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
143
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
144
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
144
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
145
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
145
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
146
// int16_t dynamicCalCount;
146
// int16_t dynamicCalCount;
147
 
147
 
148
/************************************************************************
148
/************************************************************************
149
 * Set inclination angles from the acc. sensor data.                    
149
 * Set inclination angles from the acc. sensor data.                    
150
 * If acc. sensors are not used, set to zero.                          
150
 * If acc. sensors are not used, set to zero.                          
151
 * TODO: One could use inverse sine to calculate the angles more        
151
 * TODO: One could use inverse sine to calculate the angles more        
152
 * accurately, but since: 1) the angles are rather small at times when
152
 * accurately, but since: 1) the angles are rather small at times when
153
 * it makes sense to set the integrals (standing on ground, or flying at  
153
 * it makes sense to set the integrals (standing on ground, or flying at  
154
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
154
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
155
 * it is hardly worth the trouble.                                      
155
 * it is hardly worth the trouble.                                      
156
 ************************************************************************/
156
 ************************************************************************/
157
 
157
 
158
int32_t getAngleEstimateFromAcc(uint8_t axis) {
158
int32_t getAngleEstimateFromAcc(uint8_t axis) {
159
  return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
159
  return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
160
}
160
}
161
 
161
 
162
void setStaticAttitudeAngles(void) {
162
void setStaticAttitudeAngles(void) {
163
#ifdef ATTITUDE_USE_ACC_SENSORS
163
#ifdef ATTITUDE_USE_ACC_SENSORS
164
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
164
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
165
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
165
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
166
#else
166
#else
167
  angle[PITCH] = angle[ROLL] = 0;
167
  angle[PITCH] = angle[ROLL] = 0;
168
#endif
168
#endif
169
}
169
}
170
 
170
 
171
/************************************************************************
171
/************************************************************************
172
 * Neutral Readings                                                    
172
 * Neutral Readings                                                    
173
 ************************************************************************/
173
 ************************************************************************/
174
void attitude_setNeutral(void) {
174
void attitude_setNeutral(void) {
175
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
175
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
176
  dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
176
  dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
177
 
177
 
178
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
178
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
179
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
179
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
180
 
180
 
181
  // Calibrate hardware.
181
  // Calibrate hardware.
182
  analog_calibrate();
182
  analog_setNeutral();
183
 
183
 
184
  // reset gyro integrals to acc guessing
184
  // reset gyro integrals to acc guessing
185
  setStaticAttitudeAngles();
185
  setStaticAttitudeAngles();
186
  yawAngleDiff = 0;
186
  yawAngleDiff = 0;
187
 
187
 
188
  // update compass course to current heading
188
  // update compass course to current heading
189
  compassCourse = compassHeading;
189
  compassCourse = compassHeading;
190
 
190
 
191
  // Inititialize YawGyroIntegral value with current compass heading
191
  // Inititialize YawGyroIntegral value with current compass heading
192
  yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
192
  yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
193
 
193
 
194
  // Servo_On(); //enable servo output
194
  // Servo_On(); //enable servo output
195
}
195
}
196
 
196
 
197
/************************************************************************
197
/************************************************************************
198
 * Get sensor data from the analog module, and release the ADC          
198
 * Get sensor data from the analog module, and release the ADC          
199
 * TODO: Ultimately, the analog module could do this (instead of dumping
199
 * TODO: Ultimately, the analog module could do this (instead of dumping
200
 * the values into variables).
200
 * the values into variables).
201
 * The rate variable end up in a range of about [-1024, 1023].
201
 * The rate variable end up in a range of about [-1024, 1023].
202
 *************************************************************************/
202
 *************************************************************************/
203
void getAnalogData(void) {
203
void getAnalogData(void) {
204
  uint8_t axis;
204
  uint8_t axis;
205
 
205
 
206
  analog_update();
206
  analog_update();
207
 
207
 
208
  for (axis = PITCH; axis <= ROLL; axis++) {
208
  for (axis = PITCH; axis <= ROLL; axis++) {
209
    rate_PID[axis] = gyro_PID[axis] /* / HIRES_GYRO_INTEGRATION_FACTOR */ + driftComp[axis];
209
    rate_PID[axis] = gyro_PID[axis] /* / HIRES_GYRO_INTEGRATION_FACTOR */ + driftComp[axis];
210
    rate_ATT[axis] = gyro_ATT[axis] /* / HIRES_GYRO_INTEGRATION_FACTOR */ + driftComp[axis];
210
    rate_ATT[axis] = gyro_ATT[axis] /* / HIRES_GYRO_INTEGRATION_FACTOR */ + driftComp[axis];
211
    differential[axis] = gyroD[axis];
211
    differential[axis] = gyroD[axis];
212
    averageAcc[axis] += acc[axis];
212
    averageAcc[axis] += acc[axis];
213
  }
213
  }
214
 
214
 
215
  averageAccCount++;
215
  averageAccCount++;
216
  yawRate = yawGyro + driftCompYaw;
216
  yawRate = yawGyro + driftCompYaw;
217
 
217
 
218
  // We are done reading variables from the analog module.
218
  // We are done reading variables from the analog module.
219
  // Interrupt-driven sensor reading may restart.
219
  // Interrupt-driven sensor reading may restart.
220
  startAnalogConversionCycle();
220
  startAnalogConversionCycle();
221
}
221
}
222
 
222
 
223
/*
223
/*
224
 * This is the standard flight-style coordinate system transformation
224
 * This is the standard flight-style coordinate system transformation
225
 * (from airframe-local axes to a ground-based system). For some reason
225
 * (from airframe-local axes to a ground-based system). For some reason
226
 * the MK uses a left-hand coordinate system. The tranformation has been
226
 * the MK uses a left-hand coordinate system. The tranformation has been
227
 * changed accordingly.
227
 * changed accordingly.
228
 */
228
 */
229
void trigAxisCoupling(void) {
229
void trigAxisCoupling(void) {
230
  int16_t cospitch = int_cos(angle[PITCH]);
230
  int16_t cospitch = int_cos(angle[PITCH]);
231
  int16_t cosroll = int_cos(angle[ROLL]);
231
  int16_t cosroll = int_cos(angle[ROLL]);
232
  int16_t sinroll = int_sin(angle[ROLL]);
232
  int16_t sinroll = int_sin(angle[ROLL]);
233
 
233
 
234
  ACRate[PITCH] = (((int32_t)rate_ATT[PITCH] * cosroll - (int32_t)yawRate
234
  ACRate[PITCH] = (((int32_t)rate_ATT[PITCH] * cosroll - (int32_t)yawRate
235
      * sinroll) >> MATH_UNIT_FACTOR_LOG);
235
      * sinroll) >> MATH_UNIT_FACTOR_LOG);
236
 
236
 
237
  ACRate[ROLL] = rate_ATT[ROLL] + (((((int32_t)rate_ATT[PITCH] * sinroll
237
  ACRate[ROLL] = rate_ATT[ROLL] + (((((int32_t)rate_ATT[PITCH] * sinroll
238
      + (int32_t)yawRate * cosroll) >> MATH_UNIT_FACTOR_LOG) * int_tan(
238
      + (int32_t)yawRate * cosroll) >> MATH_UNIT_FACTOR_LOG) * int_tan(
239
      angle[PITCH])) >> MATH_UNIT_FACTOR_LOG);
239
      angle[PITCH])) >> MATH_UNIT_FACTOR_LOG);
240
 
240
 
241
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
241
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
242
 
242
 
243
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
243
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
244
}
244
}
245
 
245
 
246
// 480 usec with axis coupling - almost no time without.
246
// 480 usec with axis coupling - almost no time without.
247
void integrate(void) {
247
void integrate(void) {
248
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
248
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
249
  uint8_t axis;
249
  uint8_t axis;
250
 
250
 
251
  if (/*!looping && */ (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE)) {
251
  if (/*!looping && */ (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE)) {
252
    trigAxisCoupling();
252
    trigAxisCoupling();
253
  } else {
253
  } else {
254
    ACRate[PITCH] = rate_ATT[PITCH];
254
    ACRate[PITCH] = rate_ATT[PITCH];
255
    ACRate[ROLL] = rate_ATT[ROLL];
255
    ACRate[ROLL] = rate_ATT[ROLL];
256
    ACYawRate = yawRate;
256
    ACYawRate = yawRate;
257
  }
257
  }
258
 
258
 
259
  /*
259
  /*
260
   * Yaw
260
   * Yaw
261
   * Calculate yaw gyro integral (~ to rotation angle)
261
   * Calculate yaw gyro integral (~ to rotation angle)
262
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
262
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
263
   */
263
   */
264
  yawGyroHeading += ACYawRate;
264
  yawGyroHeading += ACYawRate;
265
  yawAngleDiff += yawRate;
265
  yawAngleDiff += yawRate;
266
 
266
 
267
  if (yawGyroHeading >= YAWOVER360) {
267
  if (yawGyroHeading >= YAWOVER360) {
268
    yawGyroHeading -= YAWOVER360; // 360 deg. wrap
268
    yawGyroHeading -= YAWOVER360; // 360 deg. wrap
269
  } else if (yawGyroHeading < 0) {
269
  } else if (yawGyroHeading < 0) {
270
    yawGyroHeading += YAWOVER360;
270
    yawGyroHeading += YAWOVER360;
271
  }
271
  }
272
 
272
 
273
  /*
273
  /*
274
   * Pitch axis integration and range boundary wrap.
274
   * Pitch axis integration and range boundary wrap.
275
   */
275
   */
276
  for (axis = PITCH; axis <= ROLL; axis++) {
276
  for (axis = PITCH; axis <= ROLL; axis++) {
277
    angle[axis] += ACRate[axis];
277
    angle[axis] += ACRate[axis];
278
    if (angle[axis] > PITCHROLLOVER180) {
278
    if (angle[axis] > PITCHROLLOVER180) {
279
      angle[axis] -= PITCHROLLOVER360;
279
      angle[axis] -= PITCHROLLOVER360;
280
    } else if (angle[axis] <= -PITCHROLLOVER180) {
280
    } else if (angle[axis] <= -PITCHROLLOVER180) {
281
      angle[axis] += PITCHROLLOVER360;
281
      angle[axis] += PITCHROLLOVER360;
282
    }
282
    }
283
  }
283
  }
284
}
284
}
285
 
285
 
286
/************************************************************************
286
/************************************************************************
287
 * A kind of 0'th order integral correction, that corrects the integrals
287
 * A kind of 0'th order integral correction, that corrects the integrals
288
 * directly. This is the "gyroAccFactor" stuff in the original code.
288
 * directly. This is the "gyroAccFactor" stuff in the original code.
289
 * There is (there) also a drift compensation
289
 * There is (there) also a drift compensation
290
 * - it corrects the differential of the integral = the gyro offsets.
290
 * - it corrects the differential of the integral = the gyro offsets.
291
 * That should only be necessary with drifty gyros like ENC-03.
291
 * That should only be necessary with drifty gyros like ENC-03.
292
 ************************************************************************/
292
 ************************************************************************/
293
void correctIntegralsByAcc0thOrder(void) {
293
void correctIntegralsByAcc0thOrder(void) {
294
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
294
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
295
  // are less than ....., or reintroduce Kalman.
295
  // are less than ....., or reintroduce Kalman.
296
  // Well actually the Z axis acc. check is not so silly.
296
  // Well actually the Z axis acc. check is not so silly.
297
  uint8_t axis;
297
  uint8_t axis;
298
  int32_t temp;
298
  int32_t temp;
299
  debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
299
  debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
300
  debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
300
  debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
301
 
301
 
302
  if (1 /*controlActivity <= dynamicParams.maxControlActivityForAcc*/) {
302
  if (1 /*controlActivity <= dynamicParams.maxControlActivityForAcc*/) {
303
    uint8_t permilleAcc = staticParams.zerothOrderCorrection;
303
    uint8_t permilleAcc = staticParams.zerothOrderCorrection;
304
    int32_t accDerived;
304
    int32_t accDerived;
305
 
305
 
306
    /*
306
    /*
307
    if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
307
    if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
308
      permilleAcc /= 2;
308
      permilleAcc /= 2;
309
      debugFullWeight = 0;
309
      debugFullWeight = 0;
310
    }
310
    }
311
 
311
 
312
    if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
312
    if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
313
      permilleAcc /= 2;
313
      permilleAcc /= 2;
314
      debugFullWeight = 0;
314
      debugFullWeight = 0;
315
    */
315
    */
316
 
316
 
317
    if (controlActivity > 10000) { // reduce effect during stick commands
317
    if (controlActivity > 10000) { // reduce effect during stick commands
318
      permilleAcc /= 4;
318
      permilleAcc /= 4;
319
      debugOut.digital[0] |= DEBUG_ACC0THORDER;
319
      debugOut.digital[0] |= DEBUG_ACC0THORDER;
320
      if (controlActivity > 20000) { // reduce effect during stick commands
320
      if (controlActivity > 20000) { // reduce effect during stick commands
321
        permilleAcc /= 4;
321
        permilleAcc /= 4;
322
        debugOut.digital[1] |= DEBUG_ACC0THORDER;
322
        debugOut.digital[1] |= DEBUG_ACC0THORDER;
323
      }
323
      }
324
    }
324
    }
325
 
325
 
326
    /*
326
    /*
327
     * Add to each sum: The amount by which the angle is changed just below.
327
     * Add to each sum: The amount by which the angle is changed just below.
328
     */
328
     */
329
    for (axis = PITCH; axis <= ROLL; axis++) {
329
    for (axis = PITCH; axis <= ROLL; axis++) {
330
      accDerived = getAngleEstimateFromAcc(axis);
330
      accDerived = getAngleEstimateFromAcc(axis);
331
      debugOut.analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
331
      debugOut.analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
332
 
332
 
333
      // 1000 * the correction amount that will be added to the gyro angle in next line.
333
      // 1000 * the correction amount that will be added to the gyro angle in next line.
334
      temp = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
334
      temp = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
335
      angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
335
      angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
336
          + (int32_t) permilleAcc * accDerived) / 1000L;
336
          + (int32_t) permilleAcc * accDerived) / 1000L;
337
      correctionSum[axis] += angle[axis] - temp;
337
      correctionSum[axis] += angle[axis] - temp;
338
    }
338
    }
339
  } else {
339
  } else {
340
    debugOut.analog[9] = 0;
340
    debugOut.analog[9] = 0;
341
    debugOut.analog[10] = 0;
341
    debugOut.analog[10] = 0;
342
 
342
 
343
    // experiment: Kill drift compensation updates when not flying smooth.
343
    // experiment: Kill drift compensation updates when not flying smooth.
344
    correctionSum[PITCH] = correctionSum[ROLL] = 0;
344
    correctionSum[PITCH] = correctionSum[ROLL] = 0;
345
  }
345
  }
346
}
346
}
347
 
347
 
348
/************************************************************************
348
/************************************************************************
349
 * This is an attempt to correct not the error in the angle integrals
349
 * This is an attempt to correct not the error in the angle integrals
350
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
350
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
351
 * cause of it: Gyro drift, vibration and rounding errors.
351
 * cause of it: Gyro drift, vibration and rounding errors.
352
 * All the corrections made in correctIntegralsByAcc0thOrder over
352
 * All the corrections made in correctIntegralsByAcc0thOrder over
353
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
353
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
354
 * then divided by DRIFTCORRECTION_TIME to get the approx.
354
 * then divided by DRIFTCORRECTION_TIME to get the approx.
355
 * correction that should have been applied to each iteration to fix
355
 * correction that should have been applied to each iteration to fix
356
 * the error. This is then added to the dynamic offsets.
356
 * the error. This is then added to the dynamic offsets.
357
 ************************************************************************/
357
 ************************************************************************/
358
// 2 times / sec. = 488/2
358
// 2 times / sec. = 488/2
359
#define DRIFTCORRECTION_TIME 256L
359
#define DRIFTCORRECTION_TIME 256L
360
void driftCorrection(void) {
360
void driftCorrection(void) {
361
  static int16_t timer = DRIFTCORRECTION_TIME;
361
  static int16_t timer = DRIFTCORRECTION_TIME;
362
  int16_t deltaCorrection;
362
  int16_t deltaCorrection;
363
  int16_t round;
363
  int16_t round;
364
  uint8_t axis;
364
  uint8_t axis;
365
 
365
 
366
  if (!--timer) {
366
  if (!--timer) {
367
    timer = DRIFTCORRECTION_TIME;
367
    timer = DRIFTCORRECTION_TIME;
368
    for (axis = PITCH; axis <= ROLL; axis++) {
368
    for (axis = PITCH; axis <= ROLL; axis++) {
369
      // Take the sum of corrections applied, add it to delta
369
      // Take the sum of corrections applied, add it to delta
370
      if (correctionSum[axis] >=0)
370
      if (correctionSum[axis] >=0)
371
        round = DRIFTCORRECTION_TIME / 2;
371
        round = DRIFTCORRECTION_TIME / 2;
372
      else
372
      else
373
        round = -DRIFTCORRECTION_TIME / 2;
373
        round = -DRIFTCORRECTION_TIME / 2;
374
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
374
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
375
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
375
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
376
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
376
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
377
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
377
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
378
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
378
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
379
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
379
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
380
      debugOut.analog[28 + axis] = driftComp[axis];
380
      debugOut.analog[28 + axis] = driftComp[axis];
381
 
381
 
382
      correctionSum[axis] = 0;
382
      correctionSum[axis] = 0;
383
    }
383
    }
384
  }
384
  }
385
}
385
}
386
 
386
 
387
/************************************************************************
387
/************************************************************************
388
 * Main procedure.
388
 * Main procedure.
389
 ************************************************************************/
389
 ************************************************************************/
390
void calculateFlightAttitude(void) {
390
void calculateFlightAttitude(void) {
391
  getAnalogData();
391
  getAnalogData();
392
  integrate();
392
  integrate();
393
 
393
 
394
#ifdef ATTITUDE_USE_ACC_SENSORS
394
#ifdef ATTITUDE_USE_ACC_SENSORS
395
  correctIntegralsByAcc0thOrder();
395
  correctIntegralsByAcc0thOrder();
396
  driftCorrection();
396
  driftCorrection();
397
#endif
397
#endif
398
}
398
}
399
 
399
 
400
void updateCompass(void) {
400
void updateCompass(void) {
401
  int16_t w, v, r, correction, error;
401
  int16_t w, v, r, correction, error;
402
 
402
 
403
  if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
403
  if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
404
    if (controlMixer_testCompassCalState()) {
404
    if (controlMixer_testCompassCalState()) {
405
      compassCalState++;
405
      compassCalState++;
406
      if (compassCalState < 5)
406
      if (compassCalState < 5)
407
        beepNumber(compassCalState);
407
        beepNumber(compassCalState);
408
      else
408
      else
409
        beep(1000);
409
        beep(1000);
410
    }
410
    }
411
  } else {
411
  } else {
412
    // get maximum attitude angle
412
    // get maximum attitude angle
413
    w = abs(angle[PITCH] / 512);
413
    w = abs(angle[PITCH] / 512);
414
    v = abs(angle[ROLL] / 512);
414
    v = abs(angle[ROLL] / 512);
415
    if (v > w)
415
    if (v > w)
416
      w = v;
416
      w = v;
417
    correction = w / 8 + 1;
417
    correction = w / 8 + 1;
418
    // calculate the deviation of the yaw gyro heading and the compass heading
418
    // calculate the deviation of the yaw gyro heading and the compass heading
419
    if (compassHeading < 0)
419
    if (compassHeading < 0)
420
      error = 0; // disable yaw drift compensation if compass heading is undefined
420
      error = 0; // disable yaw drift compensation if compass heading is undefined
421
    else if (abs(yawRate) > 128) { // spinning fast
421
    else if (abs(yawRate) > 128) { // spinning fast
422
      error = 0;
422
      error = 0;
423
    } else {
423
    } else {
424
      // compassHeading - yawGyroHeading, on a -180..179 deg interval.
424
      // compassHeading - yawGyroHeading, on a -180..179 deg interval.
425
      error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW))
425
      error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW))
426
          % 360) - 180;
426
          % 360) - 180;
427
    }
427
    }
428
    if (!ignoreCompassTimer && w < 25) {
428
    if (!ignoreCompassTimer && w < 25) {
429
      yawGyroDrift += error;
429
      yawGyroDrift += error;
430
      // Basically this gets set if we are in "fix" mode, and when starting.
430
      // Basically this gets set if we are in "fix" mode, and when starting.
431
      if (updateCompassCourse) {
431
      if (updateCompassCourse) {
432
        beep(200);
432
        beep(200);
433
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
433
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
434
        compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
434
        compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
435
        updateCompassCourse = 0;
435
        updateCompassCourse = 0;
436
      }
436
      }
437
    }
437
    }
438
    yawGyroHeading += (error * 8) / correction;
438
    yawGyroHeading += (error * 8) / correction;
439
 
439
 
440
    /*
440
    /*
441
     w = (w * dynamicParams.CompassYawEffect) / 32;
441
     w = (w * dynamicParams.CompassYawEffect) / 32;
442
     w = dynamicParams.CompassYawEffect - w;
442
     w = dynamicParams.CompassYawEffect - w;
443
     */
443
     */
444
    w = dynamicParams.compassYawEffect - (w * dynamicParams.compassYawEffect)
444
    w = dynamicParams.compassYawEffect - (w * dynamicParams.compassYawEffect)
445
        / 32;
445
        / 32;
446
 
446
 
447
    // As readable formula:
447
    // As readable formula:
448
    // w = dynamicParams.CompassYawEffect * (1-w/32);
448
    // w = dynamicParams.CompassYawEffect * (1-w/32);
449
 
449
 
450
    if (w >= 0) { // maxAttitudeAngle < 32
450
    if (w >= 0) { // maxAttitudeAngle < 32
451
      if (!ignoreCompassTimer) {
451
      if (!ignoreCompassTimer) {
452
        /*v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;*/
452
        /*v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;*/
453
        v = 64 + controlActivity / 100;
453
        v = 64 + controlActivity / 100;
454
        // yawGyroHeading - compassCourse on a -180..179 degree interval.
454
        // yawGyroHeading - compassCourse on a -180..179 degree interval.
455
        r
455
        r
456
            = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse)
456
            = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse)
457
                % 360) - 180;
457
                % 360) - 180;
458
        v = (r * w) / v; // align to compass course
458
        v = (r * w) / v; // align to compass course
459
        // limit yaw rate
459
        // limit yaw rate
460
        w = 3 * dynamicParams.compassYawEffect;
460
        w = 3 * dynamicParams.compassYawEffect;
461
        if (v > w)
461
        if (v > w)
462
          v = w;
462
          v = w;
463
        else if (v < -w)
463
        else if (v < -w)
464
          v = -w;
464
          v = -w;
465
        yawAngleDiff += v;
465
        yawAngleDiff += v;
466
      } else { // wait a while
466
      } else { // wait a while
467
        ignoreCompassTimer--;
467
        ignoreCompassTimer--;
468
      }
468
      }
469
    } else { // ignore compass at extreme attitudes for a while
469
    } else { // ignore compass at extreme attitudes for a while
470
      ignoreCompassTimer = 500;
470
      ignoreCompassTimer = 500;
471
    }
471
    }
472
  }
472
  }
473
}
473
}
474
 
474
 
475
/*
475
/*
476
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
476
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
477
 * and to compensate them away. It brings about some improvement, but no miracles.
477
 * and to compensate them away. It brings about some improvement, but no miracles.
478
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
478
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
479
 * will measure the effect of vibration, to use for later compensation. So, one should keep
479
 * will measure the effect of vibration, to use for later compensation. So, one should keep
480
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
480
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
481
 * speed unfortunately... must find a better way)
481
 * speed unfortunately... must find a better way)
482
 */
482
 */
483
/*
483
/*
484
 void attitude_startDynamicCalibration(void) {
484
 void attitude_startDynamicCalibration(void) {
485
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
485
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
486
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
486
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
487
 }
487
 }
488
 
488
 
489
 void attitude_continueDynamicCalibration(void) {
489
 void attitude_continueDynamicCalibration(void) {
490
 // measure dynamic offset now...
490
 // measure dynamic offset now...
491
 dynamicCalPitch += hiResPitchGyro;
491
 dynamicCalPitch += hiResPitchGyro;
492
 dynamicCalRoll += hiResRollGyro;
492
 dynamicCalRoll += hiResRollGyro;
493
 dynamicCalYaw += rawYawGyroSum;
493
 dynamicCalYaw += rawYawGyroSum;
494
 dynamicCalCount++;
494
 dynamicCalCount++;
495
 
495
 
496
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
496
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
497
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
497
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
498
 // manual mode
498
 // manual mode
499
 driftCompPitch = dynamicParams.UserParam7 - 128;
499
 driftCompPitch = dynamicParams.UserParam7 - 128;
500
 driftCompRoll = dynamicParams.UserParam8 - 128;
500
 driftCompRoll = dynamicParams.UserParam8 - 128;
501
 } else {
501
 } else {
502
 // use the sampled value (does not seem to work so well....)
502
 // use the sampled value (does not seem to work so well....)
503
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
503
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
504
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
504
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
505
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
505
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
506
 }
506
 }
507
 
507
 
508
 // keep resetting these meanwhile, to avoid accumulating errors.
508
 // keep resetting these meanwhile, to avoid accumulating errors.
509
 setStaticAttitudeIntegrals();
509
 setStaticAttitudeIntegrals();
510
 yawAngle = 0;
510
 yawAngle = 0;
511
 }
511
 }
512
 */
512
 */
513
 
513