Subversion Repositories FlightCtrl

Rev

Rev 2088 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2088 Rev 2089
1
#include <stdlib.h>
1
#include <stdlib.h>
2
#include <avr/io.h>
2
#include <avr/io.h>
3
 
3
 
4
#include "attitude.h"
4
#include "attitude.h"
5
#include "dongfangMath.h"
5
#include "dongfangMath.h"
6
#include "commands.h"
6
#include "commands.h"
7
 
7
 
8
// For scope debugging only!
8
// For scope debugging only!
9
#include "rc.h"
9
#include "rc.h"
10
 
10
 
11
// where our main data flow comes from.
11
// where our main data flow comes from.
12
#include "analog.h"
12
#include "analog.h"
13
 
13
 
14
#include "configuration.h"
14
#include "configuration.h"
15
#include "output.h"
15
#include "output.h"
16
 
16
 
17
// Some calculations are performed depending on some stick related things.
17
// Some calculations are performed depending on some stick related things.
18
#include "controlMixer.h"
18
#include "controlMixer.h"
19
 
19
 
20
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
20
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
21
 
21
 
22
/*
22
/*
23
 * Gyro readings, as read from the analog module. It would have been nice to flow
23
 * Gyro readings, as read from the analog module. It would have been nice to flow
24
 * them around between the different calculations as a struct or array (doing
24
 * them around between the different calculations as a struct or array (doing
25
 * things functionally without side effects) but this is shorter and probably
25
 * things functionally without side effects) but this is shorter and probably
26
 * faster too.
26
 * faster too.
27
 * The variables are overwritten at each attitude calculation invocation - the values
27
 * The variables are overwritten at each attitude calculation invocation - the values
28
 * are not preserved or reused.
28
 * are not preserved or reused.
29
 */
29
 */
30
int16_t rate_ATT[2], yawRate;
30
int16_t rate_ATT[2], yawRate;
31
 
31
 
32
// With different (less) filtering
32
// With different (less) filtering
33
int16_t rate_PID[2];
33
int16_t rate_PID[2];
34
int16_t differential[2];
34
int16_t differential[2];
35
 
35
 
36
/*
36
/*
37
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
37
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
38
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
38
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
39
 * coordinate system. If axis copling is disabled, the gyro readings will be
39
 * coordinate system. If axis copling is disabled, the gyro readings will be
40
 * copied into these directly.
40
 * copied into these directly.
41
 * These are global for the same pragmatic reason as with the gyro readings.
41
 * These are global for the same pragmatic reason as with the gyro readings.
42
 * The variables are overwritten at each attitude calculation invocation - the values
42
 * The variables are overwritten at each attitude calculation invocation - the values
43
 * are not preserved or reused.
43
 * are not preserved or reused.
44
 */
44
 */
45
int16_t ACRate[2], ACYawRate;
45
int16_t ACRate[2], ACYawRate;
46
 
46
 
47
/*
47
/*
48
 * Gyro integrals. These are the rotation angles of the airframe compared to the
48
 * Gyro integrals. These are the rotation angles of the airframe compared to the
49
 * horizontal plane, yaw relative to yaw at start.
49
 * horizontal plane, yaw relative to yaw at start.
50
 */
50
 */
51
int32_t attitude[2];
51
int32_t attitude[2];
52
 
52
 
53
//int readingHeight = 0;
53
//int readingHeight = 0;
54
 
54
 
55
// Yaw angle and compass stuff.
55
// Yaw angle and compass stuff.
56
int32_t headingError;
56
int32_t headingError;
57
 
57
 
58
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
58
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
59
// Not necessary. Never read anywhere.
59
// Not necessary. Never read anywhere.
60
// int16_t compassOffCourse = 0;
60
// int16_t compassOffCourse = 0;
61
 
61
 
62
uint16_t ignoreCompassTimer = 0;// 500;
62
uint16_t ignoreCompassTimer = 0;// 500;
63
 
63
 
64
int32_t heading; // Yaw Gyro Integral supported by compass
64
int32_t heading; // Yaw Gyro Integral supported by compass
65
int16_t yawGyroDrift;
65
int16_t yawGyroDrift;
66
 
66
 
67
int16_t correctionSum[2] = { 0, 0 };
67
int16_t correctionSum[2] = { 0, 0 };
68
 
68
 
69
// For NaviCTRL use.
69
// For NaviCTRL use.
70
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
70
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
71
 
71
 
72
/*
72
/*
73
 * Experiment: Compensating for dynamic-induced gyro biasing.
73
 * Experiment: Compensating for dynamic-induced gyro biasing.
74
 */
74
 */
75
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
75
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
76
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
76
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
77
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
77
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
78
// int16_t dynamicCalCount;
78
// int16_t dynamicCalCount;
-
 
79
// uint16_t accVector;
79
 
80
 
80
uint16_t accVector;
81
// uint32_t gyroActivity;
81
 
82
 
82
/************************************************************************
83
/************************************************************************
83
 * Set inclination angles from the acc. sensor data.                    
84
 * Set inclination angles from the acc. sensor data.                    
84
 * If acc. sensors are not used, set to zero.                          
85
 * If acc. sensors are not used, set to zero.                          
85
 * TODO: One could use inverse sine to calculate the angles more        
86
 * TODO: One could use inverse sine to calculate the angles more        
86
 * accurately, but since: 1) the angles are rather small at times when
87
 * accurately, but since: 1) the angles are rather small at times when
87
 * it makes sense to set the integrals (standing on ground, or flying at  
88
 * it makes sense to set the integrals (standing on ground, or flying at  
88
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
89
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
89
 * it is hardly worth the trouble.                                      
90
 * it is hardly worth the trouble.                                      
90
 ************************************************************************/
91
 ************************************************************************/
91
 
92
 
92
int32_t getAngleEstimateFromAcc(uint8_t axis) {
93
int32_t getAngleEstimateFromAcc(uint8_t axis) {
93
  //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L;
94
  //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L;
94
  return (int32_t) GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis]; // + correctionTerm;
95
  return (int32_t) GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis]; // + correctionTerm;
95
  // return 342L * filteredAcc[axis];
96
  // return 342L * filteredAcc[axis];
96
}
97
}
97
 
98
 
98
void setStaticAttitudeAngles(void) {
99
void setStaticAttitudeAngles(void) {
99
#ifdef ATTITUDE_USE_ACC_SENSORS
100
#ifdef ATTITUDE_USE_ACC_SENSORS
100
  attitude[PITCH] = getAngleEstimateFromAcc(PITCH);
101
  attitude[PITCH] = getAngleEstimateFromAcc(PITCH);
101
  attitude[ROLL] = getAngleEstimateFromAcc(ROLL);
102
  attitude[ROLL] = getAngleEstimateFromAcc(ROLL);
102
#else
103
#else
103
  attitude[PITCH] = attitude[ROLL] = 0;
104
  attitude[PITCH] = attitude[ROLL] = 0;
104
#endif
105
#endif
105
}
106
}
106
 
107
 
107
/************************************************************************
108
/************************************************************************
108
 * Neutral Readings                                                    
109
 * Neutral Readings                                                    
109
 ************************************************************************/
110
 ************************************************************************/
110
void attitude_setNeutral(void) {
111
void attitude_setNeutral(void) {
111
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
112
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
112
  // dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
113
  // dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
113
 
114
 
114
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
115
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
115
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
116
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
116
 
117
 
117
  // Calibrate hardware.
118
  // Calibrate hardware.
118
  analog_setNeutral();
119
  analog_setNeutral();
119
 
120
 
120
  // reset gyro integrals to acc guessing
121
  // reset gyro integrals to acc guessing
121
  setStaticAttitudeAngles();
122
  setStaticAttitudeAngles();
-
 
123
 
122
#ifdef USE_MK3MAG
124
#ifdef USE_MK3MAG
123
  attitude_resetHeadingToMagnetic();
125
  attitude_resetHeadingToMagnetic();
124
#endif
126
#endif
125
  // Servo_On(); //enable servo output
127
  // Servo_On(); //enable servo output
126
}
128
}
127
 
129
 
128
/************************************************************************
130
/************************************************************************
129
 * Get sensor data from the analog module, and release the ADC          
131
 * Get sensor data from the analog module, and release the ADC          
130
 * TODO: Ultimately, the analog module could do this (instead of dumping
132
 * TODO: Ultimately, the analog module could do this (instead of dumping
131
 * the values into variables).
133
 * the values into variables).
132
 * The rate variable end up in a range of about [-1024, 1023].
134
 * The rate variable end up in a range of about [-1024, 1023].
133
 *************************************************************************/
135
 *************************************************************************/
134
void getAnalogData(void) {
136
void getAnalogData(void) {
135
  uint8_t axis;
137
  uint8_t axis;
136
 
138
 
137
  analog_update();
139
  analog_update();
138
 
140
 
139
  for (axis = PITCH; axis <= ROLL; axis++) {
141
  for (axis = PITCH; axis <= ROLL; axis++) {
140
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
142
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
141
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
143
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
142
    differential[axis] = gyroD[axis];
144
    differential[axis] = gyroD[axis];
143
    averageAcc[axis] += acc[axis];
145
    averageAcc[axis] += acc[axis];
144
  }
146
  }
145
 
147
 
146
  averageAccCount++;
148
  averageAccCount++;
147
  yawRate = yawGyro + driftCompYaw;
149
  yawRate = yawGyro + driftCompYaw;
148
}
150
}
149
 
151
 
150
/*
152
/*
151
 * This is the standard flight-style coordinate system transformation
153
 * This is the standard flight-style coordinate system transformation
152
 * (from airframe-local axes to a ground-based system). For some reason
154
 * (from airframe-local axes to a ground-based system). For some reason
153
 * the MK uses a left-hand coordinate system. The tranformation has been
155
 * the MK uses a left-hand coordinate system. The tranformation has been
154
 * changed accordingly.
156
 * changed accordingly.
155
 */
157
 */
156
void trigAxisCoupling(void) {
158
void trigAxisCoupling(void) {
157
  int16_t rollAngleInDegrees = attitude[ROLL] / GYRO_DEG_FACTOR_PITCHROLL;
159
  int16_t rollAngleInDegrees = attitude[ROLL] / GYRO_DEG_FACTOR_PITCHROLL;
158
  int16_t pitchAngleInDegrees = attitude[PITCH] / GYRO_DEG_FACTOR_PITCHROLL;
160
  int16_t pitchAngleInDegrees = attitude[PITCH] / GYRO_DEG_FACTOR_PITCHROLL;
159
 
161
 
160
  int16_t cospitch = cos_360(pitchAngleInDegrees);
162
  int16_t cospitch = cos_360(pitchAngleInDegrees);
161
  int16_t cosroll = cos_360(rollAngleInDegrees);
163
  int16_t cosroll = cos_360(rollAngleInDegrees);
162
  int16_t sinroll = sin_360(rollAngleInDegrees);
164
  int16_t sinroll = sin_360(rollAngleInDegrees);
163
 
165
 
164
  ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll
166
  ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll
165
      - (int32_t) yawRate * sinroll) >> LOG_MATH_UNIT_FACTOR);
167
      - (int32_t) yawRate * sinroll) >> LOG_MATH_UNIT_FACTOR);
166
 
168
 
167
  ACRate[ROLL] = rate_ATT[ROLL]
169
  ACRate[ROLL] = rate_ATT[ROLL]
168
      + (((((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
170
      + (((((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
169
          >> LOG_MATH_UNIT_FACTOR) * tan_360(pitchAngleInDegrees))
171
          >> LOG_MATH_UNIT_FACTOR) * tan_360(pitchAngleInDegrees))
170
          >> LOG_MATH_UNIT_FACTOR);
172
          >> LOG_MATH_UNIT_FACTOR);
171
 
173
 
172
  ACYawRate =
174
  ACYawRate =
173
      ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
175
      ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
174
          / cospitch;
176
          / cospitch;
175
}
177
}
176
 
178
 
177
// 480 usec with axis coupling - almost no time without.
179
// 480 usec with axis coupling - almost no time without.
178
void integrate(void) {
180
void integrate(void) {
179
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
181
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
180
  uint8_t axis;
182
  uint8_t axis;
181
 
183
 
182
  if (staticParams.bitConfig & CFG_AXIS_COUPLING_ENABLED) {
184
  if (staticParams.bitConfig & CFG_AXIS_COUPLING_ENABLED) {
183
    trigAxisCoupling();
185
    trigAxisCoupling();
184
  } else {
186
  } else {
185
    ACRate[PITCH] = rate_ATT[PITCH];
187
    ACRate[PITCH] = rate_ATT[PITCH];
186
    ACRate[ROLL] = rate_ATT[ROLL];
188
    ACRate[ROLL] = rate_ATT[ROLL];
187
    ACYawRate = yawRate;
189
    ACYawRate = yawRate;
188
  }
190
  }
189
 
191
 
190
  /*
192
  /*
191
   * Yaw
193
   * Yaw
192
   * Calculate yaw gyro integral (~ to rotation angle)
194
   * Calculate yaw gyro integral (~ to rotation angle)
193
   * Limit heading proportional to 0 deg to 360 deg
195
   * Limit heading proportional to 0 deg to 360 deg
194
   */
196
   */
195
  heading += ACYawRate;
197
  heading += ACYawRate;
196
  intervalWrap(&heading, YAWOVER360);
198
  intervalWrap(&heading, YAWOVER360);
197
  headingError += ACYawRate;
199
  headingError += ACYawRate;
198
 
200
 
199
  /*
201
  /*
200
   * Pitch axis integration and range boundary wrap.
202
   * Pitch axis integration and range boundary wrap.
201
   */
203
   */
202
  for (axis = PITCH; axis <= ROLL; axis++) {
204
  for (axis = PITCH; axis <= ROLL; axis++) {
203
    attitude[axis] += ACRate[axis];
205
    attitude[axis] += ACRate[axis];
204
    if (attitude[axis] > PITCHROLLOVER180) {
206
    if (attitude[axis] > PITCHROLLOVER180) {
205
      attitude[axis] -= PITCHROLLOVER360;
207
      attitude[axis] -= PITCHROLLOVER360;
206
    } else if (attitude[axis] <= -PITCHROLLOVER180) {
208
    } else if (attitude[axis] <= -PITCHROLLOVER180) {
207
      attitude[axis] += PITCHROLLOVER360;
209
      attitude[axis] += PITCHROLLOVER360;
208
    }
210
    }
209
  }
211
  }
210
}
212
}
211
 
-
 
212
void correctIntegralsByAcc0thOrder_old(void) {
-
 
213
  uint8_t axis;
-
 
214
  int32_t temp;
-
 
215
 
-
 
216
  uint8_t ca = controlActivity >> 8;
-
 
217
  uint8_t highControlActivity = (ca > staticParams.maxControlActivity);
-
 
218
 
-
 
219
  if (highControlActivity) {
-
 
220
    debugOut.digital[1] |= DEBUG_ACC0THORDER;
-
 
221
  } else {
-
 
222
    debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
-
 
223
  }
-
 
224
 
-
 
225
  if (accVector <= staticParams.maxAccVector) {
-
 
226
    debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
-
 
227
 
-
 
228
    uint8_t permilleAcc = staticParams.zerothOrderCorrection / 8;
-
 
229
    int32_t accDerived;
-
 
230
 
-
 
231
    /*
-
 
232
     if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
-
 
233
     permilleAcc /= 2;
-
 
234
     debugFullWeight = 0;
-
 
235
     }
-
 
236
 
-
 
237
     if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
-
 
238
     permilleAcc /= 2;
-
 
239
     debugFullWeight = 0;
-
 
240
     */
-
 
241
 
-
 
242
    if (highControlActivity) { // reduce effect during stick control activity
-
 
243
      permilleAcc /= 4;
-
 
244
      if (controlActivity > staticParams.maxControlActivity * 2) { // reduce effect during stick control activity
-
 
245
        permilleAcc /= 4;
-
 
246
      }
-
 
247
    }
-
 
248
 
-
 
249
    /*
-
 
250
     * Add to each sum: The amount by which the angle is changed just below.
-
 
251
     */
-
 
252
    for (axis = PITCH; axis <= ROLL; axis++) {
-
 
253
      accDerived = getAngleEstimateFromAcc(axis);
-
 
254
      //debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10);
-
 
255
      // 1000 * the correction amount that will be added to the gyro angle in next line.
-
 
256
      temp = attitude[axis];
-
 
257
      attitude[axis] = ((int32_t) (1000L - permilleAcc) * temp
-
 
258
          + (int32_t) permilleAcc * accDerived) / 1000L;
-
 
259
      correctionSum[axis] += attitude[axis] - temp;
-
 
260
    }
-
 
261
  } else {
-
 
262
    // experiment: Kill drift compensation updates when not flying smooth.
-
 
263
    // correctionSum[PITCH] = correctionSum[ROLL] = 0;
-
 
264
    debugOut.digital[0] |= DEBUG_ACC0THORDER;
-
 
265
  }
-
 
266
}
-
 
267
 
-
 
268
 
213
 
269
/************************************************************************
214
/************************************************************************
270
 * A kind of 0'th order integral correction, that corrects the integrals
215
 * A kind of 0'th order integral correction, that corrects the integrals
271
 * directly. This is the "gyroAccFactor" stuff in the original code.
216
 * directly. This is the "gyroAccFactor" stuff in the original code.
272
 * There is (there) also a drift compensation
217
 * There is (there) also a drift compensation
273
 * - it corrects the differential of the integral = the gyro offsets.
218
 * - it corrects the differential of the integral = the gyro offsets.
274
 * That should only be necessary with drifty gyros like ENC-03.
219
 * That should only be necessary with drifty gyros like ENC-03.
275
 ************************************************************************/
220
 ************************************************************************/
276
#define LOG_DIVIDER 12
221
#define LOG_DIVIDER 12
277
#define DIVIDER (1L << LOG_DIVIDER)
222
#define DIVIDER (1L << LOG_DIVIDER)
278
void correctIntegralsByAcc0thOrder_new(void) {
223
void correctIntegralsByAcc0thOrder(void) {
279
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
224
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
280
  // are less than ....., or reintroduce Kalman.
225
  // are less than ....., or reintroduce Kalman.
281
  // Well actually the Z axis acc. check is not so silly.
226
  // Well actually the Z axis acc. check is not so silly.
282
  uint8_t axis;
227
  uint8_t axis;
283
  int32_t temp;
228
  int32_t temp;
284
 
-
 
285
  // for debug LEDs, to be removed with that.
-
 
286
  static uint8_t controlActivityFlash=1;
-
 
287
  static uint8_t accFlash=1;
-
 
288
#define CF_MAX 10
-
 
289
  // [1..n[=off    [n..10]=on
-
 
290
  // 1 -->1=on, 2=on, ..., 10=on
-
 
291
  // 2 -->1=off,2=on, ..., 10=on
-
 
292
  // 10-->1=off,2=off,..., 10=on
-
 
293
  // 11-->1=off,2=off,..., 10=off
229
 
294
  uint16_t ca = controlActivity >> 6;
-
 
295
  uint8_t controlActivityWeighted = ca / staticParams.zerothOrderCorrectionControlTolerance;
-
 
296
  if (!controlActivityWeighted) controlActivityWeighted = 1;
-
 
297
  uint8_t accVectorWeighted = accVector / staticParams.zerothOrderCorrectionAccTolerance;
-
 
298
  if (!accVectorWeighted) accVectorWeighted = 1;
-
 
299
 
-
 
300
  uint8_t accPart = staticParams.zerothOrderCorrection;
-
 
301
  int32_t accDerived;
-
 
302
 
-
 
303
  debugOut.analog[14] = controlActivity;
-
 
304
  debugOut.analog[15] = accVector;
-
 
305
 
-
 
306
  debugOut.analog[20] = controlActivityWeighted;
-
 
307
  debugOut.analog[21] = accVectorWeighted;
230
  uint16_t ca = gyroActivity >> 8;
308
  debugOut.analog[24] = accVector;
231
  debugOut.analog[14] = ca;
309
 
232
 
310
  accPart /=  controlActivityWeighted;
233
  uint8_t gyroActivityWeighted = ca / staticParams.rateTolerance;
311
  accPart /=  accVectorWeighted;
-
 
312
 
-
 
313
  if (controlActivityFlash < controlActivityWeighted) {
-
 
314
          debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
-
 
315
  } else {
-
 
-
 
234
  if (!gyroActivityWeighted) gyroActivityWeighted = 1;
-
 
235
 
-
 
236
  uint8_t accPart = staticParams.zerothOrderCorrection / gyroActivityWeighted;
-
 
237
 
316
          debugOut.digital[0] |= DEBUG_ACC0THORDER;
238
  debugOut.analog[15] = gyroActivityWeighted;
317
  }
239
  debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
318
  if (++controlActivityFlash > CF_MAX+1) controlActivityFlash=1;
240
  debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
-
 
241
 
319
 
242
  if (gyroActivityWeighted < 8) {
320
  if (accFlash < accVectorWeighted) {
243
    debugOut.digital[0] |= DEBUG_ACC0THORDER;
321
          debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
-
 
322
  } else {
244
  }
323
          debugOut.digital[1] |= DEBUG_ACC0THORDER;
245
  if (gyroActivityWeighted <= 2) {
324
  }
246
    debugOut.digital[1] |= DEBUG_ACC0THORDER;
325
  if (++accFlash > CF_MAX+1) accFlash=1;
247
  }
326
 
248
 
327
  /*
249
  /*
328
   * Add to each sum: The amount by which the angle is changed just below.
250
   * Add to each sum: The amount by which the angle is changed just below.
329
   */
251
   */
330
  for (axis = PITCH; axis <= ROLL; axis++) {
252
  for (axis = PITCH; axis <= ROLL; axis++) {
331
    accDerived = getAngleEstimateFromAcc(axis);
253
    int32_t accDerived = getAngleEstimateFromAcc(axis);
332
    //debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10);
254
    //debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10);
333
    // 1000 * the correction amount that will be added to the gyro angle in next line.
255
    // 1000 * the correction amount that will be added to the gyro angle in next line.
334
    temp = attitude[axis];
256
    temp = attitude[axis];
335
    attitude[axis] = ((int32_t) (DIVIDER - accPart) * temp + (int32_t)accPart * accDerived) >> LOG_DIVIDER;
257
    attitude[axis] = ((int32_t) (DIVIDER - accPart) * temp + (int32_t)accPart * accDerived) >> LOG_DIVIDER;
336
    correctionSum[axis] += attitude[axis] - temp;
258
    correctionSum[axis] += attitude[axis] - temp;
337
  }
259
  }
338
}
260
}
339
 
261
 
340
/************************************************************************
262
/************************************************************************
341
 * This is an attempt to correct not the error in the angle integrals
263
 * This is an attempt to correct not the error in the angle integrals
342
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
264
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
343
 * cause of it: Gyro drift, vibration and rounding errors.
265
 * cause of it: Gyro drift, vibration and rounding errors.
344
 * All the corrections made in correctIntegralsByAcc0thOrder over
266
 * All the corrections made in correctIntegralsByAcc0thOrder over
345
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
267
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
346
 * then divided by DRIFTCORRECTION_TIME to get the approx.
268
 * then divided by DRIFTCORRECTION_TIME to get the approx.
347
 * correction that should have been applied to each iteration to fix
269
 * correction that should have been applied to each iteration to fix
348
 * the error. This is then added to the dynamic offsets.
270
 * the error. This is then added to the dynamic offsets.
349
 ************************************************************************/
271
 ************************************************************************/
350
// 2 times / sec. = 488/2
272
// 2 times / sec. = 488/2
351
#define DRIFTCORRECTION_TIME 256L
273
#define DRIFTCORRECTION_TIME 256L
352
void driftCorrection(void) {
274
void driftCorrection(void) {
353
  static int16_t timer = DRIFTCORRECTION_TIME;
275
  static int16_t timer = DRIFTCORRECTION_TIME;
354
  int16_t deltaCorrection;
276
  int16_t deltaCorrection;
355
  int16_t round;
277
  int16_t round;
356
  uint8_t axis;
278
  uint8_t axis;
357
 
279
 
358
  if (!--timer) {
280
  if (!--timer) {
359
    timer = DRIFTCORRECTION_TIME;
281
    timer = DRIFTCORRECTION_TIME;
360
    for (axis = PITCH; axis <= ROLL; axis++) {
282
    for (axis = PITCH; axis <= ROLL; axis++) {
361
      // Take the sum of corrections applied, add it to delta
283
      // Take the sum of corrections applied, add it to delta
362
      if (correctionSum[axis] >= 0)
284
      if (correctionSum[axis] >= 0)
363
        round = DRIFTCORRECTION_TIME / 2;
285
        round = DRIFTCORRECTION_TIME / 2;
364
      else
286
      else
365
        round = -DRIFTCORRECTION_TIME / 2;
287
        round = -DRIFTCORRECTION_TIME / 2;
366
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
288
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
367
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
289
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
368
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
290
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
369
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
291
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
370
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
292
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
371
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
293
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
372
      // debugOut.analog[28 + axis] = driftComp[axis];
294
      // debugOut.analog[28 + axis] = driftComp[axis];
373
      correctionSum[axis] = 0;
295
      correctionSum[axis] = 0;
374
    }
296
    }
375
  }
297
  }
376
}
298
}
-
 
299
 
377
 
300
/*
378
void calculateAccVector(void) {
301
void calculateAccVector(void) {
379
  int16_t temp;
302
  int16_t temp;
380
  temp = filteredAcc[0] >> 3;
303
  temp = filteredAcc[0] >> 3;
381
  accVector = temp * temp;
304
  accVector = temp * temp;
382
  temp = filteredAcc[1] >> 3;
305
  temp = filteredAcc[1] >> 3;
383
  accVector += temp * temp;
306
  accVector += temp * temp;
384
  temp = filteredAcc[2] >> 3;
307
  temp = filteredAcc[2] >> 3;
385
  accVector += temp * temp;
308
  accVector += temp * temp;
386
}
309
}
-
 
310
*/
387
 
311
 
388
#ifdef USE_MK3MAG
312
#ifdef USE_MK3MAG
389
void attitude_resetHeadingToMagnetic(void) {
313
void attitude_resetHeadingToMagnetic(void) {
390
  if (commands_isCalibratingCompass())
314
  if (commands_isCalibratingCompass())
391
    return;
315
    return;
392
 
316
 
393
  // Compass is off, skip.
317
  // Compass is off, skip.
394
  if (!(staticParams.bitConfig & CFG_COMPASS_ENABLED))
318
  if (!(staticParams.bitConfig & CFG_COMPASS_ENABLED))
395
      return;
319
      return;
396
 
320
 
397
  // Compass is invalid, skip.
321
  // Compass is invalid, skip.
398
  if (magneticHeading < 0)
322
  if (magneticHeading < 0)
399
    return;
323
    return;
400
 
324
 
401
  heading = (int32_t) magneticHeading * GYRO_DEG_FACTOR_YAW;
325
  heading = (int32_t) magneticHeading * GYRO_DEG_FACTOR_YAW;
402
  //targetHeading = heading;
326
  //targetHeading = heading;
403
  headingError = 0;
327
  headingError = 0;
404
}
328
}
405
 
329
 
406
void correctHeadingToMagnetic(void) {
330
void correctHeadingToMagnetic(void) {
407
  int32_t error;
331
  int32_t error;
408
 
332
 
409
  if (commands_isCalibratingCompass()) {
333
  if (commands_isCalibratingCompass()) {
410
    //debugOut.analog[30] = -1;
334
    //debugOut.analog[30] = -1;
411
    return;
335
    return;
412
  }
336
  }
413
 
337
 
414
  // Compass is off, skip.
338
  // Compass is off, skip.
415
  // Naaah this is assumed.
339
  // Naaah this is assumed.
416
  // if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE))
340
  // if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE))
417
  //     return;
341
  //     return;
418
 
342
 
419
  // Compass is invalid, skip.
343
  // Compass is invalid, skip.
420
  if (magneticHeading < 0) {
344
  if (magneticHeading < 0) {
421
    //debugOut.analog[30] = -2;
345
    //debugOut.analog[30] = -2;
422
    return;
346
    return;
423
  }
347
  }
424
 
348
 
425
  // Spinning fast, skip
349
  // Spinning fast, skip
426
  if (abs(yawRate) > 128) {
350
  if (abs(yawRate) > 128) {
427
    // debugOut.analog[30] = -3;
351
    // debugOut.analog[30] = -3;
428
    return;
352
    return;
429
  }
353
  }
430
 
354
 
431
  // Otherwise invalidated, skip
355
  // Otherwise invalidated, skip
432
  if (ignoreCompassTimer) {
356
  if (ignoreCompassTimer) {
433
    ignoreCompassTimer--;
357
    ignoreCompassTimer--;
434
    //debugOut.analog[30] = -4;
358
    //debugOut.analog[30] = -4;
435
    return;
359
    return;
436
  }
360
  }
437
 
361
 
438
  //debugOut.analog[30] = magneticHeading;
362
  //debugOut.analog[30] = magneticHeading;
439
 
363
 
440
  // TODO: Find computational cost of this.
364
  // TODO: Find computational cost of this.
441
  error = ((int32_t)magneticHeading*GYRO_DEG_FACTOR_YAW - heading);
365
  error = ((int32_t)magneticHeading*GYRO_DEG_FACTOR_YAW - heading);
442
  if (error <= -YAWOVER180) error += YAWOVER360;
366
  if (error <= -YAWOVER180) error += YAWOVER360;
443
  else if (error > YAWOVER180) error -= YAWOVER360;
367
  else if (error > YAWOVER180) error -= YAWOVER360;
444
 
368
 
445
  // We only correct errors larger than the resolution of the compass, or else we would keep rounding the
369
  // We only correct errors larger than the resolution of the compass, or else we would keep rounding the
446
  // better resolution of the gyros to the worse resolution of the compass all the time.
370
  // better resolution of the gyros to the worse resolution of the compass all the time.
447
  // The correction should really only serve to compensate for gyro drift.
371
  // The correction should really only serve to compensate for gyro drift.
448
  if(abs(error) < GYRO_DEG_FACTOR_YAW) return;
372
  if(abs(error) < GYRO_DEG_FACTOR_YAW) return;
449
 
373
 
450
  int32_t correction = (error * staticParams.compassYawCorrection) >> 8;
374
  int32_t correction = (error * staticParams.compassYawCorrection) >> 8;
451
  //debugOut.analog[30] = correction;
375
  //debugOut.analog[30] = correction;
452
 
376
 
453
  debugOut.digital[0] &= ~DEBUG_COMPASS;
377
  debugOut.digital[0] &= ~DEBUG_COMPASS;
454
  debugOut.digital[1] &= ~DEBUG_COMPASS;
378
  debugOut.digital[1] &= ~DEBUG_COMPASS;
455
 
379
 
456
  if (correction > 0) {
380
  if (correction > 0) {
457
          debugOut.digital[0] ^= DEBUG_COMPASS;
381
          debugOut.digital[0] ^= DEBUG_COMPASS;
458
  } else if (correction < 0) {
382
  } else if (correction < 0) {
459
          debugOut.digital[1] ^= DEBUG_COMPASS;
383
          debugOut.digital[1] ^= DEBUG_COMPASS;
460
  }
384
  }
461
 
385
 
462
  // The correction is added both to current heading (the direction in which the copter thinks it is pointing)
386
  // The correction is added both to current heading (the direction in which the copter thinks it is pointing)
463
  // and to the heading error (the angle of yaw that the copter is off the set heading).
387
  // and to the heading error (the angle of yaw that the copter is off the set heading).
464
  heading += correction;
388
  heading += correction;
465
  headingError += correction;
389
  headingError += correction;
466
  intervalWrap(&heading, YAWOVER360);
390
  intervalWrap(&heading, YAWOVER360);
467
 
391
 
468
  // If we want a transparent flight wrt. compass correction (meaning the copter does not change attitude all
392
  // If we want a transparent flight wrt. compass correction (meaning the copter does not change attitude all
469
  // when the compass corrects the heading - it only corrects numbers!) we want to add:
393
  // when the compass corrects the heading - it only corrects numbers!) we want to add:
470
  // This will however cause drift to remain uncorrected!
394
  // This will however cause drift to remain uncorrected!
471
  // headingError += correction;
395
  // headingError += correction;
472
  //debugOut.analog[29] = 0;
396
  //debugOut.analog[29] = 0;
473
}
397
}
474
#endif
398
#endif
475
 
399
 
476
/************************************************************************
400
/************************************************************************
477
 * Main procedure.
401
 * Main procedure.
478
 ************************************************************************/
402
 ************************************************************************/
479
void calculateFlightAttitude(void) {
403
void calculateFlightAttitude(void) {
480
  getAnalogData();
404
  getAnalogData();
481
  calculateAccVector();
405
  // calculateAccVector();
482
  integrate();
406
  integrate();
483
 
407
 
484
#ifdef ATTITUDE_USE_ACC_SENSORS
408
#ifdef ATTITUDE_USE_ACC_SENSORS
485
  if (staticParams.maxControlActivity) {
-
 
486
    correctIntegralsByAcc0thOrder_old();
409
  correctIntegralsByAcc0thOrder();
487
  } else {
-
 
488
    correctIntegralsByAcc0thOrder_new();
-
 
489
  }
-
 
490
  driftCorrection();
410
  driftCorrection();
491
#endif
411
#endif
492
 
412
 
493
  // We are done reading variables from the analog module.
413
  // We are done reading variables from the analog module.
494
  // Interrupt-driven sensor reading may restart.
414
  // Interrupt-driven sensor reading may restart.
495
  startAnalogConversionCycle();
415
  startAnalogConversionCycle();
496
 
416
 
497
#ifdef USE_MK3MAG
417
#ifdef USE_MK3MAG
498
  if (staticParams.bitConfig & CFG_COMPASS_ENABLED) {
418
  if (staticParams.bitConfig & CFG_COMPASS_ENABLED) {
499
    correctHeadingToMagnetic();
419
    correctHeadingToMagnetic();
500
  }
420
  }
501
#endif
421
#endif
502
}
422
}
503
 
-
 
504
/*
-
 
505
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
-
 
506
 * and to compensate them away. It brings about some improvement, but no miracles.
-
 
507
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
-
 
508
 * will measure the effect of vibration, to use for later compensation. So, one should keep
-
 
509
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
-
 
510
 * speed unfortunately... must find a better way)
-
 
511
 */
-
 
512
/*
-
 
513
 void attitude_startDynamicCalibration(void) {
-
 
514
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
-
 
515
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
-
 
516
 }
-
 
517
 
-
 
518
 void attitude_continueDynamicCalibration(void) {
-
 
519
 // measure dynamic offset now...
-
 
520
 dynamicCalPitch += hiResPitchGyro;
-
 
521
 dynamicCalRoll += hiResRollGyro;
-
 
522
 dynamicCalYaw += rawYawGyroSum;
-
 
523
 dynamicCalCount++;
-
 
524
 
-
 
525
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
-
 
526
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
-
 
527
 // manual mode
-
 
528
 driftCompPitch = dynamicParams.UserParam7 - 128;
-
 
529
 driftCompRoll = dynamicParams.UserParam8 - 128;
-
 
530
 } else {
-
 
531
 // use the sampled value (does not seem to work so well....)
-
 
532
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
-
 
533
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
-
 
534
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
-
 
535
 }
-
 
536
 
-
 
537
 // keep resetting these meanwhile, to avoid accumulating errors.
-
 
538
 setStaticAttitudeIntegrals();
-
 
539
 yawAngle = 0;
-
 
540
 }
-
 
541
 */
-
 
542
 
423