Subversion Repositories FlightCtrl

Rev

Rev 1869 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1869 Rev 1870
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
 
51
 
52
/************************************************************************/
52
/************************************************************************/
53
/* Flight Attitude                                                      */
53
/* Flight Attitude                                                      */
54
/************************************************************************/
54
/************************************************************************/
55
 
55
 
56
#include <stdlib.h>
56
#include <stdlib.h>
57
#include <avr/io.h>
57
#include <avr/io.h>
58
 
58
 
59
#include "attitude.h"
59
#include "attitude.h"
60
#include "dongfangMath.h"
60
#include "dongfangMath.h"
61
 
61
 
62
// For scope debugging only!
62
// For scope debugging only!
63
#include "rc.h"
63
#include "rc.h"
64
 
64
 
65
// where our main data flow comes from.
65
// where our main data flow comes from.
66
#include "analog.h"
66
#include "analog.h"
67
 
67
 
68
#include "configuration.h"
68
#include "configuration.h"
69
#include "output.h"
69
#include "output.h"
70
 
70
 
71
// Some calculations are performed depending on some stick related things.
71
// Some calculations are performed depending on some stick related things.
72
#include "controlMixer.h"
72
#include "controlMixer.h"
73
 
73
 
74
// For Servo_On / Off
74
// For Servo_On / Off
75
// #include "timer2.h"
75
// #include "timer2.h"
76
 
76
 
77
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
77
#define CHECK_MIN_MAX(value, min, max) {if(value < min) value = min; else if(value > max) value = max;}
78
 
78
 
79
/*
79
/*
80
 * Gyro readings, as read from the analog module. It would have been nice to flow
80
 * Gyro readings, as read from the analog module. It would have been nice to flow
81
 * them around between the different calculations as a struct or array (doing
81
 * them around between the different calculations as a struct or array (doing
82
 * things functionally without side effects) but this is shorter and probably
82
 * things functionally without side effects) but this is shorter and probably
83
 * faster too.
83
 * faster too.
84
 * The variables are overwritten at each attitude calculation invocation - the values
84
 * The variables are overwritten at each attitude calculation invocation - the values
85
 * are not preserved or reused.
85
 * are not preserved or reused.
86
 */
86
 */
87
int16_t rate_ATT[2], yawRate;
87
int16_t rate_ATT[2], yawRate;
88
 
88
 
89
// With different (less) filtering
89
// With different (less) filtering
90
int16_t rate_PID[2];
90
int16_t rate_PID[2];
91
int16_t differential[2];
91
int16_t differential[2];
92
 
92
 
93
/*
93
/*
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
94
 * Gyro readings, after performing "axis coupling" - that is, the transfomation
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
95
 * of rotation rates from the airframe-local coordinate system to a ground-fixed
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
96
 * coordinate system. If axis copling is disabled, the gyro readings will be
97
 * copied into these directly.
97
 * copied into these directly.
98
 * These are global for the same pragmatic reason as with the gyro readings.
98
 * These are global for the same pragmatic reason as with the gyro readings.
99
 * The variables are overwritten at each attitude calculation invocation - the values
99
 * The variables are overwritten at each attitude calculation invocation - the values
100
 * are not preserved or reused.
100
 * are not preserved or reused.
101
 */
101
 */
102
int16_t ACRate[2], ACYawRate;
102
int16_t ACRate[2], ACYawRate;
103
 
103
 
104
/*
104
/*
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
105
 * Gyro integrals. These are the rotation angles of the airframe compared to the
106
 * horizontal plane, yaw relative to yaw at start.
106
 * horizontal plane, yaw relative to yaw at start.
107
 */
107
 */
108
int32_t angle[2], yawAngleDiff;
108
int32_t angle[2], yawAngleDiff;
109
 
109
 
110
int readingHeight = 0;
110
int readingHeight = 0;
111
 
111
 
112
// Yaw angle and compass stuff.
112
// Yaw angle and compass stuff.
113
 
113
 
114
// This is updated/written from MM3. Negative angle indicates invalid data.
114
// This is updated/written from MM3. Negative angle indicates invalid data.
115
int16_t compassHeading = -1;
115
int16_t compassHeading = -1;
116
 
116
 
117
// This is NOT updated from MM3. Negative angle indicates invalid data.
117
// This is NOT updated from MM3. Negative angle indicates invalid data.
118
int16_t compassCourse = -1;
118
int16_t compassCourse = -1;
119
 
119
 
120
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
120
// The difference between the above 2 (heading - course) on a -180..179 degree interval.
121
// Not necessary. Never read anywhere.
121
// Not necessary. Never read anywhere.
122
// int16_t compassOffCourse = 0;
122
// int16_t compassOffCourse = 0;
123
 
123
 
124
uint8_t updateCompassCourse = 0;
124
uint8_t updateCompassCourse = 0;
125
uint8_t compassCalState = 0;
125
uint8_t compassCalState = 0;
126
uint16_t ignoreCompassTimer = 500;
126
uint16_t ignoreCompassTimer = 500;
127
 
127
 
128
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
128
int32_t yawGyroHeading; // Yaw Gyro Integral supported by compass
129
int16_t yawGyroDrift;
129
int16_t yawGyroDrift;
130
 
130
 
131
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
131
#define PITCHROLLOVER180 (GYRO_DEG_FACTOR_PITCHROLL * 180L)
132
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
132
#define PITCHROLLOVER360 (GYRO_DEG_FACTOR_PITCHROLL * 360L)
133
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
133
#define YAWOVER360       (GYRO_DEG_FACTOR_YAW * 360L)
134
 
134
 
135
int16_t correctionSum[2] = { 0, 0 };
135
int16_t correctionSum[2] = { 0, 0 };
136
 
136
 
137
// For NaviCTRL use.
137
// For NaviCTRL use.
138
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
138
int16_t averageAcc[2] = { 0, 0 }, averageAccCount = 0;
139
 
139
 
140
/*
140
/*
141
 * Experiment: Compensating for dynamic-induced gyro biasing.
141
 * Experiment: Compensating for dynamic-induced gyro biasing.
142
 */
142
 */
143
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
143
int16_t driftComp[2] = { 0, 0 }, driftCompYaw = 0;
144
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
144
// int16_t savedDynamicOffsetPitch = 0, savedDynamicOffsetRoll = 0;
145
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
145
// int32_t dynamicCalPitch, dynamicCalRoll, dynamicCalYaw;
146
// int16_t dynamicCalCount;
146
// int16_t dynamicCalCount;
147
 
147
 
148
/************************************************************************
148
/************************************************************************
149
 * Set inclination angles from the acc. sensor data.                    
149
 * Set inclination angles from the acc. sensor data.                    
150
 * If acc. sensors are not used, set to zero.                          
150
 * If acc. sensors are not used, set to zero.                          
151
 * TODO: One could use inverse sine to calculate the angles more        
151
 * TODO: One could use inverse sine to calculate the angles more        
152
 * accurately, but since: 1) the angles are rather small at times when
152
 * accurately, but since: 1) the angles are rather small at times when
153
 * it makes sense to set the integrals (standing on ground, or flying at  
153
 * it makes sense to set the integrals (standing on ground, or flying at  
154
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
154
 * constant speed, and 2) at small angles a, sin(a) ~= constant * a,    
155
 * it is hardly worth the trouble.                                      
155
 * it is hardly worth the trouble.                                      
156
 ************************************************************************/
156
 ************************************************************************/
157
 
157
 
158
int32_t getAngleEstimateFromAcc(uint8_t axis) {
158
int32_t getAngleEstimateFromAcc(uint8_t axis) {
159
  return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
159
  return GYRO_ACC_FACTOR * (int32_t) filteredAcc[axis];
160
}
160
}
161
 
161
 
162
void setStaticAttitudeAngles(void) {
162
void setStaticAttitudeAngles(void) {
163
#ifdef ATTITUDE_USE_ACC_SENSORS
163
#ifdef ATTITUDE_USE_ACC_SENSORS
164
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
164
  angle[PITCH] = getAngleEstimateFromAcc(PITCH);
165
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
165
  angle[ROLL] = getAngleEstimateFromAcc(ROLL);
166
#else
166
#else
167
  angle[PITCH] = angle[ROLL] = 0;
167
  angle[PITCH] = angle[ROLL] = 0;
168
#endif
168
#endif
169
}
169
}
170
 
170
 
171
/************************************************************************
171
/************************************************************************
172
 * Neutral Readings                                                    
172
 * Neutral Readings                                                    
173
 ************************************************************************/
173
 ************************************************************************/
174
void attitude_setNeutral(void) {
174
void attitude_setNeutral(void) {
175
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
175
  // Servo_Off(); // disable servo output. TODO: Why bother? The servos are going to make a jerk anyway.
176
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
176
  dynamicParams.AxisCoupling1 = dynamicParams.AxisCoupling2 = 0;
177
 
177
 
178
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
178
  driftComp[PITCH] = driftComp[ROLL] = yawGyroDrift = driftCompYaw = 0;
179
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
179
  correctionSum[PITCH] = correctionSum[ROLL] = 0;
180
 
180
 
181
  // Calibrate hardware.
181
  // Calibrate hardware.
182
  analog_calibrate();
182
  analog_calibrate();
183
 
183
 
184
  // reset gyro integrals to acc guessing
184
  // reset gyro integrals to acc guessing
185
  setStaticAttitudeAngles();
185
  setStaticAttitudeAngles();
186
  yawAngleDiff = 0;
186
  yawAngleDiff = 0;
187
 
187
 
188
  // update compass course to current heading
188
  // update compass course to current heading
189
  compassCourse = compassHeading;
189
  compassCourse = compassHeading;
190
 
190
 
191
  // Inititialize YawGyroIntegral value with current compass heading
191
  // Inititialize YawGyroIntegral value with current compass heading
192
  yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
192
  yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
193
 
193
 
194
  // Servo_On(); //enable servo output
194
  // Servo_On(); //enable servo output
195
}
195
}
196
 
196
 
197
/************************************************************************
197
/************************************************************************
198
 * Get sensor data from the analog module, and release the ADC          
198
 * Get sensor data from the analog module, and release the ADC          
199
 * TODO: Ultimately, the analog module could do this (instead of dumping
199
 * TODO: Ultimately, the analog module could do this (instead of dumping
200
 * the values into variables).
200
 * the values into variables).
201
 * The rate variable end up in a range of about [-1024, 1023].
201
 * The rate variable end up in a range of about [-1024, 1023].
202
 *************************************************************************/
202
 *************************************************************************/
203
void getAnalogData(void) {
203
void getAnalogData(void) {
204
  uint8_t axis;
204
  uint8_t axis;
205
 
205
 
206
  for (axis = PITCH; axis <= ROLL; axis++) {
206
  for (axis = PITCH; axis <= ROLL; axis++) {
207
    rate_PID[axis] = gyro_PID[axis] / HIRES_GYRO_INTEGRATION_FACTOR
207
    rate_PID[axis] = gyro_PID[axis] / HIRES_GYRO_INTEGRATION_FACTOR + driftComp[axis];
208
        + driftComp[axis];
-
 
209
    rate_ATT[axis] = gyro_ATT[axis] / HIRES_GYRO_INTEGRATION_FACTOR
208
    rate_ATT[axis] = gyro_ATT[axis] / HIRES_GYRO_INTEGRATION_FACTOR + driftComp[axis];
210
        + driftComp[axis];
-
 
211
    differential[axis] = gyroD[axis];
209
    differential[axis] = gyroD[axis];
212
    averageAcc[axis] += acc[axis];
210
    averageAcc[axis] += acc[axis];
213
  }
211
  }
214
 
212
 
215
  averageAccCount++;
213
  averageAccCount++;
216
  yawRate = yawGyro + driftCompYaw;
214
  yawRate = yawGyro + driftCompYaw;
217
 
215
 
218
  // We are done reading variables from the analog module.
216
  // We are done reading variables from the analog module.
219
  // Interrupt-driven sensor reading may restart.
217
  // Interrupt-driven sensor reading may restart.
220
  analogDataReady = 0;
218
  analogDataReady = 0;
-
 
219
  J4HIGH;
221
  analog_start();
220
  analog_start();
222
}
221
}
223
 
222
 
224
/*
223
/*
225
 * This is the standard flight-style coordinate system transformation
224
 * This is the standard flight-style coordinate system transformation
226
 * (from airframe-local axes to a ground-based system). For some reason
225
 * (from airframe-local axes to a ground-based system). For some reason
227
 * the MK uses a left-hand coordinate system. The tranformation has been
226
 * the MK uses a left-hand coordinate system. The tranformation has been
228
 * changed accordingly.
227
 * changed accordingly.
229
 */
228
 */
230
void trigAxisCoupling(void) {
229
void trigAxisCoupling(void) {
231
  J5HIGH;
-
 
232
  int16_t cospitch = int_cos(angle[PITCH]);
230
  int16_t cospitch = int_cos(angle[PITCH]);
233
  int16_t cosroll = int_cos(angle[ROLL]);
231
  int16_t cosroll = int_cos(angle[ROLL]);
234
  int16_t sinroll = int_sin(angle[ROLL]);
232
  int16_t sinroll = int_sin(angle[ROLL]);
235
 
233
 
236
  ACRate[PITCH] = (((int32_t) rate_ATT[PITCH] * cosroll - (int32_t) yawRate
234
  ACRate[PITCH] = (((int32_t)rate_ATT[PITCH] * cosroll - (int32_t)yawRate
237
      * sinroll) >> MATH_UNIT_FACTOR_LOG);
235
      * sinroll) >> MATH_UNIT_FACTOR_LOG);
238
 
236
 
239
  ACRate[ROLL] = rate_ATT[ROLL] + (((((int32_t) rate_ATT[PITCH] * sinroll
237
  ACRate[ROLL] = rate_ATT[ROLL] + (((((int32_t)rate_ATT[PITCH] * sinroll
240
      + (int32_t) yawRate * cosroll) >> MATH_UNIT_FACTOR_LOG) * int_tan(
238
      + (int32_t)yawRate * cosroll) >> MATH_UNIT_FACTOR_LOG) * int_tan(
241
      angle[PITCH])) >> MATH_UNIT_FACTOR_LOG);
-
 
242
 
239
      angle[PITCH])) >> MATH_UNIT_FACTOR_LOG);
243
  ACYawRate = ((int32_t) rate_ATT[PITCH] * sinroll) / cospitch
240
 
244
      + ((int32_t) yawRate * cosroll) / cospitch;
241
  ACYawRate = ((int32_t)rate_ATT[PITCH] * sinroll + (int32_t)yawRate * cosroll) / cospitch;
245
}
242
}
246
 
243
 
247
// 480 usec with axis coupling - almost no time without.
244
// 480 usec with axis coupling - almost no time without.
248
void integrate(void) {
245
void integrate(void) {
249
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
246
  // First, perform axis coupling. If disabled xxxRate is just copied to ACxxxRate.
250
  uint8_t axis;
247
  uint8_t axis;
251
  if (!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
248
  if (!looping && (staticParams.GlobalConfig & CFG_AXIS_COUPLING_ACTIVE)) {
252
    // The rotary rate limiter bit is abused for selecting axis coupling algorithm instead.
-
 
253
    trigAxisCoupling();
249
    trigAxisCoupling();
254
  } else {
250
  } else {
255
    ACRate[PITCH] = rate_ATT[PITCH];
251
    ACRate[PITCH] = rate_ATT[PITCH];
256
    ACRate[ROLL] = rate_ATT[ROLL];
252
    ACRate[ROLL] = rate_ATT[ROLL];
257
    ACYawRate = yawRate;
253
    ACYawRate = yawRate;
258
  }
254
  }
259
 
255
 
260
  /*
256
  /*
261
   * Yaw
257
   * Yaw
262
   * Calculate yaw gyro integral (~ to rotation angle)
258
   * Calculate yaw gyro integral (~ to rotation angle)
263
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
259
   * Limit yawGyroHeading proportional to 0 deg to 360 deg
264
   */
260
   */
265
  yawGyroHeading += ACYawRate;
261
  yawGyroHeading += ACYawRate;
266
  yawAngleDiff += yawRate;
262
  yawAngleDiff += yawRate;
267
 
263
 
268
  if (yawGyroHeading >= YAWOVER360) {
264
  if (yawGyroHeading >= YAWOVER360) {
269
    yawGyroHeading -= YAWOVER360; // 360 deg. wrap
265
    yawGyroHeading -= YAWOVER360; // 360 deg. wrap
270
  } else if (yawGyroHeading < 0) {
266
  } else if (yawGyroHeading < 0) {
271
    yawGyroHeading += YAWOVER360;
267
    yawGyroHeading += YAWOVER360;
272
  }
268
  }
273
 
269
 
274
  /*
270
  /*
275
   * Pitch axis integration and range boundary wrap.
271
   * Pitch axis integration and range boundary wrap.
276
   */
272
   */
277
  for (axis = PITCH; axis <= ROLL; axis++) {
273
  for (axis = PITCH; axis <= ROLL; axis++) {
278
    angle[axis] += ACRate[axis];
274
    angle[axis] += ACRate[axis];
279
    if (angle[axis] > PITCHROLLOVER180) {
275
    if (angle[axis] > PITCHROLLOVER180) {
280
      angle[axis] -= PITCHROLLOVER360;
276
      angle[axis] -= PITCHROLLOVER360;
281
    } else if (angle[axis] <= -PITCHROLLOVER180) {
277
    } else if (angle[axis] <= -PITCHROLLOVER180) {
282
      angle[axis] += PITCHROLLOVER360;
278
      angle[axis] += PITCHROLLOVER360;
283
    }
279
    }
284
  }
280
  }
285
  J5LOW;
-
 
286
}
281
}
287
 
282
 
288
/************************************************************************
283
/************************************************************************
289
 * A kind of 0'th order integral correction, that corrects the integrals
284
 * A kind of 0'th order integral correction, that corrects the integrals
290
 * directly. This is the "gyroAccFactor" stuff in the original code.
285
 * directly. This is the "gyroAccFactor" stuff in the original code.
291
 * There is (there) also a drift compensation
286
 * There is (there) also a drift compensation
292
 * - it corrects the differential of the integral = the gyro offsets.
287
 * - it corrects the differential of the integral = the gyro offsets.
293
 * That should only be necessary with drifty gyros like ENC-03.
288
 * That should only be necessary with drifty gyros like ENC-03.
294
 ************************************************************************/
289
 ************************************************************************/
295
void correctIntegralsByAcc0thOrder(void) {
290
void correctIntegralsByAcc0thOrder(void) {
296
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
291
  // TODO: Consider changing this to: Only correct when integrals are less than ...., or only correct when angular velocities
297
  // are less than ....., or reintroduce Kalman.
292
  // are less than ....., or reintroduce Kalman.
298
  // Well actually the Z axis acc. check is not so silly.
293
  // Well actually the Z axis acc. check is not so silly.
299
  uint8_t axis;
294
  uint8_t axis;
300
  int32_t temp;
295
  int32_t temp;
301
  if (!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z]
296
  if (!looping && acc[Z] >= -dynamicParams.UserParams[7] && acc[Z]
302
      <= dynamicParams.UserParams[7]) {
297
      <= dynamicParams.UserParams[7]) {
303
    DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
298
    DebugOut.Digital[0] |= DEBUG_ACC0THORDER;
304
 
299
 
305
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
300
    uint8_t permilleAcc = staticParams.GyroAccFactor; // NOTE!!! The meaning of this value has changed!!
306
    uint8_t debugFullWeight = 1;
301
    uint8_t debugFullWeight = 1;
307
    int32_t accDerived;
302
    int32_t accDerived;
308
 
303
 
309
    if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
304
    if ((controlYaw < -64) || (controlYaw > 64)) { // reduce further if yaw stick is active
310
      permilleAcc /= 2;
305
      permilleAcc /= 2;
311
      debugFullWeight = 0;
306
      debugFullWeight = 0;
312
    }
307
    }
313
 
308
 
314
    if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
309
    if ((maxControl[PITCH] > 64) || (maxControl[ROLL] > 64)) { // reduce effect during stick commands
315
      permilleAcc /= 2;
310
      permilleAcc /= 2;
316
      debugFullWeight = 0;
311
      debugFullWeight = 0;
317
    }
312
    }
318
 
313
 
319
    if (debugFullWeight)
314
    if (debugFullWeight)
320
      DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
315
      DebugOut.Digital[1] |= DEBUG_ACC0THORDER;
321
    else
316
    else
322
      DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
317
      DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
323
 
318
 
324
    /*
319
    /*
325
     * Add to each sum: The amount by which the angle is changed just below.
320
     * Add to each sum: The amount by which the angle is changed just below.
326
     */
321
     */
327
    for (axis = PITCH; axis <= ROLL; axis++) {
322
    for (axis = PITCH; axis <= ROLL; axis++) {
328
      accDerived = getAngleEstimateFromAcc(axis);
323
      accDerived = getAngleEstimateFromAcc(axis);
329
      DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
324
      DebugOut.Analog[9 + axis] = (10 * accDerived) / GYRO_DEG_FACTOR_PITCHROLL;
330
 
325
 
331
      // 1000 * the correction amount that will be added to the gyro angle in next line.
326
      // 1000 * the correction amount that will be added to the gyro angle in next line.
332
      temp = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
327
      temp = angle[axis]; //(permilleAcc * (accDerived - angle[axis])) / 1000;
333
      angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
328
      angle[axis] = ((int32_t) (1000L - permilleAcc) * temp
334
          + (int32_t) permilleAcc * accDerived) / 1000L;
329
          + (int32_t) permilleAcc * accDerived) / 1000L;
335
      correctionSum[axis] += angle[axis] - temp;
330
      correctionSum[axis] += angle[axis] - temp;
336
    }
331
    }
337
  } else {
332
  } else {
338
    DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
333
    DebugOut.Digital[0] &= ~DEBUG_ACC0THORDER;
339
    DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
334
    DebugOut.Digital[1] &= ~DEBUG_ACC0THORDER;
340
    DebugOut.Analog[9] = 0;
335
    DebugOut.Analog[9] = 0;
341
    DebugOut.Analog[10] = 0;
336
    DebugOut.Analog[10] = 0;
342
 
337
 
343
    DebugOut.Analog[16] = 0;
338
    DebugOut.Analog[16] = 0;
344
    DebugOut.Analog[17] = 0;
339
    DebugOut.Analog[17] = 0;
345
    // experiment: Kill drift compensation updates when not flying smooth.
340
    // experiment: Kill drift compensation updates when not flying smooth.
346
    correctionSum[PITCH] = correctionSum[ROLL] = 0;
341
    correctionSum[PITCH] = correctionSum[ROLL] = 0;
347
  }
342
  }
348
}
343
}
349
 
344
 
350
/************************************************************************
345
/************************************************************************
351
 * This is an attempt to correct not the error in the angle integrals
346
 * This is an attempt to correct not the error in the angle integrals
352
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
347
 * (that happens in correctIntegralsByAcc0thOrder above) but rather the
353
 * cause of it: Gyro drift, vibration and rounding errors.
348
 * cause of it: Gyro drift, vibration and rounding errors.
354
 * All the corrections made in correctIntegralsByAcc0thOrder over
349
 * All the corrections made in correctIntegralsByAcc0thOrder over
355
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
350
 * DRIFTCORRECTION_TIME cycles are summed up. This number is
356
 * then divided by DRIFTCORRECTION_TIME to get the approx.
351
 * then divided by DRIFTCORRECTION_TIME to get the approx.
357
 * correction that should have been applied to each iteration to fix
352
 * correction that should have been applied to each iteration to fix
358
 * the error. This is then added to the dynamic offsets.
353
 * the error. This is then added to the dynamic offsets.
359
 ************************************************************************/
354
 ************************************************************************/
360
// 2 times / sec. = 488/2
355
// 2 times / sec. = 488/2
361
#define DRIFTCORRECTION_TIME 256L
356
#define DRIFTCORRECTION_TIME 256L
362
void driftCorrection(void) {
357
void driftCorrection(void) {
363
  static int16_t timer = DRIFTCORRECTION_TIME;
358
  static int16_t timer = DRIFTCORRECTION_TIME;
364
  int16_t deltaCorrection;
359
  int16_t deltaCorrection;
365
  uint8_t axis;
360
  uint8_t axis;
366
  if (!--timer) {
361
  if (!--timer) {
367
    timer = DRIFTCORRECTION_TIME;
362
    timer = DRIFTCORRECTION_TIME;
368
    for (axis = PITCH; axis <= ROLL; axis++) {
363
    for (axis = PITCH; axis <= ROLL; axis++) {
369
      // Take the sum of corrections applied, add it to delta
364
      // Take the sum of corrections applied, add it to delta
370
      deltaCorrection = (correctionSum[axis] + DRIFTCORRECTION_TIME / 2)
365
      deltaCorrection = (correctionSum[axis] + DRIFTCORRECTION_TIME / 2)
371
          / DRIFTCORRECTION_TIME;
366
          / DRIFTCORRECTION_TIME;
372
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
367
      // Add the delta to the compensation. So positive delta means, gyro should have higher value.
373
      driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
368
      driftComp[axis] += deltaCorrection / staticParams.GyroAccTrim;
374
      CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
369
      CHECK_MIN_MAX(driftComp[axis], -staticParams.DriftComp, staticParams.DriftComp);
375
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
370
      // DebugOut.Analog[11 + axis] = correctionSum[axis];
376
      DebugOut.Analog[16 + axis] = correctionSum[axis];
371
      DebugOut.Analog[16 + axis] = correctionSum[axis];
377
      DebugOut.Analog[18 + axis] = deltaCorrection / staticParams.GyroAccTrim;
372
      DebugOut.Analog[18 + axis] = deltaCorrection / staticParams.GyroAccTrim;
378
      DebugOut.Analog[28 + axis] = driftComp[axis];
373
      DebugOut.Analog[28 + axis] = driftComp[axis];
379
 
374
 
380
      correctionSum[axis] = 0;
375
      correctionSum[axis] = 0;
381
    }
376
    }
382
  }
377
  }
383
}
378
}
384
 
379
 
385
/************************************************************************
380
/************************************************************************
386
 * Main procedure.
381
 * Main procedure.
387
 ************************************************************************/
382
 ************************************************************************/
388
void calculateFlightAttitude(void) {
383
void calculateFlightAttitude(void) {
389
  // part1: 550 usec.
384
  // part1: 550 usec.
390
  // part1a: 550 usec.
385
  // part1a: 550 usec.
391
  // part1b: 60 usec.
386
  // part1b: 60 usec.
392
  getAnalogData();
387
  getAnalogData();
393
  // end part1b
388
  // end part1b
394
  integrate();
389
  integrate();
395
  // end part1a
390
  // end part1a
396
 
391
 
397
  DebugOut.Analog[6] = stronglyFilteredAcc[PITCH];
392
  DebugOut.Analog[6] = stronglyFilteredAcc[PITCH];
398
  DebugOut.Analog[7] = stronglyFilteredAcc[ROLL];
393
  DebugOut.Analog[7] = stronglyFilteredAcc[ROLL];
399
  DebugOut.Analog[8] = stronglyFilteredAcc[Z];
394
  DebugOut.Analog[8] = stronglyFilteredAcc[Z];
400
 
395
 
401
  DebugOut.Analog[3] = rate_PID[PITCH];
396
  DebugOut.Analog[3] = rate_PID[PITCH];
402
  DebugOut.Analog[4] = rate_PID[ROLL];
397
  DebugOut.Analog[4] = rate_PID[ROLL];
403
  DebugOut.Analog[5] = yawRate;
398
  DebugOut.Analog[5] = yawRate;
404
 
399
 
405
#ifdef ATTITUDE_USE_ACC_SENSORS
400
#ifdef ATTITUDE_USE_ACC_SENSORS
406
  correctIntegralsByAcc0thOrder();
401
  correctIntegralsByAcc0thOrder();
407
  driftCorrection();
402
  driftCorrection();
408
#endif
403
#endif
409
  // end part1
404
  // end part1
410
}
405
}
411
 
406
 
412
void updateCompass(void) {
407
void updateCompass(void) {
413
  int16_t w, v, r, correction, error;
408
  int16_t w, v, r, correction, error;
414
 
409
 
415
  if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
410
  if (compassCalState && !(MKFlags & MKFLAG_MOTOR_RUN)) {
416
    if (controlMixer_testCompassCalState()) {
411
    if (controlMixer_testCompassCalState()) {
417
      compassCalState++;
412
      compassCalState++;
418
      if (compassCalState < 5)
413
      if (compassCalState < 5)
419
        beepNumber(compassCalState);
414
        beepNumber(compassCalState);
420
      else
415
      else
421
        beep(1000);
416
        beep(1000);
422
    }
417
    }
423
  } else {
418
  } else {
424
    // get maximum attitude angle
419
    // get maximum attitude angle
425
    w = abs(angle[PITCH] / 512);
420
    w = abs(angle[PITCH] / 512);
426
    v = abs(angle[ROLL] / 512);
421
    v = abs(angle[ROLL] / 512);
427
    if (v > w)
422
    if (v > w)
428
      w = v;
423
      w = v;
429
    correction = w / 8 + 1;
424
    correction = w / 8 + 1;
430
    // calculate the deviation of the yaw gyro heading and the compass heading
425
    // calculate the deviation of the yaw gyro heading and the compass heading
431
    if (compassHeading < 0)
426
    if (compassHeading < 0)
432
      error = 0; // disable yaw drift compensation if compass heading is undefined
427
      error = 0; // disable yaw drift compensation if compass heading is undefined
433
    else if (abs(yawRate) > 128) { // spinning fast
428
    else if (abs(yawRate) > 128) { // spinning fast
434
      error = 0;
429
      error = 0;
435
    } else {
430
    } else {
436
      // compassHeading - yawGyroHeading, on a -180..179 deg interval.
431
      // compassHeading - yawGyroHeading, on a -180..179 deg interval.
437
      error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW))
432
      error = ((540 + compassHeading - (yawGyroHeading / GYRO_DEG_FACTOR_YAW))
438
          % 360) - 180;
433
          % 360) - 180;
439
    }
434
    }
440
    if (!ignoreCompassTimer && w < 25) {
435
    if (!ignoreCompassTimer && w < 25) {
441
      yawGyroDrift += error;
436
      yawGyroDrift += error;
442
      // Basically this gets set if we are in "fix" mode, and when starting.
437
      // Basically this gets set if we are in "fix" mode, and when starting.
443
      if (updateCompassCourse) {
438
      if (updateCompassCourse) {
444
        beep(200);
439
        beep(200);
445
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
440
        yawGyroHeading = (int32_t) compassHeading * GYRO_DEG_FACTOR_YAW;
446
        compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
441
        compassCourse = compassHeading; //(int16_t)(yawGyroHeading / GYRO_DEG_FACTOR_YAW);
447
        updateCompassCourse = 0;
442
        updateCompassCourse = 0;
448
      }
443
      }
449
    }
444
    }
450
    yawGyroHeading += (error * 8) / correction;
445
    yawGyroHeading += (error * 8) / correction;
451
 
446
 
452
    /*
447
    /*
453
     w = (w * dynamicParams.CompassYawEffect) / 32;
448
     w = (w * dynamicParams.CompassYawEffect) / 32;
454
     w = dynamicParams.CompassYawEffect - w;
449
     w = dynamicParams.CompassYawEffect - w;
455
     */
450
     */
456
    w = dynamicParams.CompassYawEffect - (w * dynamicParams.CompassYawEffect)
451
    w = dynamicParams.CompassYawEffect - (w * dynamicParams.CompassYawEffect)
457
        / 32;
452
        / 32;
458
 
453
 
459
    // As readable formula:
454
    // As readable formula:
460
    // w = dynamicParams.CompassYawEffect * (1-w/32);
455
    // w = dynamicParams.CompassYawEffect * (1-w/32);
461
 
456
 
462
    if (w >= 0) { // maxAttitudeAngle < 32
457
    if (w >= 0) { // maxAttitudeAngle < 32
463
      if (!ignoreCompassTimer) {
458
      if (!ignoreCompassTimer) {
464
        v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;
459
        v = 64 + (maxControl[PITCH] + maxControl[ROLL]) / 8;
465
        // yawGyroHeading - compassCourse on a -180..179 degree interval.
460
        // yawGyroHeading - compassCourse on a -180..179 degree interval.
466
        r
461
        r
467
            = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse)
462
            = ((540 + yawGyroHeading / GYRO_DEG_FACTOR_YAW - compassCourse)
468
                % 360) - 180;
463
                % 360) - 180;
469
        v = (r * w) / v; // align to compass course
464
        v = (r * w) / v; // align to compass course
470
        // limit yaw rate
465
        // limit yaw rate
471
        w = 3 * dynamicParams.CompassYawEffect;
466
        w = 3 * dynamicParams.CompassYawEffect;
472
        if (v > w)
467
        if (v > w)
473
          v = w;
468
          v = w;
474
        else if (v < -w)
469
        else if (v < -w)
475
          v = -w;
470
          v = -w;
476
        yawAngleDiff += v;
471
        yawAngleDiff += v;
477
      } else { // wait a while
472
      } else { // wait a while
478
        ignoreCompassTimer--;
473
        ignoreCompassTimer--;
479
      }
474
      }
480
    } else { // ignore compass at extreme attitudes for a while
475
    } else { // ignore compass at extreme attitudes for a while
481
      ignoreCompassTimer = 500;
476
      ignoreCompassTimer = 500;
482
    }
477
    }
483
  }
478
  }
484
}
479
}
485
 
480
 
486
/*
481
/*
487
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
482
 * This is part of an experiment to measure average sensor offsets caused by motor vibration,
488
 * and to compensate them away. It brings about some improvement, but no miracles.
483
 * and to compensate them away. It brings about some improvement, but no miracles.
489
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
484
 * As long as the left stick is kept in the start-motors position, the dynamic compensation
490
 * will measure the effect of vibration, to use for later compensation. So, one should keep
485
 * will measure the effect of vibration, to use for later compensation. So, one should keep
491
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
486
 * the stick in the start-motors position for a few seconds, till all motors run (at the wrong
492
 * speed unfortunately... must find a better way)
487
 * speed unfortunately... must find a better way)
493
 */
488
 */
494
/*
489
/*
495
 void attitude_startDynamicCalibration(void) {
490
 void attitude_startDynamicCalibration(void) {
496
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
491
 dynamicCalPitch = dynamicCalRoll = dynamicCalYaw = dynamicCalCount = 0;
497
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
492
 savedDynamicOffsetPitch = savedDynamicOffsetRoll = 1000;
498
 }
493
 }
499
 
494
 
500
 void attitude_continueDynamicCalibration(void) {
495
 void attitude_continueDynamicCalibration(void) {
501
 // measure dynamic offset now...
496
 // measure dynamic offset now...
502
 dynamicCalPitch += hiResPitchGyro;
497
 dynamicCalPitch += hiResPitchGyro;
503
 dynamicCalRoll += hiResRollGyro;
498
 dynamicCalRoll += hiResRollGyro;
504
 dynamicCalYaw += rawYawGyroSum;
499
 dynamicCalYaw += rawYawGyroSum;
505
 dynamicCalCount++;
500
 dynamicCalCount++;
506
 
501
 
507
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
502
 // Param6: Manual mode. The offsets are taken from Param7 and Param8.
508
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
503
 if (dynamicParams.UserParam6 || 1) { // currently always enabled.
509
 // manual mode
504
 // manual mode
510
 driftCompPitch = dynamicParams.UserParam7 - 128;
505
 driftCompPitch = dynamicParams.UserParam7 - 128;
511
 driftCompRoll = dynamicParams.UserParam8 - 128;
506
 driftCompRoll = dynamicParams.UserParam8 - 128;
512
 } else {
507
 } else {
513
 // use the sampled value (does not seem to work so well....)
508
 // use the sampled value (does not seem to work so well....)
514
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
509
 driftCompPitch = savedDynamicOffsetPitch = -dynamicCalPitch / dynamicCalCount;
515
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
510
 driftCompRoll = savedDynamicOffsetRoll = -dynamicCalRoll / dynamicCalCount;
516
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
511
 driftCompYaw = -dynamicCalYaw / dynamicCalCount;
517
 }
512
 }
518
 
513
 
519
 // keep resetting these meanwhile, to avoid accumulating errors.
514
 // keep resetting these meanwhile, to avoid accumulating errors.
520
 setStaticAttitudeIntegrals();
515
 setStaticAttitudeIntegrals();
521
 yawAngle = 0;
516
 yawAngle = 0;
522
 }
517
 }
523
 */
518
 */
524
 
519