Subversion Repositories FlightCtrl

Rev

Rev 2020 | Rev 2032 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2020 Rev 2026
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten und nicht-kommerziellen Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten und nicht-kommerziellen Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
18
// + eindeutig als Ursprung verlinkt und genannt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
#include <avr/io.h>
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
53
#include <avr/interrupt.h>
54
#include <avr/pgmspace.h>
54
#include <avr/pgmspace.h>
55
 
55
 
56
#include "analog.h"
56
#include "analog.h"
57
#include "attitude.h"
57
#include "attitude.h"
58
#include "sensors.h"
58
#include "sensors.h"
59
#include "printf_P.h"
59
#include "printf_P.h"
60
 
60
 
61
// for Delay functions
61
// for Delay functions
62
#include "timer0.h"
62
#include "timer0.h"
63
 
63
 
64
// For debugOut
64
// For debugOut
65
#include "uart0.h"
65
#include "uart0.h"
66
 
66
 
67
// For reading and writing acc. meter offsets.
67
// For reading and writing acc. meter offsets.
68
#include "eeprom.h"
68
#include "eeprom.h"
69
 
69
 
70
// For debugOut.digital
70
// For debugOut.digital
71
#include "output.h"
71
#include "output.h"
72
 
72
 
73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
75
 
75
 
76
const char* recal = ", recalibration needed.";
76
const char* recal = ", recalibration needed.";
77
 
77
 
78
/*
78
/*
79
 * For each A/D conversion cycle, each analog channel is sampled a number of times
79
 * For each A/D conversion cycle, each analog channel is sampled a number of times
80
 * (see array channelsForStates), and the results for each channel are summed.
80
 * (see array channelsForStates), and the results for each channel are summed.
81
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
81
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
82
 * They are exported in the analog.h file - but please do not use them! The only
82
 * They are exported in the analog.h file - but please do not use them! The only
83
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
83
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
84
 * the offsets with the DAC.
84
 * the offsets with the DAC.
85
 */
85
 */
86
volatile uint16_t sensorInputs[8];
86
volatile uint16_t sensorInputs[8];
87
int16_t acc[3];
87
int16_t acc[3];
88
int16_t filteredAcc[3] = { 0,0,0 };
88
int16_t filteredAcc[3] = { 0,0,0 };
89
 
89
 
90
/*
90
/*
91
 * These 4 exported variables are zero-offset. The "PID" ones are used
91
 * These 4 exported variables are zero-offset. The "PID" ones are used
92
 * in the attitude control as rotation rates. The "ATT" ones are for
92
 * in the attitude control as rotation rates. The "ATT" ones are for
93
 * integration to angles.
93
 * integration to angles.
94
 */
94
 */
95
int16_t gyro_PID[2];
95
int16_t gyro_PID[2];
96
int16_t gyro_ATT[2];
96
int16_t gyro_ATT[2];
97
int16_t gyroD[2];
97
int16_t gyroD[2];
98
int16_t yawGyro;
98
int16_t yawGyro;
99
 
99
 
100
/*
100
/*
101
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
101
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
102
 * standing still. They are used for adjusting the gyro and acc. meter values
102
 * standing still. They are used for adjusting the gyro and acc. meter values
103
 * to be centered on zero.
103
 * to be centered on zero.
104
 */
104
 */
105
 
105
 
106
sensorOffset_t gyroOffset;
106
sensorOffset_t gyroOffset;
107
sensorOffset_t accOffset;
107
sensorOffset_t accOffset;
108
sensorOffset_t gyroAmplifierOffset;
108
sensorOffset_t gyroAmplifierOffset;
109
 
109
 
110
/*
110
/*
111
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
111
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
112
 * If a sensor is used in an orientation where one but not both of the axes has
112
 * If a sensor is used in an orientation where one but not both of the axes has
113
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
113
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
114
 * Transform:
114
 * Transform:
115
 * pitch <- pp*pitch + pr*roll
115
 * pitch <- pp*pitch + pr*roll
116
 * roll  <- rp*pitch + rr*roll
116
 * roll  <- rp*pitch + rr*roll
117
 * Not reversed, GYRO_QUADRANT:
117
 * Not reversed, GYRO_QUADRANT:
118
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
118
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
119
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
119
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
120
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
120
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
121
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
121
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
122
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
122
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
123
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
123
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
124
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
124
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
125
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
125
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
126
 * Reversed, GYRO_QUADRANT:
126
 * Reversed, GYRO_QUADRANT:
127
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
127
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
128
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
128
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
129
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
129
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
130
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
130
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
131
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
131
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
132
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
132
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
133
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
133
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
134
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
134
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
135
 */
135
 */
136
 
136
 
137
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
137
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
138
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
138
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
139
  // Pitch to Pitch part
139
  // Pitch to Pitch part
140
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
140
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
141
  // Roll to Pitch part
141
  // Roll to Pitch part
142
  int8_t xy = rotationTab[(quadrant+2)%8];
142
  int8_t xy = rotationTab[(quadrant+2)%8];
143
  // Pitch to Roll part
143
  // Pitch to Roll part
144
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
144
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
145
  // Roll to Roll part
145
  // Roll to Roll part
146
  int8_t yy = rotationTab[quadrant];
146
  int8_t yy = rotationTab[quadrant];
147
 
147
 
148
  int16_t xIn = result[0];
148
  int16_t xIn = result[0];
149
  result[0] = xx*xIn + xy*result[1];
149
  result[0] = xx*xIn + xy*result[1];
150
  result[1] = yx*xIn + yy*result[1];
150
  result[1] = yx*xIn + yy*result[1];
151
 
151
 
152
  if (quadrant & 1) {
152
  if (quadrant & 1) {
153
        // A rotation was used above, where the factors were too large by sqrt(2).
153
        // A rotation was used above, where the factors were too large by sqrt(2).
154
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
154
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
155
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
155
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
156
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
156
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
157
        result[0] = (result[0]*11) >> 4;
157
        result[0] = (result[0]*11) >> 4;
158
        result[1] = (result[1]*11) >> 4;
158
        result[1] = (result[1]*11) >> 4;
159
  }
159
  }
160
}
160
}
161
 
161
 
162
/*
162
/*
163
 * Air pressure
163
 * Air pressure
164
 */
164
 */
165
volatile uint8_t rangewidth = 105;
165
volatile uint8_t rangewidth = 105;
166
 
166
 
167
// Direct from sensor, irrespective of range.
167
// Direct from sensor, irrespective of range.
168
// volatile uint16_t rawAirPressure;
168
// volatile uint16_t rawAirPressure;
169
 
169
 
170
// Value of 2 samples, with range.
170
// Value of 2 samples, with range.
171
uint16_t simpleAirPressure;
171
uint16_t simpleAirPressure;
172
 
172
 
173
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
173
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
174
int32_t filteredAirPressure;
174
int32_t filteredAirPressure;
-
 
175
 
-
 
176
#define MAX_AIRPRESSURE_WINDOW_LENGTH 64
-
 
177
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
-
 
178
int32_t windowedAirPressure;
-
 
179
uint8_t windowPtr;
175
 
180
 
176
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
181
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
177
int32_t airPressureSum;
182
int32_t airPressureSum;
178
 
183
 
179
// The number of samples summed into airPressureSum so far.
184
// The number of samples summed into airPressureSum so far.
180
uint8_t pressureMeasurementCount;
185
uint8_t pressureMeasurementCount;
181
 
186
 
182
/*
187
/*
183
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
188
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
184
 * That is divided by 3 below, for a final 10.34 per volt.
189
 * That is divided by 3 below, for a final 10.34 per volt.
185
 * So the initial value of 100 is for 9.7 volts.
190
 * So the initial value of 100 is for 9.7 volts.
186
 */
191
 */
187
int16_t UBat = 100;
192
int16_t UBat = 100;
188
 
193
 
189
/*
194
/*
190
 * Control and status.
195
 * Control and status.
191
 */
196
 */
192
volatile uint16_t ADCycleCount = 0;
197
volatile uint16_t ADCycleCount = 0;
193
volatile uint8_t analogDataReady = 1;
198
volatile uint8_t analogDataReady = 1;
194
 
199
 
195
/*
200
/*
196
 * Experiment: Measuring vibration-induced sensor noise.
201
 * Experiment: Measuring vibration-induced sensor noise.
197
 */
202
 */
198
uint16_t gyroNoisePeak[3];
203
uint16_t gyroNoisePeak[3];
199
uint16_t accNoisePeak[3];
204
uint16_t accNoisePeak[3];
200
 
205
 
201
volatile uint8_t adState;
206
volatile uint8_t adState;
202
volatile uint8_t adChannel;
207
volatile uint8_t adChannel;
203
 
208
 
204
// ADC channels
209
// ADC channels
205
#define AD_GYRO_YAW       0
210
#define AD_GYRO_YAW       0
206
#define AD_GYRO_ROLL      1
211
#define AD_GYRO_ROLL      1
207
#define AD_GYRO_PITCH     2
212
#define AD_GYRO_PITCH     2
208
#define AD_AIRPRESSURE    3
213
#define AD_AIRPRESSURE    3
209
#define AD_UBAT           4
214
#define AD_UBAT           4
210
#define AD_ACC_Z          5
215
#define AD_ACC_Z          5
211
#define AD_ACC_ROLL       6
216
#define AD_ACC_ROLL       6
212
#define AD_ACC_PITCH      7
217
#define AD_ACC_PITCH      7
213
 
218
 
214
/*
219
/*
215
 * Table of AD converter inputs for each state.
220
 * Table of AD converter inputs for each state.
216
 * The number of samples summed for each channel is equal to
221
 * The number of samples summed for each channel is equal to
217
 * the number of times the channel appears in the array.
222
 * the number of times the channel appears in the array.
218
 * The max. number of samples that can be taken in 2 ms is:
223
 * The max. number of samples that can be taken in 2 ms is:
219
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
224
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
220
 * loop needs a little time between reading AD values and
225
 * loop needs a little time between reading AD values and
221
 * re-enabling ADC, the real limit is (how much?) lower.
226
 * re-enabling ADC, the real limit is (how much?) lower.
222
 * The acc. sensor is sampled even if not used - or installed
227
 * The acc. sensor is sampled even if not used - or installed
223
 * at all. The cost is not significant.
228
 * at all. The cost is not significant.
224
 */
229
 */
225
 
230
 
226
const uint8_t channelsForStates[] PROGMEM = {
231
const uint8_t channelsForStates[] PROGMEM = {
227
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
232
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
228
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
233
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
229
 
234
 
230
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
235
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
231
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
236
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
232
 
237
 
233
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
238
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
234
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
239
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
235
  AD_AIRPRESSURE, // at 14, finish air pressure.
240
  AD_AIRPRESSURE, // at 14, finish air pressure.
236
 
241
 
237
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
242
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
238
  AD_GYRO_ROLL,   // at 16, finish roll gyro
243
  AD_GYRO_ROLL,   // at 16, finish roll gyro
239
  AD_UBAT         // at 17, measure battery.
244
  AD_UBAT         // at 17, measure battery.
240
};
245
};
241
 
246
 
242
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
247
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
243
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
248
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
244
 
249
 
245
void analog_init(void) {
250
void analog_init(void) {
246
        uint8_t sreg = SREG;
251
        uint8_t sreg = SREG;
247
        // disable all interrupts before reconfiguration
252
        // disable all interrupts before reconfiguration
248
        cli();
253
        cli();
249
 
254
 
250
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
255
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
251
        DDRA = 0x00;
256
        DDRA = 0x00;
252
        PORTA = 0x00;
257
        PORTA = 0x00;
253
        // Digital Input Disable Register 0
258
        // Digital Input Disable Register 0
254
        // Disable digital input buffer for analog adc_channel pins
259
        // Disable digital input buffer for analog adc_channel pins
255
        DIDR0 = 0xFF;
260
        DIDR0 = 0xFF;
256
        // external reference, adjust data to the right
261
        // external reference, adjust data to the right
257
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
262
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
258
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
263
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
259
        ADMUX = (ADMUX & 0xE0);
264
        ADMUX = (ADMUX & 0xE0);
260
        //Set ADC Control and Status Register A
265
        //Set ADC Control and Status Register A
261
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
266
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
262
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
267
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
263
        //Set ADC Control and Status Register B
268
        //Set ADC Control and Status Register B
264
        //Trigger Source to Free Running Mode
269
        //Trigger Source to Free Running Mode
265
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
270
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
-
 
271
 
-
 
272
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
-
 
273
          airPressureWindow[i] = 0;
-
 
274
        }
-
 
275
 
-
 
276
        windowedAirPressure = 0;
266
 
277
 
267
        startAnalogConversionCycle();
278
        startAnalogConversionCycle();
268
 
279
 
269
        // restore global interrupt flags
280
        // restore global interrupt flags
270
        SREG = sreg;
281
        SREG = sreg;
271
}
282
}
272
 
283
 
273
uint16_t rawGyroValue(uint8_t axis) {
284
uint16_t rawGyroValue(uint8_t axis) {
274
        return sensorInputs[AD_GYRO_PITCH-axis];
285
        return sensorInputs[AD_GYRO_PITCH-axis];
275
}
286
}
276
 
287
 
277
uint16_t rawAccValue(uint8_t axis) {
288
uint16_t rawAccValue(uint8_t axis) {
278
        return sensorInputs[AD_ACC_PITCH-axis];
289
        return sensorInputs[AD_ACC_PITCH-axis];
279
}
290
}
280
 
291
 
281
void measureNoise(const int16_t sensor,
292
void measureNoise(const int16_t sensor,
282
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
293
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
283
        if (sensor > (int16_t) (*noiseMeasurement)) {
294
        if (sensor > (int16_t) (*noiseMeasurement)) {
284
                *noiseMeasurement = sensor;
295
                *noiseMeasurement = sensor;
285
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
296
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
286
                *noiseMeasurement = -sensor;
297
                *noiseMeasurement = -sensor;
287
        } else if (*noiseMeasurement > damping) {
298
        } else if (*noiseMeasurement > damping) {
288
                *noiseMeasurement -= damping;
299
                *noiseMeasurement -= damping;
289
        } else {
300
        } else {
290
                *noiseMeasurement = 0;
301
                *noiseMeasurement = 0;
291
        }
302
        }
292
}
303
}
293
 
304
 
294
/*
305
/*
295
 * Min.: 0
306
 * Min.: 0
296
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
307
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
297
 */
308
 */
298
uint16_t getSimplePressure(int advalue) {
309
uint16_t getSimplePressure(int advalue) {
299
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
310
        uint16_t result = (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
-
 
311
        result += (acc[Z] * (staticParams.airpressureAccZCorrection-128)) >> 10;
-
 
312
        return result;
300
}
313
}
301
 
314
 
302
void startAnalogConversionCycle(void) {
315
void startAnalogConversionCycle(void) {
303
  analogDataReady = 0;
316
  analogDataReady = 0;
304
 
317
 
305
  // Stop the sampling. Cycle is over.
318
  // Stop the sampling. Cycle is over.
306
  for (uint8_t i = 0; i < 8; i++) {
319
  for (uint8_t i = 0; i < 8; i++) {
307
    sensorInputs[i] = 0;
320
    sensorInputs[i] = 0;
308
  }
321
  }
309
  adState = 0;
322
  adState = 0;
310
  adChannel = AD_GYRO_PITCH;
323
  adChannel = AD_GYRO_PITCH;
311
  ADMUX = (ADMUX & 0xE0) | adChannel;
324
  ADMUX = (ADMUX & 0xE0) | adChannel;
312
  startADC();
325
  startADC();
313
}
326
}
314
 
327
 
315
/*****************************************************
328
/*****************************************************
316
 * Interrupt Service Routine for ADC
329
 * Interrupt Service Routine for ADC
317
 * Runs at 312.5 kHz or 3.2 �s. When all states are
330
 * Runs at 312.5 kHz or 3.2 �s. When all states are
318
 * processed further conversions are stopped.
331
 * processed further conversions are stopped.
319
 *****************************************************/
332
 *****************************************************/
320
ISR(ADC_vect) {
333
ISR(ADC_vect) {
321
  sensorInputs[adChannel] += ADC;
334
  sensorInputs[adChannel] += ADC;
322
  // set up for next state.
335
  // set up for next state.
323
  adState++;
336
  adState++;
324
  if (adState < sizeof(channelsForStates)) {
337
  if (adState < sizeof(channelsForStates)) {
325
    adChannel = pgm_read_byte(&channelsForStates[adState]);
338
    adChannel = pgm_read_byte(&channelsForStates[adState]);
326
    // set adc muxer to next adChannel
339
    // set adc muxer to next adChannel
327
    ADMUX = (ADMUX & 0xE0) | adChannel;
340
    ADMUX = (ADMUX & 0xE0) | adChannel;
328
    // after full cycle stop further interrupts
341
    // after full cycle stop further interrupts
329
    startADC();
342
    startADC();
330
  } else {
343
  } else {
331
    ADCycleCount++;
344
    ADCycleCount++;
332
    analogDataReady = 1;
345
    analogDataReady = 1;
333
    // do not restart ADC converter. 
346
    // do not restart ADC converter. 
334
  }
347
  }
335
}
348
}
336
 
349
 
337
void analog_updateGyros(void) {
350
void analog_updateGyros(void) {
338
  // for various filters...
351
  // for various filters...
339
  int16_t tempOffsetGyro[2], tempGyro;
352
  int16_t tempOffsetGyro[2], tempGyro;
340
 
353
 
341
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
354
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
342
  for (uint8_t axis=0; axis<2; axis++) {
355
  for (uint8_t axis=0; axis<2; axis++) {
343
    tempGyro = rawGyroValue(axis);
356
    tempGyro = rawGyroValue(axis);
344
    /*
357
    /*
345
     * Process the gyro data for the PID controller.
358
     * Process the gyro data for the PID controller.
346
     */
359
     */
347
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
360
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
348
    //    gyro with a wider range, and helps counter saturation at full control.
361
    //    gyro with a wider range, and helps counter saturation at full control.
349
   
362
   
350
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
363
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
351
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
364
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
352
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
365
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
353
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
366
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
354
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
367
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
355
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
368
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
356
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
369
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
357
      }
370
      }
358
    }
371
    }
359
 
372
 
360
    // 2) Apply sign and offset, scale before filtering.
373
    // 2) Apply sign and offset, scale before filtering.
361
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
374
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
362
  }
375
  }
363
 
376
 
364
  // 2.1: Transform axes.
377
  // 2.1: Transform axes.
365
  rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
378
  rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
366
 
379
 
367
  for (uint8_t axis=0; axis<2; axis++) {
380
  for (uint8_t axis=0; axis<2; axis++) {
368
        // 3) Filter.
381
        // 3) Filter.
369
    tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / staticParams.gyroPIDFilterConstant;
382
    tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / staticParams.gyroPIDFilterConstant;
370
 
383
 
371
    // 4) Measure noise.
384
    // 4) Measure noise.
372
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
385
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
373
 
386
 
374
    // 5) Differential measurement.
387
    // 5) Differential measurement.
375
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
388
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
376
 
389
 
377
    // 6) Done.
390
    // 6) Done.
378
    gyro_PID[axis] = tempOffsetGyro[axis];
391
    gyro_PID[axis] = tempOffsetGyro[axis];
379
 
392
 
380
    // Prepare tempOffsetGyro for next calculation below...
393
    // Prepare tempOffsetGyro for next calculation below...
381
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
394
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
382
  }
395
  }
383
 
396
 
384
  /*
397
  /*
385
   * Now process the data for attitude angles.
398
   * Now process the data for attitude angles.
386
   */
399
   */
387
   rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
400
   rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
388
 
401
 
389
   gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
402
   gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
390
   gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
403
   gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
391
 
404
 
392
   debugOut.analog[22 + 0] = gyro_PID[0];
405
   debugOut.analog[22 + 0] = gyro_PID[0];
393
   debugOut.analog[22 + 1] = gyro_PID[1];
406
   debugOut.analog[22 + 1] = gyro_PID[1];
394
 
407
 
395
   debugOut.analog[24 + 0] = gyro_ATT[0];
408
   debugOut.analog[24 + 0] = gyro_ATT[0];
396
   debugOut.analog[24 + 1] = gyro_ATT[1];
409
   debugOut.analog[24 + 1] = gyro_ATT[1];
397
 
410
 
398
  // 2) Filter. This should really be quite unnecessary. The integration should gobble up any noise anyway and the values are not used for anything else.
411
  // 2) Filter. This should really be quite unnecessary. The integration should gobble up any noise anyway and the values are not used for anything else.
399
  // gyro_ATT[PITCH] = (gyro_ATT[PITCH] * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[PITCH]) / staticParams.attitudeGyroFilter;
412
  // gyro_ATT[PITCH] = (gyro_ATT[PITCH] * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[PITCH]) / staticParams.attitudeGyroFilter;
400
  // gyro_ATT[ROLL]  = (gyro_ATT[ROLL]  * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[ROLL])  / staticParams.attitudeGyroFilter;
413
  // gyro_ATT[ROLL]  = (gyro_ATT[ROLL]  * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[ROLL])  / staticParams.attitudeGyroFilter;
401
 
414
 
402
  // Yaw gyro.
415
  // Yaw gyro.
403
  if (staticParams.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
416
  if (staticParams.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
404
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
417
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
405
  else
418
  else
406
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
419
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
407
}
420
}
408
 
421
 
409
void analog_updateAccelerometers(void) {
422
void analog_updateAccelerometers(void) {
410
  // Pitch and roll axis accelerations.
423
  // Pitch and roll axis accelerations.
411
  for (uint8_t axis=0; axis<2; axis++) {
424
  for (uint8_t axis=0; axis<2; axis++) {
412
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
425
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
413
  }
426
  }
414
 
427
 
415
  rotate(acc, staticParams.accQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_ACC_XY);
428
  rotate(acc, staticParams.accQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_ACC_XY);
416
 
429
 
417
  for(uint8_t axis=0; axis<3; axis++) {
430
  for(uint8_t axis=0; axis<3; axis++) {
418
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
431
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
419
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
432
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
420
  }
433
  }
421
 
434
 
422
  // Z acc.
435
  // Z acc.
423
  if (staticParams.imuReversedFlags & 8)
436
  if (staticParams.imuReversedFlags & 8)
424
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
437
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
425
  else
438
  else
426
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
439
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
427
}
440
}
428
 
441
 
429
void analog_updateAirPressure(void) {
442
void analog_updateAirPressure(void) {
430
  static uint16_t pressureAutorangingWait = 25;
443
  static uint16_t pressureAutorangingWait = 25;
431
  uint16_t rawAirPressure;
444
  uint16_t rawAirPressure;
432
  int16_t newrange;
445
  int16_t newrange;
433
  // air pressure
446
  // air pressure
434
  if (pressureAutorangingWait) {
447
  if (pressureAutorangingWait) {
435
    //A range switch was done recently. Wait for steadying.
448
    //A range switch was done recently. Wait for steadying.
436
    pressureAutorangingWait--;
449
    pressureAutorangingWait--;
437
    debugOut.analog[27] = (uint16_t) OCR0A;
-
 
438
    debugOut.analog[31] = simpleAirPressure;
-
 
439
  } else {
450
  } else {
440
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
451
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
441
    if (rawAirPressure < MIN_RAWPRESSURE) {
452
    if (rawAirPressure < MIN_RAWPRESSURE) {
442
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
453
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
443
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
454
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
444
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
455
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
445
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
456
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
446
        OCR0A = newrange;
457
        OCR0A = newrange;
447
      } else {
458
      } else {
448
        if (OCR0A) {
459
        if (OCR0A) {
449
          OCR0A--;
460
          OCR0A--;
450
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
461
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
451
        }
462
        }
452
      }
463
      }
453
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
464
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
454
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
465
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
455
      // If near the end, make a limited increase
466
      // If near the end, make a limited increase
456
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
467
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
457
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
468
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
458
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
469
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
459
        OCR0A = newrange;
470
        OCR0A = newrange;
460
      } else {
471
      } else {
461
        if (OCR0A < 254) {
472
        if (OCR0A < 254) {
462
          OCR0A++;
473
          OCR0A++;
463
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
474
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
464
        }
475
        }
465
      }
476
      }
466
    }
477
    }
467
   
478
   
468
    // Even if the sample is off-range, use it.
479
    // Even if the sample is off-range, use it.
469
    simpleAirPressure = getSimplePressure(rawAirPressure);
480
    simpleAirPressure = getSimplePressure(rawAirPressure);
470
    debugOut.analog[27] = (uint16_t) OCR0A;
-
 
471
    debugOut.analog[31] = simpleAirPressure;
-
 
472
   
481
   
473
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
482
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
474
      // Danger: pressure near lower end of range. If the measurement saturates, the
483
      // Danger: pressure near lower end of range. If the measurement saturates, the
475
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
484
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
476
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
485
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
477
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
486
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
478
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
487
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
479
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
488
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
480
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
489
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
481
      // Danger: pressure near upper end of range. If the measurement saturates, the
490
      // Danger: pressure near upper end of range. If the measurement saturates, the
482
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
491
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
483
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
492
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
484
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
493
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
485
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
494
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
486
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
495
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
487
    } else {
496
    } else {
488
      // normal case.
497
      // normal case.
489
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
498
      // If AIRPRESSURE_OVERSAMPLING is an odd number we only want to add half the double sample.
490
      // The 2 cases above (end of range) are ignored for this.
499
      // The 2 cases above (end of range) are ignored for this.
491
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
500
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
492
      if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING - 1)
501
      if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING - 1)
493
        airPressureSum += simpleAirPressure / 2;
502
        airPressureSum += simpleAirPressure / 2;
494
      else
503
      else
495
        airPressureSum += simpleAirPressure;
504
        airPressureSum += simpleAirPressure;
496
    }
505
    }
497
   
506
   
498
    // 2 samples were added.
507
    // 2 samples were added.
499
    pressureMeasurementCount += 2;
508
    pressureMeasurementCount += 2;
500
    if (pressureMeasurementCount >= AIRPRESSURE_OVERSAMPLING) {
509
    if (pressureMeasurementCount >= AIRPRESSURE_OVERSAMPLING) {
501
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
510
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
502
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
511
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
503
      pressureMeasurementCount = airPressureSum = 0;
512
      pressureMeasurementCount = airPressureSum = 0;
504
    }
513
    }
-
 
514
    //int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
-
 
515
    //int32_t windowedAirPressure = 0;
-
 
516
    //uint8_t windowPtr;
-
 
517
    windowedAirPressure += simpleAirPressure;
-
 
518
    windowedAirPressure -= airPressureWindow[windowPtr];
-
 
519
    airPressureWindow[windowPtr] = simpleAirPressure;
-
 
520
    windowPtr = (windowPtr+1) % MAX_AIRPRESSURE_WINDOW_LENGTH;
505
  }
521
  }
506
}
522
}
507
 
523
 
508
void analog_updateBatteryVoltage(void) {
524
void analog_updateBatteryVoltage(void) {
509
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
525
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
510
  // This is divided by 3 --> 10.34 counts per volt.
526
  // This is divided by 3 --> 10.34 counts per volt.
511
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
527
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
512
  debugOut.analog[11] = UBat;
528
  debugOut.analog[11] = UBat;
513
}
529
}
514
 
530
 
515
void analog_update(void) {
531
void analog_update(void) {
516
  analog_updateGyros();
532
  analog_updateGyros();
517
  analog_updateAccelerometers();
533
  analog_updateAccelerometers();
518
  analog_updateAirPressure();
534
  analog_updateAirPressure();
519
  analog_updateBatteryVoltage();
535
  analog_updateBatteryVoltage();
520
}
536
}
521
 
537
 
522
void analog_setNeutral() {
538
void analog_setNeutral() {
523
  gyro_init();
539
  gyro_init();
524
 
540
 
525
  if (gyroOffset_readFromEEProm()) {
541
  if (gyroOffset_readFromEEProm()) {
526
    printf("gyro offsets invalid%s",recal);
542
    printf("gyro offsets invalid%s",recal);
527
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
543
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
528
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
544
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
529
  }
545
  }
530
 
546
 
531
  if (accOffset_readFromEEProm()) {
547
  if (accOffset_readFromEEProm()) {
532
    printf("acc. meter offsets invalid%s",recal);
548
    printf("acc. meter offsets invalid%s",recal);
533
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
549
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
534
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
550
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
535
  }
551
  }
536
 
552
 
537
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
553
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
538
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
554
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
539
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
555
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
540
 
556
 
541
  // Setting offset values has an influence in the analog.c ISR
557
  // Setting offset values has an influence in the analog.c ISR
542
  // Therefore run measurement for 100ms to achive stable readings
558
  // Therefore run measurement for 100ms to achive stable readings
543
  delay_ms_with_adc_measurement(100, 0);
559
  delay_ms_with_adc_measurement(100, 0);
544
 
560
 
545
  // Rough estimate. Hmm no nothing happens at calibration anyway.
561
  // Rough estimate. Hmm no nothing happens at calibration anyway.
546
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_OVERSAMPLING/2);
562
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_OVERSAMPLING/2);
547
  // pressureMeasurementCount = 0;
563
  // pressureMeasurementCount = 0;
548
}
564
}
549
 
565
 
550
void analog_calibrateGyros(void) {
566
void analog_calibrateGyros(void) {
551
#define GYRO_OFFSET_CYCLES 32
567
#define GYRO_OFFSET_CYCLES 32
552
  uint8_t i, axis;
568
  uint8_t i, axis;
553
  int32_t offsets[3] = { 0, 0, 0 };
569
  int32_t offsets[3] = { 0, 0, 0 };
554
  gyro_calibrate();
570
  gyro_calibrate();
555
 
571
 
556
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
572
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
557
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
573
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
558
    delay_ms_with_adc_measurement(10, 1);
574
    delay_ms_with_adc_measurement(10, 1);
559
    for (axis = PITCH; axis <= YAW; axis++) {
575
    for (axis = PITCH; axis <= YAW; axis++) {
560
      offsets[axis] += rawGyroValue(axis);
576
      offsets[axis] += rawGyroValue(axis);
561
    }
577
    }
562
  }
578
  }
563
 
579
 
564
  for (axis = PITCH; axis <= YAW; axis++) {
580
  for (axis = PITCH; axis <= YAW; axis++) {
565
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
581
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
566
 
582
 
567
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
583
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
568
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
584
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
569
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
585
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
570
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
586
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
571
  }
587
  }
572
 
588
 
573
  gyroOffset_writeToEEProm();  
589
  gyroOffset_writeToEEProm();  
574
  startAnalogConversionCycle();
590
  startAnalogConversionCycle();
575
}
591
}
576
 
592
 
577
/*
593
/*
578
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
594
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
579
 * Does not (!} update the local variables. This must be done with a
595
 * Does not (!} update the local variables. This must be done with a
580
 * call to analog_calibrate() - this always (?) is done by the caller
596
 * call to analog_calibrate() - this always (?) is done by the caller
581
 * anyway. There would be nothing wrong with updating the variables
597
 * anyway. There would be nothing wrong with updating the variables
582
 * directly from here, though.
598
 * directly from here, though.
583
 */
599
 */
584
void analog_calibrateAcc(void) {
600
void analog_calibrateAcc(void) {
585
#define ACC_OFFSET_CYCLES 32
601
#define ACC_OFFSET_CYCLES 32
586
  uint8_t i, axis;
602
  uint8_t i, axis;
587
  int32_t offsets[3] = { 0, 0, 0 };
603
  int32_t offsets[3] = { 0, 0, 0 };
588
 
604
 
589
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
605
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
590
    delay_ms_with_adc_measurement(10, 1);
606
    delay_ms_with_adc_measurement(10, 1);
591
    for (axis = PITCH; axis <= YAW; axis++) {
607
    for (axis = PITCH; axis <= YAW; axis++) {
592
      offsets[axis] += rawAccValue(axis);
608
      offsets[axis] += rawAccValue(axis);
593
    }
609
    }
594
  }
610
  }
595
 
611
 
596
  for (axis = PITCH; axis <= YAW; axis++) {
612
  for (axis = PITCH; axis <= YAW; axis++) {
597
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
613
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
598
    int16_t min,max;
614
    int16_t min,max;
599
    if (axis==Z) {
615
    if (axis==Z) {
600
        if (staticParams.imuReversedFlags & IMU_REVERSE_ACC_Z) {
616
        if (staticParams.imuReversedFlags & IMU_REVERSE_ACC_Z) {
601
        // TODO: This assumes a sensitivity of +/- 2g.
617
        // TODO: This assumes a sensitivity of +/- 2g.
602
                min = (256-200) * ACC_OVERSAMPLING_Z;
618
                min = (256-200) * ACC_OVERSAMPLING_Z;
603
                        max = (256+200) * ACC_OVERSAMPLING_Z;
619
                        max = (256+200) * ACC_OVERSAMPLING_Z;
604
        } else {
620
        } else {
605
        // TODO: This assumes a sensitivity of +/- 2g.
621
        // TODO: This assumes a sensitivity of +/- 2g.
606
                min = (768-200) * ACC_OVERSAMPLING_Z;
622
                min = (768-200) * ACC_OVERSAMPLING_Z;
607
                        max = (768+200) * ACC_OVERSAMPLING_Z;
623
                        max = (768+200) * ACC_OVERSAMPLING_Z;
608
        }
624
        }
609
    } else {
625
    } else {
610
        min = (512-200) * ACC_OVERSAMPLING_XY;
626
        min = (512-200) * ACC_OVERSAMPLING_XY;
611
        max = (512+200) * ACC_OVERSAMPLING_XY;
627
        max = (512+200) * ACC_OVERSAMPLING_XY;
612
    }
628
    }
613
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
629
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
614
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
630
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
615
    }
631
    }
616
  }
632
  }
617
 
633
 
618
  accOffset_writeToEEProm();
634
  accOffset_writeToEEProm();
619
  startAnalogConversionCycle();
635
  startAnalogConversionCycle();
620
}
636
}
621
 
637