Subversion Repositories FlightCtrl

Rev

Rev 1634 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1634 Rev 1645
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
 
51
 
52
/************************************************************************/
52
/************************************************************************/
53
/* Flight Attitude                                                      */
53
/* Flight Attitude                                                      */
54
/************************************************************************/
54
/************************************************************************/
55
 
55
 
56
#include <stdlib.h>
56
#include <stdlib.h>
57
#include <avr/io.h>
57
#include <avr/io.h>
58
 
58
 
59
#include "attitude.h"
59
#include "attitude.h"
60
#include "dongfangMath.h"
60
#include "dongfangMath.h"
61
 
61
 
62
// where our main data flow comes from.
62
// where our main data flow comes from.
63
#include "analog.h"
63
#include "analog.h"
64
 
64
 
65
#include "configuration.h"
65
#include "configuration.h"
66
 
66
 
67
// Some calculations are performed depending on some stick related things.
67
// Some calculations are performed depending on some stick related things.
68
#include "controlMixer.h"
68
#include "controlMixer.h"
69
 
69
 
70
// For Servo_On / Off
70
// For Servo_On / Off
71
// #include "timer2.h"
71
// #include "timer2.h"
72
 
72
 
73
#ifdef USE_MK3MAG
73
#ifdef USE_MK3MAG
74
#include "mk3mag.h"
74
#include "mk3mag.h"
75
#include "gps.h"
75
#include "gps.h"
76
#endif
76
#endif
77
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
77
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
78
 
78
 
79
/*
79
/*
80
 * Gyro readings, as read from the analog module. It would have been nice to flow
80
 * Gyro readings, as read from the analog module. It would have been nice to flow
81
 * them around between the different calculations as a struct or array (doing
81
 * them around between the different calculations as a struct or array (doing
82
 * things functionally without side effects) but this is shorter and probably
82
 * things functionally without side effects) but this is shorter and probably
83
 * faster too.
83
 * faster too.
84
 * The variables are overwritten at each attitude calculation invocation - the values
84
 * The variables are overwritten at each attitude calculation invocation - the values
85
 * are not preserved or reused.
85
 * are not preserved or reused.
86
 */
86
 */
87
int16_t pitchRate, rollRate, yawRate;
87
int16_t rate[2], yawRate;
88
 
88
 
89
// With different (less) filtering
89
// With different (less) filtering
90
int16_t pitchRate_PID, rollRate_PID;
90
int16_t rate_PID[2];
91
int16_t pitchDifferential, rollDifferential;
91
int16_t differential[2];
92
 
92
 
93
/*
93
/*
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
97
 * copied into these directly.
97
 * copied into these directly.
98
 * These are global for the same pragmatic reason as with the gyro readings.
98
 * These are global for the same pragmatic reason as with the gyro readings.
99
 * The variables are overwritten at each attitude calculation invocation - the values
99
 * The variables are overwritten at each attitude calculation invocation - the values
100
 * are not preserved or reused.
100
 * are not preserved or reused.
101
 */
101
 */
102
int16_t ACPitchRate, ACRollRate, ACYawRate;
102
int16_t ACRate[2], ACYawRate;
103
 
103
 
104
/*
104
/*
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
106
 * horizontal plane, yaw relative to yaw at start.
106
 * horizontal plane, yaw relative to yaw at start.
107
 */
107
 */
108
int32_t pitchAngle, rollAngle, yawAngle;
108
int32_t angle[2], yawAngle;
109
 
109
 
110
int readingHeight = 0;
110
int readingHeight = 0;
111
 
111
 
112
// compass course
112
// compass course
113
int16_t compassHeading = -1; // negative angle indicates invalid data.
113
int16_t compassHeading = -1; // negative angle indicates invalid data.
114
int16_t compassCourse = -1;
114
int16_t compassCourse = -1;
115
int16_t compassOffCourse = 0;
115
int16_t compassOffCourse = 0;
116
uint16_t updateCompassCourse = 0;
116
uint16_t updateCompassCourse = 0;
117
uint8_t compassCalState = 0;
117
uint8_t compassCalState = 0;
118
 
118
 
119
// uint8_t FunnelCourse = 0;
119
// uint8_t FunnelCourse = 0;
120
uint16_t badCompassHeading = 500;
120
uint16_t badCompassHeading = 500;
121
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
121
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
122
 
122
 
123
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
123
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
124
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
124
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
125
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
125
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
126
 
126
 
127
int32_t pitchCorrectionSum = 0, rollCorrectionSum = 0;
127
int32_t correctionSum[2] = {0,0};
128
 
128
 
129
/*
129
/*
130
 * Experiment: Compensating for dynamic-induced gyro biasing.
130
 * Experiment: Compensating for dynamic-induced gyro biasing.
131
 */
131
 */
132
int16_t dynamicOffsetPitch = 0, dynamicOffsetRoll = 0, dynamicOffsetYaw = 0;
132
int16_t dynamicOffset[2] = {0,0}, dynamicOffsetYaw = 0;
133
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
133
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
134
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
134
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
135
// int16_t dynamicCalCount;
135
// int16_t dynamicCalCount;
136
 
136
 
137
/************************************************************************
137
/************************************************************************
138
 * Set inclination angles from the acc. sensor data.                    
138
 * Set inclination angles from the acc. sensor data.                    
139
 * If acc. sensors are not used, set to zero.                          
139
 * If acc. sensors are not used, set to zero.                          
140
 * TODO: One could use inverse sine to calculate the angles more        
140
 * TODO: One could use inverse sine to calculate the angles more        
141
 * accurately, but since: 1) the angles are rather small at times when
141
 * accurately, but since: 1) the angles are rather small at times when
142
 * it makes sense to set the integrals (standing on ground, or flying at  
142
 * it makes sense to set the integrals (standing on ground, or flying at  
143
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
143
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
144
 * it is hardly worth the trouble.                                      
144
 * it is hardly worth the trouble.                                      
145
 ************************************************************************/
145
 ************************************************************************/
146
 
-
 
147
int32_t getPitchAngleEstimateFromAcc(void) {
-
 
148
  return GYRO_ACC_FACTOR * (int32_t)filteredPitchAxisAcc;
-
 
149
}
-
 
150
 
146
 
151
int32_t getRollAngleEstimateFromAcc(void) {
147
int32_t getAngleEstimateFromAcc(uint8_t axis) {
152
  return GYRO_ACC_FACTOR * (int32_t)filteredRollAxisAcc;
148
  return GYRO_ACC_FACTOR * (int32_t)filteredAcc[axis];
153
}
149
}
154
 
150
 
155
void setStaticAttitudeAngles(void) {
151
void setStaticAttitudeAngles(void) {
156
#ifdef ATTITUDE_USE_ACC_SENSORS
152
#ifdef ATTITUDE_USE_ACC_SENSORS
157
  pitchAngle = getPitchAngleEstimateFromAcc();
153
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
158
  rollAngle = getRollAngleEstimateFromAcc();
154
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
159
#else
155
#else
160
  pitchAngle = 0;
-
 
161
  rollAngle = 0;
156
  angle[PITCH] = angle[ROLL] = 0;
162
#endif
157
#endif
163
}
158
}
164
 
159
 
165
/************************************************************************
160
/************************************************************************
166
 * Neutral Readings                                                    
161
 * Neutral Readings                                                    
167
 ************************************************************************/
162
 ************************************************************************/
168
void attitude_setNeutral(void) {
163
void attitude_setNeutral(void) {
169
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
164
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
170
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
165
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
171
 
166
 
172
  dynamicOffsetPitch = dynamicOffsetRoll = 0;
167
  dynamicOffset[PITCH] = dynamicOffset[ROLL] = 0;
173
 
168
 
174
  // Calibrate hardware.
169
  // Calibrate hardware.
175
  analog_calibrate();
170
  analog_calibrate();
176
 
171
 
177
  // reset gyro readings
172
  // reset gyro readings
178
  pitchRate = rollRate = yawRate = 0;
173
  rate[PITCH] = rate[ROLL] = yawRate = 0;
179
 
174
 
180
  // reset gyro integrals to acc guessing
175
  // reset gyro integrals to acc guessing
181
  setStaticAttitudeAngles();
176
  setStaticAttitudeAngles();
182
  yawAngle = 0;
177
  yawAngle = 0;
183
 
178
 
184
  // update compass course to current heading
179
  // update compass course to current heading
185
  compassCourse = compassHeading;
180
  compassCourse = compassHeading;
186
  // Inititialize YawGyroIntegral value with current compass heading
181
  // Inititialize YawGyroIntegral value with current compass heading
187
  yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
182
  yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
188
 
183
 
189
  // Servo_On(); //enable servo output
184
  // Servo_On(); //enable servo output
190
}
185
}
191
 
186
 
192
/************************************************************************
187
/************************************************************************
193
 * Get sensor data from the analog module, and release the ADC          
188
 * Get sensor data from the analog module, and release the ADC          
194
 * TODO: Ultimately, the analog module could do this (instead of dumping
189
 * TODO: Ultimately, the analog module could do this (instead of dumping
195
 * the values into variables).                                          
190
 * the values into variables).
-
 
191
 * The rate variable end up in a range of about [-1024, 1023].
-
 
192
 * When scaled down by CONTROL_SCALING, the interval is about [-256, 256].
196
 *************************************************************************/
193
 *************************************************************************/
197
void getAnalogData(void) {
194
void getAnalogData(void) {
198
  // For the differential calculation. Diff. is not supported right now.
-
 
199
  // int16_t d2Pitch, d2Roll;
195
  uint8_t axis;
200
  pitchRate_PID = (hiResPitchGyro + dynamicOffsetPitch) / HIRES_GYRO_INTEGRATION_FACTOR;
-
 
201
  pitchRate = (filteredHiResPitchGyro + dynamicOffsetPitch) / HIRES_GYRO_INTEGRATION_FACTOR;
-
 
202
  pitchDifferential = pitchGyroD;
-
 
203
 
196
 
-
 
197
  for (axis=PITCH; axis <=ROLL; axis++) {
204
  rollRate_PID = (hiResRollGyro + dynamicOffsetRoll) / HIRES_GYRO_INTEGRATION_FACTOR;
198
    rate_PID[axis]     = (gyro_PID[axis] + dynamicOffset[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
205
  rollRate = (filteredHiResRollGyro + dynamicOffsetRoll) / HIRES_GYRO_INTEGRATION_FACTOR;
199
    rate[axis]         = (gyro_ATT[axis] + dynamicOffset[axis]) / HIRES_GYRO_INTEGRATION_FACTOR;
206
  rollDifferential = rollGyroD;
200
    differential[axis] = gyroD[axis];
207
 
201
  }
208
  yawRate = yawGyro + dynamicOffsetYaw;
202
  yawRate = yawGyro + dynamicOffsetYaw;
209
 
203
 
-
 
204
  // We are done reading variables from the analog module.
210
  // We are done reading variables from the analog module. Interrupt-driven sensor reading may restart.
205
  // Interrupt-driven sensor reading may restart.
211
  analogDataReady = 0;
206
  analogDataReady = 0;
212
  analog_start();
207
  analog_start();
213
}
208
}
214
 
-
 
215
/************************************************************************
-
 
216
 * Axis coupling, H&I Style                                            
-
 
217
 * Currently not working (and there is a bug in it,
-
 
218
 * which causes unstable flight in heading-hold mode).
-
 
219
 ************************************************************************/
-
 
220
void H_and_I_axisCoupling(void) {
-
 
221
  int32_t tmpl = 0, tmpl2 = 0, tmp13 = 0, tmp14 = 0;
-
 
222
  int16_t CouplingNickRoll = 0, CouplingRollNick = 0;
-
 
223
 
-
 
224
  tmp13 = (rollRate * pitchAngle) / 2048L;
-
 
225
  tmp13 *= dynamicParams.AxisCoupling2; // 65
-
 
226
  tmp13 /= 4096L;
-
 
227
  CouplingNickRoll = tmp13;
-
 
228
 
-
 
229
  tmp14 = (pitchRate * rollAngle) / 2048L;
-
 
230
  tmp14 *= dynamicParams.AxisCoupling2; // 65
-
 
231
  tmp14 /= 4096L;
-
 
232
  CouplingRollNick = tmp14;
-
 
233
 
-
 
234
  tmp14 -= tmp13;
-
 
235
 
-
 
236
  ACYawRate = yawRate + tmp14;
-
 
237
 
-
 
238
  /*
-
 
239
  if(!dynamicParams.AxisCouplingYawCorrection) ACYawRate = yawRate - tmp14 / 2; // force yaw
-
 
240
  else ACYawRate
-
 
241
  */
-
 
242
 
-
 
243
  tmpl = ((yawRate + tmp14) * pitchAngle) / 2048L;
-
 
244
  tmpl *= dynamicParams.AxisCoupling1;
-
 
245
  tmpl /= 4096L;
-
 
246
 
-
 
247
  tmpl2 = ((yawRate + tmp14) * rollAngle) / 2048L;
-
 
248
  tmpl2 *= dynamicParams.AxisCoupling1;
-
 
249
  tmpl2 /= 4096L;
-
 
250
 
-
 
251
  // if(abs(yawRate > 64)) {
-
 
252
  // if(labs(tmpl) > 128 || labs(tmpl2) > 128) FunnelCourse = 1;
-
 
253
  // }
-
 
254
 
-
 
255
  ACPitchRate = pitchRate - tmpl2 + tmpl / 100L;
-
 
256
  ACRollRate = rollRate + tmpl - tmpl2 / 100L;
-
 
257
}
-
 
258
 
209
 
259
/*
210
/*
260
 * This is the standard flight-style coordinate system transformation
211
 * This is the standard flight-style coordinate system transformation
261
 * (from airframe-local axes to a ground-based system). For some reason
212
 * (from airframe-local axes to a ground-based system). For some reason
262
 * the MK uses a left-hand coordinate system. The tranformation has been
213
 * the MK uses a left-hand coordinate system. The tranformation has been
263
 * changed accordingly.
214
 * changed accordingly.
264
 */
215
 */
265
void trigAxisCoupling(void) {
216
void trigAxisCoupling(void) {
266
  int16_t cospitch = int_cos(pitchAngle);
217
  int16_t cospitch = int_cos(angle[PITCH]);
267
  int16_t cosroll =  int_cos(rollAngle);
218
  int16_t cosroll =  int_cos(angle[ROLL]);
268
  int16_t sinroll =  int_sin(rollAngle);
219
  int16_t sinroll =  int_sin(angle[ROLL]);
269
  int16_t tanpitch = int_tan(pitchAngle);
220
  int16_t tanpitch = int_tan(angle[PITCH]);
270
#define ANTIOVF 1024
221
#define ANTIOVF 1024
271
  ACPitchRate =            ((int32_t)pitchRate * cosroll - (int32_t)yawRate * sinroll) / (int32_t)MATH_UNIT_FACTOR;
222
  ACRate[PITCH] =             ((int32_t) rate[PITCH] * cosroll - (int32_t)yawRate * sinroll) / (int32_t)MATH_UNIT_FACTOR;
272
  ACRollRate = rollRate + (((int32_t)pitchRate * sinroll / ANTIOVF * tanpitch + (int32_t)yawRate * int_cos(rollAngle) / ANTIOVF * tanpitch) / ((int32_t)MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR));
223
  ACRate[ROLL] = rate[ROLL] + (((int32_t)rate[PITCH] * sinroll / ANTIOVF * tanpitch + (int32_t)yawRate * int_cos(angle[ROLL]) / ANTIOVF * tanpitch) / ((int32_t)MATH_UNIT_FACTOR / ANTIOVF * MATH_UNIT_FACTOR));
273
  ACYawRate =             ((int32_t)pitchRate * sinroll) / cospitch + ((int32_t)yawRate * cosroll) / cospitch;
224
  ACYawRate =                 ((int32_t) rate[PITCH] * sinroll) / cospitch + ((int32_t)yawRate * cosroll) / cospitch;
274
}
225
}
275
 
226
 
276
void integrate(void) {
227
void integrate(void) {
277
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
228
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
-
 
229
  uint8_t axis;
-
 
230
 
278
  if(!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
231
  if(!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
279
    // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
232
    // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
280
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER)
-
 
281
      trigAxisCoupling();    
233
    trigAxisCoupling();    
282
    else
-
 
283
      H_and_I_axisCoupling();
-
 
284
  } else {
234
  } else {
285
    ACPitchRate = pitchRate;
235
    ACRate[PITCH] = rate[PITCH];
286
    ACRollRate = rollRate;
236
    ACRate[ROLL]  = rate[ROLL];
287
    ACYawRate = yawRate;
237
    ACYawRate = yawRate;
288
  }
238
  }
289
 
239
 
290
  DebugOut.Analog[3] = pitchRate;
-
 
291
  // DebugOut.Analog[3 + 3] = ACPitchRate;
240
  DebugOut.Analog[3] = ACRate[PITCH];
292
  DebugOut.Analog[4] = rollRate;
-
 
293
  // DebugOut.Analog[4 + 3] = ACRollRate;
241
  DebugOut.Analog[4] = ACRate[ROLL];
294
  DebugOut.Analog[5] = yawRate;
-
 
295
  // DebugOut.Analog[5 + 3] = ACYawRate;
-
 
296
 
-
 
297
  /*
-
 
298
  DebugOut.Analog[9] = int_cos(pitchAngle);
-
 
299
  DebugOut.Analog[10] = int_sin(pitchAngle);
-
 
300
  DebugOut.Analog[11] = int_tan(pitchAngle);
-
 
301
  */
242
  DebugOut.Analog[5] = ACYawRate;
302
 
243
 
303
  /*
244
  /*
304
   * Yaw
245
   * Yaw
305
   * Calculate yaw gyro integral (~ to rotation angle)
246
   * Calculate yaw gyro integral (~ to rotation angle)
306
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
247
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
307
   */
248
   */
308
 
-
 
309
  yawGyroHeading += ACYawRate;
249
  yawGyroHeading += ACYawRate;
310
 
250
 
311
  // Why is yawAngle not wrapped 'round?
251
  // Why is yawAngle not wrapped 'round?
312
  yawAngle += ACYawRate;
252
  yawAngle += ACYawRate;
313
 
253
 
314
  if(yawGyroHeading >= YAWOVER360) {
254
  if(yawGyroHeading >= YAWOVER360) {
315
    yawGyroHeading -= YAWOVER360;  // 360 deg. wrap
255
    yawGyroHeading -= YAWOVER360;  // 360 deg. wrap
316
  } else if(yawGyroHeading < 0) {
256
  } else if(yawGyroHeading < 0) {
317
    yawGyroHeading += YAWOVER360;
257
    yawGyroHeading += YAWOVER360;
318
  }
258
  }
319
 
259
 
320
  /*
260
  /*
321
   * Pitch axis integration and range boundary wrap.
261
   * Pitch axis integration and range boundary wrap.
322
   */
262
   */
-
 
263
  for (axis=PITCH; axis<=ROLL; axis++) {
323
  pitchAngle += ACPitchRate;
264
    angle[axis] += ACRate[axis];
324
  if(pitchAngle > PITCHROLLOVER180) {
265
    if(angle[axis] > PITCHROLLOVER180) {
325
    pitchAngle -= PITCHROLLOVER360;
266
      angle[axis] -= PITCHROLLOVER360;
326
  } else if (pitchAngle <= -PITCHROLLOVER180) {
267
    } else if (angle[axis] <= -PITCHROLLOVER180) {
327
    pitchAngle += PITCHROLLOVER360;
268
      angle[axis] += PITCHROLLOVER360;
328
  }
-
 
329
 
-
 
330
  /*
-
 
331
   * Pitch axis integration and range boundary wrap.
-
 
332
   */
269
    }
333
  rollAngle  += ACRollRate;
-
 
334
  if(rollAngle > PITCHROLLOVER180) {
-
 
335
    rollAngle -= PITCHROLLOVER360;
-
 
336
  } else if (rollAngle <= -PITCHROLLOVER180) {
-
 
337
    rollAngle += PITCHROLLOVER360;
-
 
338
  }
270
  }
339
}
271
}
340
 
272
 
341
/************************************************************************
273
/************************************************************************
342
 * A kind of 0'th order integral correction, that corrects the integrals
274
 * A kind of 0'th order integral correction, that corrects the integrals
343
 * directly. This is the "gyroAccFactor" stuff in the original code.
275
 * directly. This is the "gyroAccFactor" stuff in the original code.
344
 * There is (there) also what I would call a  "minus 1st order correction"
276
 * There is (there) also what I would call a  "minus 1st order correction"
345
 * - it corrects the differential of the integral = the gyro offsets.
277
 * - it corrects the differential of the integral = the gyro offsets.
346
 * That should only be necessary with drifty gyros like ENC-03.
278
 * That should only be necessary with drifty gyros like ENC-03.
347
 ************************************************************************/
279
 ************************************************************************/
348
void correctIntegralsByAcc0thOrder(void) {
280
void correctIntegralsByAcc0thOrder(void) {
349
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
281
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
350
  // are less than ....., or reintroduce Kalman.
282
  // are less than ....., or reintroduce Kalman.
351
  // Well actually the Z axis acc. check is not so silly.
283
  // Well actually the Z axis acc. check is not so silly.
-
 
284
  uint8_t axis;
352
  if(!looping && //((ZAxisAcc >= -4) || (MKFlags & MKFLAG_MOTOR_RUN))) { // if not looping in any direction
285
  if(!looping && //((ZAcc >= -4) || (MKFlags & MKFLAG_MOTOR_RUN))) { // if not looping in any direction
353
     ZAxisAcc >= -dynamicParams.UserParams[7] && ZAxisAcc <= dynamicParams.UserParams[7]) {
286
     ZAcc >= -dynamicParams.UserParams[7] && ZAcc <= dynamicParams.UserParams[7]) {
354
    DebugOut.Digital[0] = 1;
287
    DebugOut.Digital[0] = 1;
355
   
288
   
356
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
289
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
357
    uint8_t debugFullWeight = 1;
290
    uint8_t debugFullWeight = 1;
-
 
291
    int32_t accDerived[2];
358
   
-
 
359
    int32_t accDerivedPitch = getPitchAngleEstimateFromAcc();
-
 
360
    int32_t accDerivedRoll = getRollAngleEstimateFromAcc();
-
 
361
   
292
   
362
    if((maxControlPitch > 64) || (maxControlRoll > 64)) { // reduce effect during stick commands
293
    if((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
363
      permilleAcc /= 2;
294
      permilleAcc /= 2;
364
      debugFullWeight = 0;
295
      debugFullWeight = 0;
365
    }
296
    }
366
   
297
   
367
    if(abs(controlYaw) > 25) { // reduce further if yaw stick is active
298
    if(abs(controlYaw) > 25) { // reduce further if yaw stick is active
368
      permilleAcc /= 2;
299
      permilleAcc /= 2;
369
      debugFullWeight = 0;
300
      debugFullWeight = 0;
370
    }
301
    }
371
 
302
 
372
    /*
303
    /*
373
     * Add to each sum: The amount by which the angle is changed just below.
304
     * Add to each sum: The amount by which the angle is changed just below.
374
     */
305
     */
375
    pitchCorrectionSum += permilleAcc * (accDerivedPitch - pitchAngle);
306
    for (axis=PITCH; axis<=ROLL; axis++) {
376
    rollCorrectionSum += permilleAcc * (accDerivedRoll - rollAngle);
307
      accDerived[axis] = getAngleEstimateFromAcc(axis);
377
   
-
 
378
    // There should not be a risk of overflow here, since the integrals do not exceed a few 100000.
308
      correctionSum[axis] += permilleAcc * (accDerived[axis] - angle[axis]);
379
    pitchAngle = ((int32_t)(1000 - permilleAcc) * pitchAngle + (int32_t)permilleAcc * accDerivedPitch) / 1000L;
-
 
380
    rollAngle = ((int32_t)(1000 - permilleAcc) * rollAngle + (int32_t)permilleAcc * accDerivedRoll) / 1000L;
-
 
-
 
309
   
-
 
310
      // There should not be a risk of overflow here, since the integrals do not exceed a few 100000.
-
 
311
      angle[axis] = ((int32_t)(1000 - permilleAcc) * angle[axis] + (int32_t)permilleAcc * accDerived[axis]) / 1000L;
-
 
312
    }
381
   
313
       
382
    DebugOut.Digital[1] = debugFullWeight;
314
    DebugOut.Digital[1] = debugFullWeight;
383
  } else {
315
  } else {
384
    DebugOut.Digital[0] = 0;
316
    DebugOut.Digital[0] = 0;
385
  }
317
  }
386
}
318
}
387
 
319
 
388
/************************************************************************
320
/************************************************************************
389
 * This is an attempt to correct not the error in the angle integrals
321
 * This is an attempt to correct not the error in the angle integrals
390
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
322
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
391
 * cause of it: Gyro drift, vibration and rounding errors.
323
 * cause of it: Gyro drift, vibration and rounding errors.
392
 * All the corrections made in correctIntegralsByAcc0thOrder over
324
 * All the corrections made in correctIntegralsByAcc0thOrder over
393
 * MINUSFIRSTORDERCORRECTION_TIME cycles are summed up. This number is
325
 * MINUSFIRSTORDERCORRECTION_TIME cycles are summed up. This number is
394
 * then divided by MINUSFIRSTORDERCORRECTION_TIME to get the approx.
326
 * then divided by MINUSFIRSTORDERCORRECTION_TIME to get the approx.
395
 * correction that should have been applied to each iteration to fix
327
 * correction that should have been applied to each iteration to fix
396
 * the error. This is then added to the dynamic offsets.
328
 * the error. This is then added to the dynamic offsets.
397
 ************************************************************************/
329
 ************************************************************************/
398
// 2 times / sec.
330
// 2 times / sec.
399
#define DRIFTCORRECTION_TIME 488/2
331
#define DRIFTCORRECTION_TIME 488/2
400
void driftCompensation(void) {
332
void driftCompensation(void) {
401
  static int16_t timer = DRIFTCORRECTION_TIME;
333
  static int16_t timer = DRIFTCORRECTION_TIME;
402
  int16_t deltaCompensation;
334
  int16_t deltaCompensation;
-
 
335
  uint8_t axis;
403
  if (! --timer) {
336
  if (! --timer) {
404
    timer = DRIFTCORRECTION_TIME;
337
    timer = DRIFTCORRECTION_TIME;
405
    deltaCompensation = ((pitchCorrectionSum + 1000L * DRIFTCORRECTION_TIME / 2) / 1000 / DRIFTCORRECTION_TIME);
-
 
406
    CHECK_MIN_MAX(deltaCompensation, -staticParams.DriftComp, staticParams.DriftComp);
-
 
407
    dynamicOffsetPitch += deltaCompensation / staticParams.GyroAccTrim;
338
    for (axis=PITCH; axis<=ROLL; axis++) {
408
 
-
 
409
    deltaCompensation = ((rollCorrectionSum + 1000L * DRIFTCORRECTION_TIME / 2) / 1000 / DRIFTCORRECTION_TIME);
339
      deltaCompensation = ((correctionSum[axis] + 1000L * DRIFTCORRECTION_TIME / 2) / 1000 / DRIFTCORRECTION_TIME);
410
    CHECK_MIN_MAX(deltaCompensation, -staticParams.DriftComp, staticParams.DriftComp);
340
      CHECK_MIN_MAX(deltaCompensation, -staticParams.DriftComp, staticParams.DriftComp);
411
    dynamicOffsetRoll += deltaCompensation / staticParams.GyroAccTrim;
341
      dynamicOffset[axis] += deltaCompensation / staticParams.GyroAccTrim;
412
 
-
 
413
    pitchCorrectionSum = rollCorrectionSum = 0;
342
      correctionSum[axis] = 0;
414
 
-
 
415
    DebugOut.Analog[28] = dynamicOffsetPitch;
343
      DebugOut.Analog[28 + axis] = dynamicOffset;
416
    DebugOut.Analog[29] = dynamicOffsetRoll;
344
    }
417
  }
345
  }
418
}
346
}
419
 
347
 
420
/************************************************************************
348
/************************************************************************
421
 * Main procedure.
349
 * Main procedure.
422
 ************************************************************************/
350
 ************************************************************************/
423
void calculateFlightAttitude(void) {  
351
void calculateFlightAttitude(void) {  
424
  getAnalogData();
352
  getAnalogData();
425
  integrate();
353
  integrate();
426
#ifdef ATTITUDE_USE_ACC_SENSORS
354
#ifdef ATTITUDE_USE_ACC_SENSORS
427
  correctIntegralsByAcc0thOrder();
355
  correctIntegralsByAcc0thOrder();
428
  driftCompensation();
356
  driftCompensation();
429
#endif
357
#endif
430
}
358
}
431
 
359
 
432
/*
360
/*
433
void updateCompass(void) {
361
  void updateCompass(void) {
434
  int16_t w, v, r,correction, error;
362
  int16_t w, v, r,correction, error;
435
 
363
 
436
  if(compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
364
  if(compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
437
    setCompassCalState();
365
  setCompassCalState();
438
  } else {
366
  } else {
439
    // get maximum attitude angle
367
  // get maximum attitude angle
440
    w = abs(pitchAngle / 512);
368
  w = abs(pitchAngle / 512);
441
    v = abs(rollAngle / 512);
369
  v = abs(rollAngle / 512);
442
    if(v > w) w = v;
370
  if(v > w) w = v;
443
    correction = w / 8 + 1;
371
  correction = w / 8 + 1;
444
    // calculate the deviation of the yaw gyro heading and the compass heading
372
  // calculate the deviation of the yaw gyro heading and the compass heading
445
    if (compassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined
373
  if (compassHeading < 0) error = 0; // disable yaw drift compensation if compass heading is undefined
446
    else error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
374
  else error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW)) % 360) - 180;
447
    if(abs(yawRate) > 128) { // spinning fast
375
  if(abs(yawRate) > 128) { // spinning fast
448
      error = 0;
376
  error = 0;
449
    }
377
  }
450
    if(!badCompassHeading && w < 25) {
378
  if(!badCompassHeading && w < 25) {
451
      if(updateCompassCourse) {
379
  if(updateCompassCourse) {
452
        beep(200);
380
  beep(200);
453
        yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
381
  yawGyroHeading = (int32_t)compassHeading * GYRO_DEG_FACTOR_YAW;
454
        compassCourse = (int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
382
  compassCourse = (int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
455
        updateCompassCourse = 0;
383
  updateCompassCourse = 0;
456
      }
384
  }
457
    }
385
  }
458
    yawGyroHeading += (error * 8) / correction;
386
  yawGyroHeading += (error * 8) / correction;
459
    w = (w * dynamicParams.CompassYawEffect) / 32;
387
  w = (w * dynamicParams.CompassYawEffect) / 32;
460
    w = dynamicParams.CompassYawEffect - w;
388
  w = dynamicParams.CompassYawEffect - w;
461
    if(w >= 0) {
389
  if(w >= 0) {
462
      if(!badCompassHeading) {
390
  if(!badCompassHeading) {
463
        v = 64 + (maxControlPitch + maxControlRoll) / 8;
391
  v = 64 + (maxControlPitch + maxControlRoll) / 8;
464
        // calc course deviation
392
  // calc course deviation
465
        r = ((540 + (yawGyroHeading / GYRO_DEG_FACTOR_YAW) - compassCourse) % 360) - 180;
393
  r = ((540 + (yawGyroHeading / GYRO_DEG_FACTOR_YAW) - compassCourse) % 360) - 180;
466
        v = (r * w) / v; // align to compass course
394
  v = (r * w) / v; // align to compass course
467
        // limit yaw rate
395
  // limit yaw rate
468
        w = 3 * dynamicParams.CompassYawEffect;
396
  w = 3 * dynamicParams.CompassYawEffect;
469
        if (v > w) v = w;
397
  if (v > w) v = w;
470
        else if (v < -w) v = -w;
398
  else if (v < -w) v = -w;
471
        yawAngle += v;
399
  yawAngle += v;
472
      }
400
  }
473
      else
401
  else
474
        { // wait a while
402
  { // wait a while
475
          badCompassHeading--;
403
  badCompassHeading--;
476
        }
404
  }
477
    }
405
  }
478
    else {  // ignore compass at extreme attitudes for a while
406
  else {  // ignore compass at extreme attitudes for a while
479
      badCompassHeading = 500;
407
  badCompassHeading = 500;
-
 
408
  }
480
    }
409
  }
481
  }
410
  }
482
}
-
 
483
*/
411
*/
484
 
412
 
485
/*
413
/*
486
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
414
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
487
 * and to compensate them away. It brings about some improvement, but no miracles.
415
 * and to compensate them away. It brings about some improvement, but no miracles.
488
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
416
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
489
 * will measure the effect of vibration, to use for later compensation. So, one should keep
417
 * will measure the effect of vibration, to use for later compensation. So, one should keep
490
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
418
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
491
 * speed unfortunately... must find a better way)
419
 * speed unfortunately... must find a better way)
492
 */
420
 */
493
/*
421
/*
494
void attitude_startDynamicCalibration(void) {
422
  void attitude_startDynamicCalibration(void) {
495
  dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
423
  dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
496
  savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
424
  savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
497
}
425
  }
498
 
426
 
499
void attitude_continueDynamicCalibration(void) {
427
  void attitude_continueDynamicCalibration(void) {
500
  // measure dynamic offset now...
428
  // measure dynamic offset now...
501
  dynamicCalPitch += hiResPitchGyro;
429
  dynamicCalPitch += hiResPitchGyro;
502
  dynamicCalRoll += hiResRollGyro;
430
  dynamicCalRoll += hiResRollGyro;
503
  dynamicCalYaw += rawYawGyroSum;
431
  dynamicCalYaw += rawYawGyroSum;
504
  dynamicCalCount++;
432
  dynamicCalCount++;
505
 
433
 
506
  // Param6: Manual mode. The offsets are taken from Param7 and Param8.
434
  // Param6: Manual mode. The offsets are taken from Param7 and Param8.
507
  if (dynamicParams.UserParam6 || 1) { // currently always enabled.
435
  if (dynamicParams.UserParam6 || 1) { // currently always enabled.
508
    // manual mode
436
  // manual mode
509
    dynamicOffsetPitch = dynamicParams.UserParam7 - 128;
437
  dynamicOffsetPitch = dynamicParams.UserParam7 - 128;
510
    dynamicOffsetRoll = dynamicParams.UserParam8 - 128;
438
  dynamicOffsetRoll = dynamicParams.UserParam8 - 128;
511
  } else {
439
  } else {
512
    // use the sampled value (does not seem to work so well....)
440
  // use the sampled value (does not seem to work so well....)
513
    dynamicOffsetPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
441
  dynamicOffsetPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
514
    dynamicOffsetRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
442
  dynamicOffsetRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
515
    dynamicOffsetYaw = -dynamicCalYaw / dynamicCalCount;
443
  dynamicOffsetYaw = -dynamicCalYaw / dynamicCalCount;
516
  }
444
  }
517
 
445
 
518
  // keep resetting these meanwhile, to avoid accumulating errors.
446
  // keep resetting these meanwhile, to avoid accumulating errors.
519
  setStaticAttitudeIntegrals();
447
  setStaticAttitudeIntegrals();
520
  yawAngle = 0;
448
  yawAngle = 0;
521
}
449
  }
522
*/
450
*/
523
 
451