Subversion Repositories FlightCtrl

Rev

Rev 2048 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2048 Rev 2051
1
#include <stdlib.h>
1
#include <stdlib.h>
2
#include <avr/io.h>
2
#include <avr/io.h>
3
 
3
 
4
#include "attitude.h"
4
#include "attitude.h"
5
#include "dongfangMath.h"
5
#include "dongfangMath.h"
6
#include "commands.h"
6
#include "commands.h"
7
 
7
 
8
// For scope debugging only!
8
// For scope debugging only!
9
#include "rc.h"
9
#include "rc.h"
10
 
10
 
11
// where our main data flow comes from.
11
// where our main data flow comes from.
12
#include "analog.h"
12
#include "analog.h"
13
 
13
 
14
#include "configuration.h"
14
#include "configuration.h"
15
#include "output.h"
15
#include "output.h"
16
 
16
 
17
// Some calculations are performed depending on some stick related things.
17
// Some calculations are performed depending on some stick related things.
18
#include "controlMixer.h"
18
#include "controlMixer.h"
19
 
19
 
20
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
20
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
21
 
21
 
22
/*
22
/*
23
 * Gyro readings, as read from the analog module. It would have been nice to flow
23
 * Gyro readings, as read from the analog module. It would have been nice to flow
24
 * them around between the different calculations as a struct or array (doing
24
 * them around between the different calculations as a struct or array (doing
25
 * things functionally without side effects) but this is shorter and probably
25
 * things functionally without side effects) but this is shorter and probably
26
 * faster too.
26
 * faster too.
27
 * The variables are overwritten at each attitude calculation invocation - the values
27
 * The variables are overwritten at each attitude calculation invocation - the values
28
 * are not preserved or reused.
28
 * are not preserved or reused.
29
 */
29
 */
30
int16_t rate_ATT[2], yawRate;
30
int16_t rate_ATT[2], yawRate;
31
 
31
 
32
// With different (less) filtering
32
// With different (less) filtering
33
int16_t rate_PID[2];
33
int16_t rate_PID[2];
34
int16_t differential[2];
34
int16_t differential[2];
35
 
35
 
36
/*
36
/*
37
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
37
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
38
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
38
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
39
 * coordinate system. If axis copling is disabled, the gyro readings will be
39
 * coordinate system. If axis copling is disabled, the gyro readings will be
40
 * copied into these directly.
40
 * copied into these directly.
41
 * These are global for the same pragmatic reason as with the gyro readings.
41
 * These are global for the same pragmatic reason as with the gyro readings.
42
 * The variables are overwritten at each attitude calculation invocation - the values
42
 * The variables are overwritten at each attitude calculation invocation - the values
43
 * are not preserved or reused.
43
 * are not preserved or reused.
44
 */
44
 */
45
int16_t ACRate[2], ACYawRate;
45
int16_t ACRate[2], ACYawRate;
46
 
46
 
47
/*
47
/*
48
 * Gyro integrals. These are the rotation angles of the airframe compared to the
48
 * Gyro integrals. These are the rotation angles of the airframe compared to the
49
 * horizontal plane, yaw relative to yaw at start.
49
 * horizontal plane, yaw relative to yaw at start.
50
 */
50
 */
51
int32_t attitude[2];
51
int32_t attitude[2];
52
 
52
 
53
//int readingHeight = 0;
53
//int readingHeight = 0;
54
 
54
 
55
// Yaw angle and compass stuff.
55
// Yaw angle and compass stuff.
56
 
-
 
57
// This is updated/written from MM3. Negative angle indicates invalid data.
-
 
58
int16_t magneticHeading = -1;
-
 
59
 
-
 
60
// This is NOT updated from MM3. Negative angle indicates invalid data.
-
 
61
// int16_t headingInDegrees = -1;
-
 
62
 
-
 
63
int32_t targetHeading;
56
int32_t headingError;
64
 
57
 
65
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
58
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
66
// Not necessary. Never read anywhere.
59
// Not necessary. Never read anywhere.
67
// int16_t compassOffCourse = 0;
60
// int16_t compassOffCourse = 0;
68
 
61
 
69
uint16_t ignoreCompassTimer = 500;
62
uint16_t ignoreCompassTimer = 0;// 500;
70
 
63
 
71
int32_t heading; // Yaw Gyro Integral supported by compass
64
int32_t heading; // Yaw Gyro Integral supported by compass
72
int16_t yawGyroDrift;
65
int16_t yawGyroDrift;
73
 
66
 
74
int16_t correctionSum[2] = { 0, 0 };
67
int16_t correctionSum[2] = { 0, 0 };
75
 
68
 
76
// For NaviCTRL use.
69
// For NaviCTRL use.
77
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
70
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
78
 
71
 
79
/*
72
/*
80
 * Experiment: Compensating for dynamic-induced gyro biasing.
73
 * Experiment: Compensating for dynamic-induced gyro biasing.
81
 */
74
 */
82
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
75
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
83
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
76
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
84
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
77
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
85
// int16_t dynamicCalCount;
78
// int16_t dynamicCalCount;
86
 
79
 
87
uint16_t accVector;
80
uint16_t accVector;
88
 
81
 
89
/************************************************************************
82
/************************************************************************
90
 * Set inclination angles from the acc. sensor data.                    
83
 * Set inclination angles from the acc. sensor data.                    
91
 * If acc. sensors are not used, set to zero.                          
84
 * If acc. sensors are not used, set to zero.                          
92
 * TODO: One could use inverse sine to calculate the angles more        
85
 * TODO: One could use inverse sine to calculate the angles more        
93
 * accurately, but since: 1) the angles are rather small at times when
86
 * accurately, but since: 1) the angles are rather small at times when
94
 * it makes sense to set the integrals (standing on ground, or flying at  
87
 * it makes sense to set the integrals (standing on ground, or flying at  
95
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
88
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
96
 * it is hardly worth the trouble.                                      
89
 * it is hardly worth the trouble.                                      
97
 ************************************************************************/
90
 ************************************************************************/
98
 
91
 
99
int32_t getAngleEstimateFromAcc(uint8_t axis) {
92
int32_t getAngleEstimateFromAcc(uint8_t axis) {
100
  //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L;
93
  //int32_t correctionTerm = (dynamicParams.levelCorrection[axis] - 128) * 256L;
101
  return (int32_t) GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis]; // + correctionTerm;
94
  return (int32_t) GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis]; // + correctionTerm;
102
  // return 342L * filteredAcc[axis];
95
  // return 342L * filteredAcc[axis];
103
}
96
}
104
 
97
 
105
void setStaticAttitudeAngles(void) {
98
void setStaticAttitudeAngles(void) {
106
#ifdef ATTITUDE_USE_ACC_SENSORS
99
#ifdef ATTITUDE_USE_ACC_SENSORS
107
  attitude[PITCH] = getAngleEstimateFromAcc(PITCH);
100
  attitude[PITCH] = getAngleEstimateFromAcc(PITCH);
108
  attitude[ROLL] = getAngleEstimateFromAcc(ROLL);
101
  attitude[ROLL] = getAngleEstimateFromAcc(ROLL);
109
#else
102
#else
110
  attitude[PITCH] = attitude[ROLL] = 0;
103
  attitude[PITCH] = attitude[ROLL] = 0;
111
#endif
104
#endif
112
}
105
}
113
 
106
 
114
/************************************************************************
107
/************************************************************************
115
 * Neutral Readings                                                    
108
 * Neutral Readings                                                    
116
 ************************************************************************/
109
 ************************************************************************/
117
void attitude_setNeutral(void) {
110
void attitude_setNeutral(void) {
118
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
111
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
119
  // dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
112
  // dynamicParams.axisCoupling1 = dynamicParams.axisCoupling2 = 0;
120
 
113
 
121
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
114
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
122
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
115
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
123
 
116
 
124
  // Calibrate hardware.
117
  // Calibrate hardware.
125
  analog_setNeutral();
118
  analog_setNeutral();
126
 
119
 
127
  // reset gyro integrals to acc guessing
120
  // reset gyro integrals to acc guessing
128
  setStaticAttitudeAngles();
121
  setStaticAttitudeAngles();
129
  attitude_resetHeadingToMagnetic();
122
  attitude_resetHeadingToMagnetic();
130
  // Servo_On(); //enable servo output
123
  // Servo_On(); //enable servo output
131
}
124
}
132
 
125
 
133
/************************************************************************
126
/************************************************************************
134
 * Get sensor data from the analog module, and release the ADC          
127
 * Get sensor data from the analog module, and release the ADC          
135
 * TODO: Ultimately, the analog module could do this (instead of dumping
128
 * TODO: Ultimately, the analog module could do this (instead of dumping
136
 * the values into variables).
129
 * the values into variables).
137
 * The rate variable end up in a range of about [-1024, 1023].
130
 * The rate variable end up in a range of about [-1024, 1023].
138
 *************************************************************************/
131
 *************************************************************************/
139
void getAnalogData(void) {
132
void getAnalogData(void) {
140
  uint8_t axis;
133
  uint8_t axis;
141
 
134
 
142
  analog_update();
135
  analog_update();
143
 
136
 
144
  for (axis = PITCH; axis <= ROLL; axis++) {
137
  for (axis = PITCH; axis <= ROLL; axis++) {
145
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
138
    rate_PID[axis] = gyro_PID[axis] + driftComp[axis];
146
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
139
    rate_ATT[axis] = gyro_ATT[axis] + driftComp[axis];
147
    differential[axis] = gyroD[axis];
140
    differential[axis] = gyroD[axis];
148
    averageAcc[axis] += acc[axis];
141
    averageAcc[axis] += acc[axis];
149
  }
142
  }
150
 
143
 
151
  averageAccCount++;
144
  averageAccCount++;
152
  yawRate = yawGyro + driftCompYaw;
145
  yawRate = yawGyro + driftCompYaw;
153
}
146
}
154
 
147
 
155
/*
148
/*
156
 * This is the standard flight-style coordinate system transformation
149
 * This is the standard flight-style coordinate system transformation
157
 * (from airframe-local axes to a ground-based system). For some reason
150
 * (from airframe-local axes to a ground-based system). For some reason
158
 * the MK uses a left-hand coordinate system. The tranformation has been
151
 * the MK uses a left-hand coordinate system. The tranformation has been
159
 * changed accordingly.
152
 * changed accordingly.
160
 */
153
 */
161
void trigAxisCoupling(void) {
154
void trigAxisCoupling(void) {
162
  int16_t rollAngleInDegrees = attitude[ROLL] / GYRO_DEG_FACTOR_PITCHROLL;
155
  int16_t rollAngleInDegrees = attitude[ROLL] / GYRO_DEG_FACTOR_PITCHROLL;
163
  int16_t pitchAngleInDegrees = attitude[PITCH] / GYRO_DEG_FACTOR_PITCHROLL;
156
  int16_t pitchAngleInDegrees = attitude[PITCH] / GYRO_DEG_FACTOR_PITCHROLL;
164
 
157
 
165
  int16_t cospitch = cos_360(pitchAngleInDegrees);
158
  int16_t cospitch = cos_360(pitchAngleInDegrees);
166
  int16_t cosroll = cos_360(rollAngleInDegrees);
159
  int16_t cosroll = cos_360(rollAngleInDegrees);
167
  int16_t sinroll = sin_360(rollAngleInDegrees);
160
  int16_t sinroll = sin_360(rollAngleInDegrees);
168
 
161
 
169
  ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll
162
  ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll
170
      - (int32_t) yawRate * sinroll) >> LOG_MATH_UNIT_FACTOR);
163
      - (int32_t) yawRate * sinroll) >> LOG_MATH_UNIT_FACTOR);
171
 
164
 
172
  ACRate[ROLL] = rate_ATT[ROLL]
165
  ACRate[ROLL] = rate_ATT[ROLL]
173
      + (((((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
166
      + (((((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
174
          >> LOG_MATH_UNIT_FACTOR) * tan_360(pitchAngleInDegrees))
167
          >> LOG_MATH_UNIT_FACTOR) * tan_360(pitchAngleInDegrees))
175
          >> LOG_MATH_UNIT_FACTOR);
168
          >> LOG_MATH_UNIT_FACTOR);
176
 
169
 
177
  ACYawRate =
170
  ACYawRate =
178
      ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
171
      ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
179
          / cospitch;
172
          / cospitch;
180
 
173
 
181
  ACYawRate =
174
  ACYawRate =
182
      ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
175
      ((int32_t) rate_ATT[PITCH] * sinroll + (int32_t) yawRate * cosroll)
183
          / cospitch;
176
          / cospitch;
184
}
177
}
185
 
178
 
186
// 480 usec with axis coupling - almost no time without.
179
// 480 usec with axis coupling - almost no time without.
187
void integrate(void) {
180
void integrate(void) {
188
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
181
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
189
  uint8_t axis;
182
  uint8_t axis;
190
 
183
 
191
  if (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE) {
184
  if (staticParams.bitConfig & CFG_AXIS_COUPLING_ACTIVE) {
192
    trigAxisCoupling();
185
    trigAxisCoupling();
193
  } else {
186
  } else {
194
    ACRate[PITCH] = rate_ATT[PITCH];
187
    ACRate[PITCH] = rate_ATT[PITCH];
195
    ACRate[ROLL] = rate_ATT[ROLL];
188
    ACRate[ROLL] = rate_ATT[ROLL];
196
    ACYawRate = yawRate;
189
    ACYawRate = yawRate;
197
  }
190
  }
198
 
191
 
199
  /*
192
  /*
200
   * Yaw
193
   * Yaw
201
   * Calculate yaw gyro integral (~ to rotation angle)
194
   * Calculate yaw gyro integral (~ to rotation angle)
202
   * Limit heading proportional to 0 deg to 360 deg
195
   * Limit heading proportional to 0 deg to 360 deg
203
   */
196
   */
204
  heading += ACYawRate;
197
  heading += ACYawRate;
205
  intervalWrap(&heading, YAWOVER360);
198
  intervalWrap(&heading, YAWOVER360);
-
 
199
 
-
 
200
  headingError += ACYawRate;
-
 
201
 
-
 
202
  debugOut.analog[27] = heading / 100;
-
 
203
 
206
  /*
204
  /*
207
   * Pitch axis integration and range boundary wrap.
205
   * Pitch axis integration and range boundary wrap.
208
   */
206
   */
209
  for (axis = PITCH; axis <= ROLL; axis++) {
207
  for (axis = PITCH; axis <= ROLL; axis++) {
210
    attitude[axis] += ACRate[axis];
208
    attitude[axis] += ACRate[axis];
211
    if (attitude[axis] > PITCHROLLOVER180) {
209
    if (attitude[axis] > PITCHROLLOVER180) {
212
      attitude[axis] -= PITCHROLLOVER360;
210
      attitude[axis] -= PITCHROLLOVER360;
213
    } else if (attitude[axis] <= -PITCHROLLOVER180) {
211
    } else if (attitude[axis] <= -PITCHROLLOVER180) {
214
      attitude[axis] += PITCHROLLOVER360;
212
      attitude[axis] += PITCHROLLOVER360;
215
    }
213
    }
216
  }
214
  }
217
}
215
}
218
 
216
 
219
/************************************************************************
217
/************************************************************************
220
 * A kind of 0'th order integral correction, that corrects the integrals
218
 * A kind of 0'th order integral correction, that corrects the integrals
221
 * directly. This is the "gyroAccFactor" stuff in the original code.
219
 * directly. This is the "gyroAccFactor" stuff in the original code.
222
 * There is (there) also a drift compensation
220
 * There is (there) also a drift compensation
223
 * - it corrects the differential of the integral = the gyro offsets.
221
 * - it corrects the differential of the integral = the gyro offsets.
224
 * That should only be necessary with drifty gyros like ENC-03.
222
 * That should only be necessary with drifty gyros like ENC-03.
225
 ************************************************************************/
223
 ************************************************************************/
226
void correctIntegralsByAcc0thOrder(void) {
224
void correctIntegralsByAcc0thOrder(void) {
227
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
225
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
228
  // are less than ....., or reintroduce Kalman.
226
  // are less than ....., or reintroduce Kalman.
229
  // Well actually the Z axis acc. check is not so silly.
227
  // Well actually the Z axis acc. check is not so silly.
230
  uint8_t axis;
228
  uint8_t axis;
231
  int32_t temp;
229
  int32_t temp;
232
 
230
 
233
  uint8_t ca = controlActivity >> 8;
231
  uint8_t ca = controlActivity >> 8;
234
  uint8_t highControlActivity = (ca > staticParams.maxControlActivity);
232
  uint8_t highControlActivity = (ca > staticParams.maxControlActivity);
235
 
233
 
236
  if (highControlActivity) {
234
  if (highControlActivity) {
237
    debugOut.digital[1] |= DEBUG_ACC0THORDER;
235
    debugOut.digital[1] |= DEBUG_ACC0THORDER;
238
  } else {
236
  } else {
239
    debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
237
    debugOut.digital[1] &= ~DEBUG_ACC0THORDER;
240
  }
238
  }
241
 
239
 
242
  if (accVector <= dynamicParams.maxAccVector) {
240
  if (accVector <= dynamicParams.maxAccVector) {
243
    debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
241
    debugOut.digital[0] &= ~DEBUG_ACC0THORDER;
244
 
242
 
245
    uint8_t permilleAcc = staticParams.zerothOrderCorrection;
243
    uint8_t permilleAcc = staticParams.zerothOrderCorrection;
246
    int32_t accDerived;
244
    int32_t accDerived;
247
 
245
 
248
    /*
246
    /*
249
     if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
247
     if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
250
     permilleAcc /= 2;
248
     permilleAcc /= 2;
251
     debugFullWeight = 0;
249
     debugFullWeight = 0;
252
     }
250
     }
253
 
251
 
254
     if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
252
     if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands. Replace by controlActivity.
255
     permilleAcc /= 2;
253
     permilleAcc /= 2;
256
     debugFullWeight = 0;
254
     debugFullWeight = 0;
257
     */
255
     */
258
 
256
 
259
    if (highControlActivity) { // reduce effect during stick control activity
257
    if (highControlActivity) { // reduce effect during stick control activity
260
      permilleAcc /= 4;
258
      permilleAcc /= 4;
261
      if (controlActivity > staticParams.maxControlActivity * 2) { // reduce effect during stick control activity
259
      if (controlActivity > staticParams.maxControlActivity * 2) { // reduce effect during stick control activity
262
        permilleAcc /= 4;
260
        permilleAcc /= 4;
263
      }
261
      }
264
    }
262
    }
265
 
263
 
266
    /*
264
    /*
267
     * Add to each sum: The amount by which the angle is changed just below.
265
     * Add to each sum: The amount by which the angle is changed just below.
268
     */
266
     */
269
    for (axis = PITCH; axis <= ROLL; axis++) {
267
    for (axis = PITCH; axis <= ROLL; axis++) {
270
      accDerived = getAngleEstimateFromAcc(axis);
268
      accDerived = getAngleEstimateFromAcc(axis);
271
      debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10);
269
      debugOut.analog[9 + axis] = accDerived / (GYRO_DEG_FACTOR_PITCHROLL / 10);
272
      // 1000 * the correction amount that will be added to the gyro angle in next line.
270
      // 1000 * the correction amount that will be added to the gyro angle in next line.
273
      temp = attitude[axis];
271
      temp = attitude[axis];
274
      attitude[axis] = ((int32_t) (1000L - permilleAcc) * temp
272
      attitude[axis] = ((int32_t) (1000L - permilleAcc) * temp
275
          + (int32_t) permilleAcc * accDerived) / 1000L;
273
          + (int32_t) permilleAcc * accDerived) / 1000L;
276
      correctionSum[axis] += attitude[axis] - temp;
274
      correctionSum[axis] += attitude[axis] - temp;
277
    }
275
    }
278
  } else {
276
  } else {
279
    debugOut.analog[9] = 0;
277
    debugOut.analog[9] = 0;
280
    debugOut.analog[10] = 0;
278
    debugOut.analog[10] = 0;
281
    // experiment: Kill drift compensation updates when not flying smooth.
279
    // experiment: Kill drift compensation updates when not flying smooth.
282
    // correctionSum[PITCH] = correctionSum[ROLL] = 0;
280
    // correctionSum[PITCH] = correctionSum[ROLL] = 0;
283
    debugOut.digital[0] |= DEBUG_ACC0THORDER;
281
    debugOut.digital[0] |= DEBUG_ACC0THORDER;
284
  }
282
  }
285
}
283
}
286
 
284
 
287
/************************************************************************
285
/************************************************************************
288
 * This is an attempt to correct not the error in the angle integrals
286
 * This is an attempt to correct not the error in the angle integrals
289
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
287
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
290
 * cause of it: Gyro drift, vibration and rounding errors.
288
 * cause of it: Gyro drift, vibration and rounding errors.
291
 * All the corrections made in correctIntegralsByAcc0thOrder over
289
 * All the corrections made in correctIntegralsByAcc0thOrder over
292
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
290
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
293
 * then divided by DRIFTCORRECTION_TIME to get the approx.
291
 * then divided by DRIFTCORRECTION_TIME to get the approx.
294
 * correction that should have been applied to each iteration to fix
292
 * correction that should have been applied to each iteration to fix
295
 * the error. This is then added to the dynamic offsets.
293
 * the error. This is then added to the dynamic offsets.
296
 ************************************************************************/
294
 ************************************************************************/
297
// 2 times / sec. = 488/2
295
// 2 times / sec. = 488/2
298
#define DRIFTCORRECTION_TIME 256L
296
#define DRIFTCORRECTION_TIME 256L
299
void driftCorrection(void) {
297
void driftCorrection(void) {
300
  static int16_t timer = DRIFTCORRECTION_TIME;
298
  static int16_t timer = DRIFTCORRECTION_TIME;
301
  int16_t deltaCorrection;
299
  int16_t deltaCorrection;
302
  int16_t round;
300
  int16_t round;
303
  uint8_t axis;
301
  uint8_t axis;
304
 
302
 
305
  if (!--timer) {
303
  if (!--timer) {
306
    timer = DRIFTCORRECTION_TIME;
304
    timer = DRIFTCORRECTION_TIME;
307
    for (axis = PITCH; axis <= ROLL; axis++) {
305
    for (axis = PITCH; axis <= ROLL; axis++) {
308
      // Take the sum of corrections applied, add it to delta
306
      // Take the sum of corrections applied, add it to delta
309
      if (correctionSum[axis] >= 0)
307
      if (correctionSum[axis] >= 0)
310
        round = DRIFTCORRECTION_TIME / 2;
308
        round = DRIFTCORRECTION_TIME / 2;
311
      else
309
      else
312
        round = -DRIFTCORRECTION_TIME / 2;
310
        round = -DRIFTCORRECTION_TIME / 2;
313
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
311
      deltaCorrection = (correctionSum[axis] + round) / DRIFTCORRECTION_TIME;
314
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
312
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
315
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
313
      driftComp[axis] += deltaCorrection / staticParams.driftCompDivider;
316
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
314
      CHECK_MIN_MAX(driftComp[axis], -staticParams.driftCompLimit, staticParams.driftCompLimit);
317
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
315
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
318
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
316
      // DebugOut.Analog[16 + axis] = correctionSum[axis];
319
      // debugOut.analog[28 + axis] = driftComp[axis];
317
      // debugOut.analog[28 + axis] = driftComp[axis];
320
      correctionSum[axis] = 0;
318
      correctionSum[axis] = 0;
321
    }
319
    }
322
  }
320
  }
323
}
321
}
324
 
322
 
325
void calculateAccVector(void) {
323
void calculateAccVector(void) {
326
  int16_t temp;
324
  int16_t temp;
327
  temp = filteredAcc[0] >> 3;
325
  temp = filteredAcc[0] >> 3;
328
  accVector = temp * temp;
326
  accVector = temp * temp;
329
  temp = filteredAcc[1] >> 3;
327
  temp = filteredAcc[1] >> 3;
330
  accVector += temp * temp;
328
  accVector += temp * temp;
331
  temp = filteredAcc[2] >> 3;
329
  temp = filteredAcc[2] >> 3;
332
  accVector += temp * temp;
330
  accVector += temp * temp;
333
  //debugOut.analog[18] = accVector;
331
  //debugOut.analog[18] = accVector;
334
}
332
}
335
 
333
 
336
void attitude_resetHeadingToMagnetic(void) {
334
void attitude_resetHeadingToMagnetic(void) {
337
  if (commands_isCalibratingCompass())
335
  if (commands_isCalibratingCompass())
338
    return;
336
    return;
339
 
337
 
340
  // Compass is off, skip.
338
  // Compass is off, skip.
341
  if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE))
339
  if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE))
342
      return;
340
      return;
343
 
341
 
344
  // Compass is invalid, skip.
342
  // Compass is invalid, skip.
345
  if (magneticHeading < 0)
343
  if (magneticHeading < 0)
346
    return;
344
    return;
347
 
345
 
348
  heading = (int32_t) magneticHeading * GYRO_DEG_FACTOR_YAW;
346
  heading = (int32_t) magneticHeading * GYRO_DEG_FACTOR_YAW;
349
  targetHeading = heading;
347
  //targetHeading = heading;
-
 
348
  headingError = 0;
350
 
349
 
351
  debugOut.digital[0] ^= DEBUG_COMPASS;
350
  debugOut.digital[0] ^= DEBUG_COMPASS;
352
}
351
}
353
 
352
 
354
void correctHeadingToMagnetic(void) {
353
void correctHeadingToMagnetic(void) {
355
  int32_t error;
354
  int32_t error;
356
 
-
 
357
  debugOut.analog[27] = heading;
-
 
358
 
355
 
-
 
356
  if (commands_isCalibratingCompass()) {
359
  if (commands_isCalibratingCompass())
357
    debugOut.analog[29] = 1;
-
 
358
    return;
360
    return;
359
  }
361
 
360
 
362
  // Compass is off, skip.
361
  // Compass is off, skip.
363
  // Naaah this is assumed.
362
  // Naaah this is assumed.
364
  // if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE))
363
  // if (!(staticParams.bitConfig & CFG_COMPASS_ACTIVE))
365
  //     return;
364
  //     return;
366
 
365
 
367
  // Compass is invalid, skip.
366
  // Compass is invalid, skip.
368
  if (magneticHeading < 0)
367
  if (magneticHeading < 0) {
-
 
368
    debugOut.analog[29] = 2;
369
    return;
369
    return;
-
 
370
  }
370
 
371
 
371
  // Spinning fast, skip
372
  // Spinning fast, skip
-
 
373
  if (abs(yawRate) > 128) {
372
  if (abs(yawRate) > 128)
374
    debugOut.analog[29] = 3;
-
 
375
    return;
373
    return;
376
  }
374
 
377
 
375
  // Otherwise invalidated, skip
378
  // Otherwise invalidated, skip
376
  if (ignoreCompassTimer) {
379
  if (ignoreCompassTimer) {
377
    ignoreCompassTimer--;
380
    ignoreCompassTimer--;
-
 
381
    debugOut.analog[29] = 4;
378
    return;
382
    return;
379
  }
383
  }
380
 
384
 
381
  // TODO: Find computational cost of this.
385
  // TODO: Find computational cost of this.
382
  error = (magneticHeading*GYRO_DEG_FACTOR_YAW - heading) % GYRO_DEG_FACTOR_YAW;
386
  error = ((int32_t)magneticHeading*GYRO_DEG_FACTOR_YAW - heading);
-
 
387
  if (error <= -YAWOVER180) error += YAWOVER360;
-
 
388
  else if (error > YAWOVER180) error -= YAWOVER360;
383
 
389
 
384
  // We only correct errors larger than the resolution of the compass, or else we would keep rounding the
390
  // We only correct errors larger than the resolution of the compass, or else we would keep rounding the
385
  // better resolution of the gyros to the worse resolution of the compass all the time.
391
  // better resolution of the gyros to the worse resolution of the compass all the time.
386
  // The correction should really only serve to compensate for gyro drift.
392
  // The correction should really only serve to compensate for gyro drift.
387
  if(abs(error) < GYRO_DEG_FACTOR_YAW) return;
393
  if(abs(error) < GYRO_DEG_FACTOR_YAW) return;
388
 
394
 
-
 
395
  int32_t correction = (error * staticParams.compassYawCorrection) >> 8;
389
  int32_t correction = (error * (int32_t)dynamicParams.compassYawEffect) >> 8;
396
  debugOut.analog[30] = correction;
390
 
397
 
391
  // The correction is added both to current heading (the direction in which the copter thinks it is pointing)
398
  // The correction is added both to current heading (the direction in which the copter thinks it is pointing)
392
  // and to the target heading (the direction to which it maneuvers to point). That means, this correction has
399
  // and to the target heading (the direction to which it maneuvers to point). That means, this correction has
393
  // no effect on control at all!!! It only has effect on the values of the two variables. However, these values
400
  // no effect on control at all!!! It only has effect on the values of the two variables. However, these values
394
  // could have effect on control elsewhere, like in compassControl.c .
401
  // could have effect on control elsewhere, like in compassControl.c .
395
  heading += correction;
402
  heading += correction;
396
  intervalWrap(&heading, YAWOVER360);
403
  intervalWrap(&heading, YAWOVER360);
-
 
404
 
-
 
405
  // If we want a transparent flight wrt. compass correction (meaning the copter does not change attitude all
397
 
406
  // when the compass corrects the heading - it only corrects numbers!) we want to add:
398
  targetHeading += correction;
407
  // This will however cause drift to remain uncorrected!
399
  intervalWrap(&targetHeading, YAWOVER360);
-
 
400
 
408
  // headingError += correction;
401
  debugOut.digital[1] ^= DEBUG_COMPASS;
409
  debugOut.analog[29] = 0;
402
}
410
}
403
 
411
 
404
/************************************************************************
412
/************************************************************************
405
 * Main procedure.
413
 * Main procedure.
406
 ************************************************************************/
414
 ************************************************************************/
407
void calculateFlightAttitude(void) {
415
void calculateFlightAttitude(void) {
408
  getAnalogData();
416
  getAnalogData();
409
  calculateAccVector();
417
  calculateAccVector();
410
  integrate();
418
  integrate();
411
 
419
 
412
#ifdef ATTITUDE_USE_ACC_SENSORS
420
#ifdef ATTITUDE_USE_ACC_SENSORS
413
  correctIntegralsByAcc0thOrder();
421
  correctIntegralsByAcc0thOrder();
414
  driftCorrection();
422
  driftCorrection();
415
#endif
423
#endif
416
 
424
 
417
  // We are done reading variables from the analog module.
425
  // We are done reading variables from the analog module.
418
  // Interrupt-driven sensor reading may restart.
426
  // Interrupt-driven sensor reading may restart.
419
  startAnalogConversionCycle();
427
  startAnalogConversionCycle();
420
 
428
 
421
  if (staticParams.bitConfig & (CFG_COMPASS_ACTIVE | CFG_GPS_ACTIVE)) {
429
  if (staticParams.bitConfig & (CFG_COMPASS_ACTIVE | CFG_GPS_ACTIVE)) {
422
    correctHeadingToMagnetic();
430
    correctHeadingToMagnetic();
423
  }
431
  }
424
}
432
}
425
 
433
 
426
/*
434
/*
427
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
435
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
428
 * and to compensate them away. It brings about some improvement, but no miracles.
436
 * and to compensate them away. It brings about some improvement, but no miracles.
429
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
437
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
430
 * will measure the effect of vibration, to use for later compensation. So, one should keep
438
 * will measure the effect of vibration, to use for later compensation. So, one should keep
431
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
439
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
432
 * speed unfortunately... must find a better way)
440
 * speed unfortunately... must find a better way)
433
 */
441
 */
434
/*
442
/*
435
 void attitude_startDynamicCalibration(void) {
443
 void attitude_startDynamicCalibration(void) {
436
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
444
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
437
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
445
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
438
 }
446
 }
439
 
447
 
440
 void attitude_continueDynamicCalibration(void) {
448
 void attitude_continueDynamicCalibration(void) {
441
 // measure dynamic offset now...
449
 // measure dynamic offset now...
442
 dynamicCalPitch += hiResPitchGyro;
450
 dynamicCalPitch += hiResPitchGyro;
443
 dynamicCalRoll += hiResRollGyro;
451
 dynamicCalRoll += hiResRollGyro;
444
 dynamicCalYaw += rawYawGyroSum;
452
 dynamicCalYaw += rawYawGyroSum;
445
 dynamicCalCount++;
453
 dynamicCalCount++;
446
 
454
 
447
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
455
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
448
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
456
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
449
 // manual mode
457
 // manual mode
450
 driftCompPitch = dynamicParams.UserParam7 - 128;
458
 driftCompPitch = dynamicParams.UserParam7 - 128;
451
 driftCompRoll = dynamicParams.UserParam8 - 128;
459
 driftCompRoll = dynamicParams.UserParam8 - 128;
452
 } else {
460
 } else {
453
 // use the sampled value (does not seem to work so well....)
461
 // use the sampled value (does not seem to work so well....)
454
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
462
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
455
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
463
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
456
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
464
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
457
 }
465
 }
458
 
466
 
459
 // keep resetting these meanwhile, to avoid accumulating errors.
467
 // keep resetting these meanwhile, to avoid accumulating errors.
460
 setStaticAttitudeIntegrals();
468
 setStaticAttitudeIntegrals();
461
 yawAngle = 0;
469
 yawAngle = 0;
462
 }
470
 }
463
 */
471
 */
464
 
472