Subversion Repositories FlightCtrl

Rev

Rev 1634 | Rev 1646 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1634 Rev 1645
1
#ifndef _ANALOG_H
1
#ifndef _ANALOG_H
2
#define _ANALOG_H
2
#define _ANALOG_H
3
#include <inttypes.h>
3
#include <inttypes.h>
4
 
4
 
5
//#include "invenSense.h"
5
// #include "invenSense.h"
6
#include "ENC-03_FC1.3.h"
-
 
7
 
6
#include "ENC-03_FC1.3.h"
8
 
7
 
9
/*
8
/*
10
 * How much low pass filtering to apply for hiResPitchGyro and hiResRollGyro.
9
 * How much low pass filtering to apply for gyro_PID.
11
 * 0=illegal, 1=no filtering, 2=50% last value + 50% new value, 3=67% last value + 33 % new value etc...
10
 * 0=illegal, 1=no filtering, 2=50% last value + 50% new value, 3=67% last value + 33 % new value etc...
12
 * Temporarily replaced by userparam-configurable variable.
11
 * Temporarily replaced by userparam-configurable variable.
13
 */
12
 */
14
//#define GYROS_FIRSTORDERFILTER 2
13
#define GYROS_PIDFILTER 1
15
 
14
 
16
/*
15
/*
17
 * How much low pass filtering to apply for filteredHiResPitchGyro and filteredHiResRollGyro.
16
 * How much low pass filtering to apply for gyro_ATT.
18
 * 0=illegal, 1=no filtering, 2=50% last value + 50% new value, 3=67% last value + 33 % new value etc...
17
 * 0=illegal, 1=no filtering, 2=50% last value + 50% new value, 3=67% last value + 33 % new value etc...
19
 * Temporarily replaced by userparam-configurable variable.
18
 * Temporarily replaced by userparam-configurable variable.
20
 */
19
 */
21
//#define GYROS_SECONDORDERFILTER 2
20
#define GYROS_INTEGRALFILTER 1
22
 
21
 
23
// Temporarily replaced by userparam-configurable variable.
22
// Temporarily replaced by userparam-configurable variable.
24
//#define ACC_FILTER 4
23
//#define ACC_FILTER 4
25
 
24
 
26
/*
25
/*
27
  About setting constants right for different gyros:
26
  About setting constants for different gyros:
28
  Main parameters are positive directions and voltage/angular speed gain.
27
  Main parameters are positive directions and voltage/angular speed gain.
29
  The "Positive direction" is the rotation direction around an axis where
28
  The "Positive direction" is the rotation direction around an axis where
30
  the corresponding gyro gives a voltage > the no-rotation voltage.
29
  the corresponding gyro outputs a voltage > the no-rotation voltage.
31
  A gyro is considered, in this code, to be "forward" if its positive
30
  A gyro is considered, in this code, to be "forward" if its positive
32
  direction is the same as in FC1.0/1.1/1.2/1.3, and reverse otherwise.
31
  direction is the same as in FC1.0-1.3, and reverse otherwise.
33
  Declare the GYRO_REVERSE_YAW, GYRO_REVERSE_ROLL and
32
  Declare the GYRO_REVERSE_YAW, GYRO_REVERSE_ROLL and
34
  GYRO_REVERSE_PITCH #define's if the respective gyros are reverse.
33
  GYRO_REVERSE_PITCH #define's if the respective gyros are reverse.
35
 
34
 
36
  Setting gyro gain correctly: All sensor measurements in analog.c take
35
  Setting gyro gain correctly: All sensor measurements in analog.c take
37
  place in a cycle, each cycle comprising all sensors. Some sensors are
36
  place in a cycle, each cycle comprising all sensors. Some sensors are
38
  sampled more than ones, and the results added. The pitch and roll gyros
37
  sampled more than ones, and the results added. The pitch and roll gyros
39
  are sampled 4 times and the yaw gyro 2 times in the original H&I V0.74
38
  are sampled 4 times and the yaw gyro 2 times in the original H&I V0.74
40
  code.
39
  code.
41
  In the H&I code, the results for pitch and roll are multiplied by 2 (FC1.0)
40
  In the H&I code, the results for pitch and roll are multiplied by 2 (FC1.0)
42
  or 4 (other versions), offset to zero, low pass filtered and then assigned
41
  or 4 (other versions), offset to zero, low pass filtered and then assigned
43
  to the "HiResXXXX" and "AdWertXXXXFilter" variables, where XXXX is nick or
42
  to the "HiResXXXX" and "AdWertXXXXFilter" variables, where XXXX is nick or
44
  roll.
43
  roll.
45
  So:
44
  So:
46
 
45
 
47
  HiResXXXX = V * (ADCValue1 + ADCValue2 + ADCValue3 + ADCValue4),
46
  gyro = V * (ADCValue1 + ADCValue2 + ADCValue3 + ADCValue4),
48
    where V is 2 for FC1.0 and 4 for all others.
47
    where V is 2 for FC1.0 and 4 for all others.
49
 
48
 
50
  Assuming constant ADCValue, in the H&I code:
49
  Assuming constant ADCValue, in the H&I code:
51
 
50
 
52
  HiResXXXX = I * ADCValue.
51
  gyro = I * ADCValue.
53
 
52
 
54
  where I is 8 for FC1.0 and 16 for all others.
53
  where I is 8 for FC1.0 and 16 for all others.
55
 
54
 
56
  The relation between rotation rate and ADCValue:
55
  The relation between rotation rate and ADCValue:
57
  ADCValue [units] =
56
  ADCValue [units] =
58
    rotational speed [deg/s] *
57
    rotational speed [deg/s] *
59
    gyro sensitivity [V / deg/s] *
58
    gyro sensitivity [V / deg/s] *
60
    amplifier gain [units] *
59
    amplifier gain [units] *
61
    1024 [units] /
60
    1024 [units] /
62
    3V full range [V]
61
    3V full range [V]
63
 
62
 
64
  or: H is the number of steps the ADC value changes with,
63
  or: H is the number of steps the ADC value changes with,
65
  for a 1 deg/s change in rotational velocity:
64
  for a 1 deg/s change in rotational velocity:
66
  H = ADCValue [units] / rotation rate [deg/s] =
65
  H = ADCValue [units] / rotation rate [deg/s] =
67
    gyro sensitivity [V / deg/s] *
66
    gyro sensitivity [V / deg/s] *
68
    amplifier gain [units] *
67
    amplifier gain [units] *
69
    1024 [units] /
68
    1024 [units] /
70
    3V full range [V]
69
    3V full range [V]
71
 
70
 
72
  Examples:
71
  Examples:
73
  FC1.3 has 0.67 mV/deg/s gyros and amplifiers with a gain of 5.7:
72
  FC1.3 has 0.67 mV/deg/s gyros and amplifiers with a gain of 5.7:
74
    H = 0.00067 V / deg / s * 5.7 * 1024 / 3V = 1.304 units/(deg/s).
73
    H = 0.00067 V / deg / s * 5.7 * 1024 / 3V = 1.304 units/(deg/s).
75
  FC2.0 has 6*(3/5) mV/deg/s gyros (they are ratiometric) and no amplifiers:
74
  FC2.0 has 6*(3/5) mV/deg/s gyros (they are ratiometric) and no amplifiers:
76
    H = 0.006 V / deg / s * 1 * 1024 * 3V / (3V * 5V) = 1.2288 units/(deg/s).
75
    H = 0.006 V / deg / s * 1 * 1024 * 3V / (3V * 5V) = 1.2288 units/(deg/s).
77
  My InvenSense copter has 2mV/deg/s gyros and no amplifiers:
76
  My InvenSense copter has 2mV/deg/s gyros and no amplifiers:
78
    H = 0.002 V / deg / s * 1 * 1024 / 3V = 0.6827 units/(deg/s)
77
    H = 0.002 V / deg / s * 1 * 1024 / 3V = 0.6827 units/(deg/s)
79
    (only about half as sensitive as V1.3. But it will take about twice the
78
    (only about half as sensitive as V1.3. But it will take about twice the
80
     rotation rate!)
79
     rotation rate!)
81
 
80
 
82
  All together: HiResXXXX = I * H * rotation rate [units / (deg/s)].
81
  All together: gyro = I * H * rotation rate [units / (deg/s)].
83
*/
82
*/
84
 
83
 
85
/*
84
/*
86
 * A factor that the raw gyro values are multiplied by,
85
 * A factor that the raw gyro values are multiplied by,
87
 * before being zero-offset, filtered and passed to the attitude module.
86
 * before being filtered and passed to the attitude module.
88
 * A value of 1 would cause a little bit of loss of precision in the
87
 * A value of 1 would cause a little bit of loss of precision in the
89
 * filtering (on the other hand the values are so noisy in flight that
88
 * filtering (on the other hand the values are so noisy in flight that
90
 * it will not really matter - but when testing on the desk it might be
89
 * it will not really matter - but when testing on the desk it might be
91
 * noticeable). 4 is fine for the default filtering.
90
 * noticeable). 4 is fine for the default filtering.
-
 
91
 * Experiment: Set it to 1.
92
 */
92
 */
93
#define GYRO_FACTOR_PITCHROLL 4
93
#define GYRO_FACTOR_PITCHROLL 4
94
 
94
 
95
/*
95
/*
96
 * How many samples are summed in one ADC loop, for pitch&roll and yaw,
96
 * How many samples are summed in one ADC loop, for pitch&roll and yaw,
97
 * respectively. This is = the number of occurences of each channel in the
97
 * respectively. This is = the number of occurences of each channel in the
98
 * channelsForStates array in analog.c.
98
 * channelsForStates array in analog.c.
99
 */
99
 */
100
#define GYRO_SUMMATION_FACTOR_PITCHROLL 4
100
#define GYRO_SUMMATION_FACTOR_PITCHROLL 4
101
#define GYRO_SUMMATION_FACTOR_YAW 2
101
#define GYRO_SUMMATION_FACTOR_YAW 2
102
 
102
 
103
/*
103
/*
104
  Integration:
104
  Integration:
105
  The HiResXXXX values are divided by 8 (in H&I firmware) before integration.
105
  The HiResXXXX values are divided by 8 (in H&I firmware) before integration.
106
  In the Killagreg rewrite of the H&I firmware, the factor 8 is called
106
  In the Killagreg rewrite of the H&I firmware, the factor 8 is called
107
  HIRES_GYRO_AMPLIFY. In this code, it is called HIRES_GYRO_INTEGRATION_FACTOR,
107
  HIRES_GYRO_AMPLIFY. In this code, it is called HIRES_GYRO_INTEGRATION_FACTOR,
108
  and care has been taken that all other constants (gyro to degree factor, and
108
  and care has been taken that all other constants (gyro to degree factor, and
109
  180 degree flip-over detection limits) are corrected to it. Because the
109
  180 degree flip-over detection limits) are corrected to it. Because the
110
  division by the constant takes place in the flight attitude code, the
110
  division by the constant takes place in the flight attitude code, the
111
  constant is there.
111
  constant is there.
112
 
112
 
113
  The control loop executes every 2ms, and for each iteration
113
  The control loop executes every 2ms, and for each iteration
114
  HiResXXXX is added to gyroIntegralXXXX.
114
  gyro_ATT[PITCH/ROLL] is added to gyroIntegral[PITCH/ROLL].
115
  Assuming a constant rotation rate v and an initial gyroIntegralXXXX (for this
115
  Assuming a constant rotation rate v and a zero initial gyroIntegral
116
  explanation), we get:
116
  (for this explanation), we get:
117
 
117
 
118
  gyroIntegralXXXX =
118
  gyroIntegral =
119
    N * HiResXXXX / HIRES_GYRO_INTEGRATION_FACTOR =
119
    N * gyro / HIRES_GYRO_INTEGRATION_FACTOR =
120
    N * I * H * v / HIRES_GYRO_INTEGRATION_FACTOR
120
    N * I * H * v / HIRES_GYRO_INTEGRATION_FACTOR
121
 
121
 
122
  where N is the number of summations; N = t/2ms.
122
  where N is the number of summations; N = t/2ms.
123
 
123
 
124
  For one degree of rotation: t*v = 1:
124
  For one degree of rotation: t*v = 1:
125
 
125
 
126
  gyroIntegralXXXX = t/2ms * I * H * 1/t = INTEGRATION_FREQUENCY * I * H / HIRES_GYRO_INTEGRATION_FACTOR.
126
  gyroIntegralXXXX = t/2ms * I * H * 1/t = INTEGRATION_FREQUENCY * I * H / HIRES_GYRO_INTEGRATION_FACTOR.
127
 
127
 
128
  This number (INTEGRATION_FREQUENCY * I * H) is the integral-to-degree factor.
128
  This number (INTEGRATION_FREQUENCY * I * H) is the integral-to-degree factor.
129
 
129
 
130
  Examples:
130
  Examples:
131
  FC1.3: I=2, H=1.304, HIRES_GYRO_INTEGRATION_FACTOR=8 --> integralDegreeFactor = 1304
131
  FC1.3: I=2, H=1.304, HIRES_GYRO_INTEGRATION_FACTOR=8 --> integralDegreeFactor = 1304
132
  FC2.0: I=2, H=2.048, HIRES_GYRO_INTEGRATION_FACTOR=13 --> integralDegreeFactor = 1260
132
  FC2.0: I=2, H=2.048, HIRES_GYRO_INTEGRATION_FACTOR=13 --> integralDegreeFactor = 1260
133
  My InvenSense copter: HIRES_GYRO_INTEGRATION_FACTOR=4, H=0.6827 --> integralDegreeFactor = 1365
133
  My InvenSense copter: HIRES_GYRO_INTEGRATION_FACTOR=4, H=0.6827 --> integralDegreeFactor = 1365
134
*/
134
*/
135
 
135
 
136
/*
136
/*
137
 * The value of hiResXXXX for one deg/s = The hardware factor H * the number of samples * multiplier factor.
137
 * The value of gyro[PITCH/ROLL] for one deg/s = The hardware factor H * the number of samples * multiplier factor.
138
 * Will be about 10 or so for InvenSense, and about 33 for ADXRS610.
138
 * Will be about 10 or so for InvenSense, and about 33 for ADXRS610.
139
 */
139
 */
140
#define GYRO_RATE_FACTOR_PITCHROLL (GYRO_HW_FACTOR * GYRO_SUMMATION_FACTOR_PITCHROLL * GYRO_FACTOR_PITCHROLL)
140
#define GYRO_RATE_FACTOR_PITCHROLL (GYRO_HW_FACTOR * GYRO_SUMMATION_FACTOR_PITCHROLL * GYRO_FACTOR_PITCHROLL)
141
#define GYRO_RATE_FACTOR_YAW (GYRO_HW_FACTOR * GYRO_SUMMATION_FACTOR_YAW)
141
#define GYRO_RATE_FACTOR_YAW (GYRO_HW_FACTOR * GYRO_SUMMATION_FACTOR_YAW)
142
 
142
 
143
/*
143
/*
-
 
144
 * Gyro saturation prevention.
-
 
145
 */
-
 
146
// How far from the end of its range a gyro is considered near-saturated.
-
 
147
#define SENSOR_MIN_PITCHROLL 32
-
 
148
// Other end of the range (calculated)
-
 
149
#define SENSOR_MAX_PITCHROLL (GYRO_SUMMATION_FACTOR_PITCHROLL * 1023 - SENSOR_MIN_PITCHROLL)
-
 
150
// Max. boost to add "virtually" to gyro signal at total saturation.
-
 
151
#define EXTRAPOLATION_LIMIT 2500
-
 
152
// Slope of the boost (calculated)
-
 
153
#define EXTRAPOLATION_SLOPE (EXTRAPOLATION_LIMIT/SENSOR_MIN_PITCHROLL)
-
 
154
 
-
 
155
/*
144
 * This value is subtracted from the gyro noise measurement in each iteration,
156
 * This value is subtracted from the gyro noise measurement in each iteration,
145
 * making it return towards zero.
157
 * making it return towards zero.
146
 */
158
 */
147
#define GYRO_NOISE_MEASUREMENT_DAMPING 5
159
#define GYRO_NOISE_MEASUREMENT_DAMPING 5
-
 
160
 
-
 
161
#define PITCH 0
148
 
162
#define ROLL 1
149
/*
163
/*
-
 
164
 * The values that this module outputs
-
 
165
 * These first 2 exported arrays are zero-offset. The "PID" ones are used
-
 
166
 * in the attitude control as rotation rates. The "ATT" ones are for
-
 
167
 * integration to angles. For the same axis, the PID and ATT variables
-
 
168
 * generally have about the same values. There are just some differences
-
 
169
 * in filtering, and when a gyro becomes near saturated.
150
 * The values that this module outputs
170
 * Maybe this distinction is not really necessary.
151
 */
171
 */
152
extern volatile int16_t hiResPitchGyro, hiResRollGyro;
172
extern volatile int16_t gyro_PID[2];
153
extern volatile int16_t filteredHiResPitchGyro, filteredHiResRollGyro;
173
extern volatile int16_t gyro_ATT[2];
-
 
174
extern volatile int16_t gyroD[2];
154
extern volatile int16_t pitchGyroD, rollGyroD;
175
 
155
extern volatile uint16_t ADCycleCount;
176
extern volatile uint16_t ADCycleCount;
156
extern volatile int16_t UBat;
177
extern volatile int16_t UBat;
157
extern volatile int16_t yawGyro;
178
extern volatile int16_t yawGyro;
158
 
179
 
159
/*
180
/*
160
 * This is not really for external use - but the ENC-03 gyro modules needs it.
181
 * This is not really for external use - but the ENC-03 gyro modules needs it.
161
 */
182
 */
162
extern volatile int16_t rawPitchGyroSum, rawRollGyroSum, rawYawGyroSum;
183
extern volatile int16_t rawGyroSum[2], rawYawGyroSum;
163
 
184
 
164
/*
185
/*
165
 * The acceleration values that this module outputs
186
 * The acceleration values that this module outputs. They are zero based.
166
 */
-
 
167
extern volatile int16_t pitchAxisAcc, rollAxisAcc, ZAxisAcc;
-
 
168
extern volatile int16_t filteredPitchAxisAcc, filteredRollAxisAcc;
-
 
169
 
-
 
170
// Only for debugging! Not to be exported! Remove when finished.
-
 
171
// extern volatile int16_t pitchAxisAccOffset, rollAxisAccOffset, ZAxisAccOffset;
-
 
172
 
-
 
173
// Air pressure measurement not supported right now.
-
 
174
// extern volatile int32_t AirPressure;
187
 */
175
// extern volatile int16_t HeightD;
-
 
176
// extern volatile uint16_t ReadingAirPressure;
188
extern volatile int16_t acc[2], ZAcc;
177
// extern volatile int16_t StartAirPressure;
-
 
178
// extern uint8_t PressureSensorOffset;
-
 
179
// extern int8_t ExpandBaro;
189
extern volatile int16_t filteredAcc[2];
180
 
190
 
181
/*
191
/*
182
 * Flag: Interrupt handler has done all A/D conversion and processing.
192
 * Flag: Interrupt handler has done all A/D conversion and processing.
183
 */
193
 */
184
extern volatile uint8_t analogDataReady;
194
extern volatile uint8_t analogDataReady;
185
 
195
 
186
// Diagnostics: Gyro noise level because of motor vibrations. The variables
196
// Diagnostics: Gyro noise level because of motor vibrations. The variables
187
// only really reflect the noise level when the copter stands still but with 
197
// only really reflect the noise level when the copter stands still but with 
188
// its motors running.
198
// its motors running.
189
extern volatile uint16_t pitchGyroNoisePeak, rollGyroNoisePeak;
199
extern volatile uint16_t gyroNoisePeak[2];
190
extern volatile uint16_t pitchAccNoisePeak, rollAccNoisePeak;
200
extern volatile uint16_t accNoisePeak[2];
191
 
201
 
192
// void SearchAirPressureOffset(void);
202
// void SearchAirPressureOffset(void);
193
 
203
 
194
void analog_init(void);
204
void analog_init(void);
195
 
205
 
196
// clear ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
206
// clear ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
197
#define analog_stop() (ADCSRA &= ~((1<<ADEN)|(1<<ADSC)|(1<<ADIE)))
207
#define analog_stop() (ADCSRA &= ~((1<<ADEN)|(1<<ADSC)|(1<<ADIE)))
198
 
208
 
199
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
209
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
200
#define analog_start() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
210
#define analog_start() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
201
 
211
 
202
/*
212
/*
203
 * "Warm" calibration: Zero-offset gyros.
213
 * "Warm" calibration: Zero-offset gyros.
204
 */
214
 */
205
void analog_calibrate(void);
215
void analog_calibrate(void);
206
 
216
 
207
/*
217
/*
208
 * "Cold" calibration: Zero-offset accelerometers and write the calibration data to EEPROM.
218
 * "Cold" calibration: Zero-offset accelerometers and write the calibration data to EEPROM.
209
 */
219
 */
210
void analog_calibrateAcc(void);
220
void analog_calibrateAcc(void);
211
#endif //_ANALOG_H
221
#endif //_ANALOG_H
212
 
222