Subversion Repositories FlightCtrl

Rev

Rev 1869 | Rev 1872 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1869 Rev 1870
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <avr/io.h>
51
#include <avr/io.h>
52
#include <avr/interrupt.h>
52
#include <avr/interrupt.h>
53
#include <avr/pgmspace.h>
53
#include <avr/pgmspace.h>
54
 
54
 
55
#include "analog.h"
55
#include "analog.h"
56
#include "attitude.h"
56
#include "attitude.h"
57
#include "sensors.h"
57
#include "sensors.h"
58
 
58
 
59
// for Delay functions
59
// for Delay functions
60
#include "timer0.h"
60
#include "timer0.h"
61
 
61
 
62
// For DebugOut
62
// For DebugOut
63
#include "uart0.h"
63
#include "uart0.h"
64
 
64
 
65
// For reading and writing acc. meter offsets.
65
// For reading and writing acc. meter offsets.
66
#include "eeprom.h"
66
#include "eeprom.h"
67
 
67
 
68
// For DebugOut.Digital
68
// For DebugOut.Digital
69
#include "output.h"
69
#include "output.h"
70
 
70
 
71
/*
71
/*
72
 * For each A/D conversion cycle, each analog channel is sampled a number of times
72
 * For each A/D conversion cycle, each analog channel is sampled a number of times
73
 * (see array channelsForStates), and the results for each channel are summed.
73
 * (see array channelsForStates), and the results for each channel are summed.
74
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
74
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
75
 * They are exported in the analog.h file - but please do not use them! The only
75
 * They are exported in the analog.h file - but please do not use them! The only
76
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
76
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
77
 * the offsets with the DAC.
77
 * the offsets with the DAC.
78
 */
78
 */
79
volatile int16_t rawGyroSum[3];
79
volatile int16_t rawGyroSum[3];
80
volatile int16_t acc[3];
80
volatile int16_t acc[3];
81
volatile int16_t filteredAcc[2] = { 0,0 };
81
volatile int16_t filteredAcc[2] = { 0,0 };
82
volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
82
volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
83
 
83
 
84
/*
84
/*
85
 * These 4 exported variables are zero-offset. The "PID" ones are used
85
 * These 4 exported variables are zero-offset. The "PID" ones are used
86
 * in the attitude control as rotation rates. The "ATT" ones are for
86
 * in the attitude control as rotation rates. The "ATT" ones are for
87
 * integration to angles.
87
 * integration to angles.
88
 */
88
 */
89
volatile int16_t gyro_PID[2];
89
volatile int16_t gyro_PID[2];
90
volatile int16_t gyro_ATT[2];
90
volatile int16_t gyro_ATT[2];
91
volatile int16_t gyroD[2];
91
volatile int16_t gyroD[2];
92
volatile int16_t yawGyro;
92
volatile int16_t yawGyro;
93
 
93
 
94
/*
94
/*
95
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
95
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
96
 * standing still. They are used for adjusting the gyro and acc. meter values
96
 * standing still. They are used for adjusting the gyro and acc. meter values
97
 * to be centered on zero.
97
 * to be centered on zero.
98
 */
98
 */
99
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
99
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
100
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
100
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
101
 
101
 
102
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
102
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
103
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
103
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
104
 
104
 
105
/*
105
/*
106
 * This allows some experimentation with the gyro filters.
106
 * This allows some experimentation with the gyro filters.
107
 * Should be replaced by #define's later on...
107
 * Should be replaced by #define's later on...
108
 */
108
 */
109
volatile uint8_t GYROS_PID_FILTER;
109
volatile uint8_t GYROS_PID_FILTER;
110
volatile uint8_t GYROS_ATT_FILTER;
110
volatile uint8_t GYROS_ATT_FILTER;
111
volatile uint8_t GYROS_D_FILTER;
111
volatile uint8_t GYROS_D_FILTER;
112
volatile uint8_t ACC_FILTER;
112
volatile uint8_t ACC_FILTER;
113
 
113
 
114
/*
114
/*
115
 * Air pressure
115
 * Air pressure
116
 */
116
 */
117
volatile uint8_t rangewidth = 106;
117
volatile uint8_t rangewidth = 106;
118
 
118
 
119
// Direct from sensor, irrespective of range.
119
// Direct from sensor, irrespective of range.
120
// volatile uint16_t rawAirPressure;
120
// volatile uint16_t rawAirPressure;
121
 
121
 
122
// Value of 2 samples, with range.
122
// Value of 2 samples, with range.
123
volatile uint16_t simpleAirPressure;
123
volatile uint16_t simpleAirPressure;
124
 
124
 
125
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
125
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
126
volatile int32_t filteredAirPressure;
126
volatile int32_t filteredAirPressure;
127
 
127
 
128
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
128
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
129
volatile int32_t airPressureSum;
129
volatile int32_t airPressureSum;
130
 
130
 
131
// The number of samples summed into airPressureSum so far.
131
// The number of samples summed into airPressureSum so far.
132
volatile uint8_t pressureMeasurementCount;
132
volatile uint8_t pressureMeasurementCount;
133
 
133
 
134
/*
134
/*
135
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
135
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
136
 * That is divided by 3 below, for a final 10.34 per volt.
136
 * That is divided by 3 below, for a final 10.34 per volt.
137
 * So the initial value of 100 is for 9.7 volts.
137
 * So the initial value of 100 is for 9.7 volts.
138
 */
138
 */
139
volatile int16_t UBat = 100;
139
volatile int16_t UBat = 100;
140
 
140
 
141
/*
141
/*
142
 * Control and status.
142
 * Control and status.
143
 */
143
 */
144
volatile uint16_t ADCycleCount = 0;
144
volatile uint16_t ADCycleCount = 0;
145
volatile uint8_t analogDataReady = 1;
145
volatile uint8_t analogDataReady = 1;
146
 
146
 
147
/*
147
/*
148
 * Experiment: Measuring vibration-induced sensor noise.
148
 * Experiment: Measuring vibration-induced sensor noise.
149
 */
149
 */
150
volatile uint16_t gyroNoisePeak[2];
150
volatile uint16_t gyroNoisePeak[2];
151
volatile uint16_t accNoisePeak[2];
151
volatile uint16_t accNoisePeak[2];
152
 
152
 
153
// ADC channels
153
// ADC channels
154
#define AD_GYRO_YAW       0
154
#define AD_GYRO_YAW       0
155
#define AD_GYRO_ROLL      1
155
#define AD_GYRO_ROLL      1
156
#define AD_GYRO_PITCH     2
156
#define AD_GYRO_PITCH     2
157
#define AD_AIRPRESSURE    3
157
#define AD_AIRPRESSURE    3
158
#define AD_UBAT           4
158
#define AD_UBAT           4
159
#define AD_ACC_Z          5
159
#define AD_ACC_Z          5
160
#define AD_ACC_ROLL       6
160
#define AD_ACC_ROLL       6
161
#define AD_ACC_PITCH      7
161
#define AD_ACC_PITCH      7
162
 
162
 
163
/*
163
/*
164
 * Table of AD converter inputs for each state.
164
 * Table of AD converter inputs for each state.
165
 * The number of samples summed for each channel is equal to
165
 * The number of samples summed for each channel is equal to
166
 * the number of times the channel appears in the array.
166
 * the number of times the channel appears in the array.
167
 * The max. number of samples that can be taken in 2 ms is:
167
 * The max. number of samples that can be taken in 2 ms is:
168
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
168
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
169
 * loop needs a little time between reading AD values and
169
 * loop needs a little time between reading AD values and
170
 * re-enabling ADC, the real limit is (how much?) lower.
170
 * re-enabling ADC, the real limit is (how much?) lower.
171
 * The acc. sensor is sampled even if not used - or installed
171
 * The acc. sensor is sampled even if not used - or installed
172
 * at all. The cost is not significant.
172
 * at all. The cost is not significant.
173
 */
173
 */
174
 
174
 
175
const uint8_t channelsForStates[] PROGMEM = { AD_GYRO_PITCH, AD_GYRO_ROLL,
175
const uint8_t channelsForStates[] PROGMEM = {
176
                AD_GYRO_YAW,
-
 
177
 
176
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
178
                AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
177
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
179
 
178
 
180
                AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
-
 
181
 
179
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
182
                AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
180
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
183
 
181
 
184
                AD_ACC_PITCH, // at 12, finish pitch axis acc.
182
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
185
                AD_ACC_ROLL, // at 13, finish roll axis acc.
183
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
186
                AD_AIRPRESSURE, // at 14, finish air pressure.
184
  AD_AIRPRESSURE, // at 14, finish air pressure.
187
 
185
 
188
                AD_GYRO_PITCH, // at 15, finish pitch gyro
186
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
189
                AD_GYRO_ROLL, // at 16, finish roll gyro
187
  AD_GYRO_ROLL,   // at 16, finish roll gyro
190
                AD_UBAT // at 17, measure battery.
188
  AD_UBAT         // at 17, measure battery.
191
                };
189
};
192
 
190
 
193
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
191
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
194
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
192
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
195
 
193
 
196
void analog_init(void) {
194
void analog_init(void) {
197
        uint8_t sreg = SREG;
195
        uint8_t sreg = SREG;
198
        // disable all interrupts before reconfiguration
196
        // disable all interrupts before reconfiguration
199
        cli();
197
        cli();
200
 
198
 
201
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
199
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
202
        DDRA = 0x00;
200
        DDRA = 0x00;
203
        PORTA = 0x00;
201
        PORTA = 0x00;
204
        // Digital Input Disable Register 0
202
        // Digital Input Disable Register 0
205
        // Disable digital input buffer for analog adc_channel pins
203
        // Disable digital input buffer for analog adc_channel pins
206
        DIDR0 = 0xFF;
204
        DIDR0 = 0xFF;
207
        // external reference, adjust data to the right
205
        // external reference, adjust data to the right
208
        ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR));
206
        ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR));
209
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
207
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
210
        ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
208
        ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
211
        //Set ADC Control and Status Register A
209
        //Set ADC Control and Status Register A
212
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
210
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
213
        ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1
211
        ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1
214
                        << ADPS1) | (1 << ADPS0) | (0 << ADIE);
212
                        << ADPS1) | (1 << ADPS0) | (0 << ADIE);
215
        //Set ADC Control and Status Register B
213
        //Set ADC Control and Status Register B
216
        //Trigger Source to Free Running Mode
214
        //Trigger Source to Free Running Mode
217
        ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));
215
        ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));
218
        // Start AD conversion
216
        // Start AD conversion
219
        analog_start();
217
        analog_start();
220
        // restore global interrupt flags
218
        // restore global interrupt flags
221
        SREG = sreg;
219
        SREG = sreg;
222
}
220
}
223
 
221
 
224
void measureNoise(const int16_t sensor,
222
void measureNoise(const int16_t sensor,
225
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
223
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
226
        if (sensor > (int16_t) (*noiseMeasurement)) {
224
        if (sensor > (int16_t) (*noiseMeasurement)) {
227
                *noiseMeasurement = sensor;
225
                *noiseMeasurement = sensor;
228
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
226
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
229
                *noiseMeasurement = -sensor;
227
                *noiseMeasurement = -sensor;
230
        } else if (*noiseMeasurement > damping) {
228
        } else if (*noiseMeasurement > damping) {
231
                *noiseMeasurement -= damping;
229
                *noiseMeasurement -= damping;
232
        } else {
230
        } else {
233
                *noiseMeasurement = 0;
231
                *noiseMeasurement = 0;
234
        }
232
        }
235
}
233
}
236
 
234
 
237
/*
235
/*
238
 * Min.: 0
236
 * Min.: 0
239
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
237
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
240
 */
238
 */
241
uint16_t getSimplePressure(int advalue) {
239
uint16_t getSimplePressure(int advalue) {
242
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
240
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
243
}
241
}
244
 
242
 
245
/*****************************************************
243
/*****************************************************
246
 * Interrupt Service Routine for ADC
244
 * Interrupt Service Routine for ADC
247
 * Runs at 312.5 kHz or 3.2 µs. When all states are
245
 * Runs at 312.5 kHz or 3.2 µs. When all states are
248
 * processed the interrupt is disabled and further
246
 * processed the interrupt is disabled and further
249
 * AD conversions are stopped.
247
 * AD conversions are stopped.
250
 *****************************************************/
248
 *****************************************************/
251
ISR(ADC_vect)
249
ISR(ADC_vect) {
252
{
-
 
253
        static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
250
        static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
254
        static uint16_t sensorInputs[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
251
        static uint16_t sensorInputs[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
255
        static uint16_t pressureAutorangingWait = 25;
252
        static uint16_t pressureAutorangingWait = 25;
256
        uint16_t rawAirPressure;
253
        uint16_t rawAirPressure;
257
        uint8_t i, axis;
254
        uint8_t i, axis;
258
        int16_t newrange;
255
        int16_t newrange;
-
 
256
 
-
 
257
        J5HIGH;
259
 
258
 
260
        // for various filters...
259
        // for various filters...
261
        int16_t tempOffsetGyro, tempGyro;
260
        int16_t tempOffsetGyro, tempGyro;
262
 
261
 
263
        sensorInputs[ad_channel] += ADC;
262
        sensorInputs[ad_channel] += ADC;
264
 
263
 
265
        /*
264
        /*
266
         * Actually we don't need this "switch". We could do all the sampling into the
265
         * Actually we don't need this "switch". We could do all the sampling into the
267
         * sensorInputs array first, and all the processing after the last sample.
266
         * sensorInputs array first, and all the processing after the last sample.
268
         */
267
         */
269
        switch (state++) {
268
        switch (state++) {
270
 
269
 
271
        case 8: // Z acc
270
        case 8: // Z acc
272
                if (ACC_REVERSED[Z])
271
                if (ACC_REVERSED[Z])
273
                        acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
272
                        acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
274
                else
273
                else
275
                        acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
274
                        acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
276
 
275
 
277
        stronglyFilteredAcc[Z] =
276
        stronglyFilteredAcc[Z] =
278
            (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
277
            (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
279
 
278
 
280
                break;
279
                break;
281
 
280
 
282
        case 11: // yaw gyro
281
        case 11: // yaw gyro
283
                rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
282
                rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
284
                if (GYRO_REVERSED[YAW])
283
                if (GYRO_REVERSED[YAW])
285
                        yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
284
                        yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
286
                else
285
                else
287
                        yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
286
                        yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
288
                break;
287
                break;
289
 
288
 
290
        case 12: // pitch axis acc.
289
        case 12: // pitch axis acc.
291
                if (ACC_REVERSED[PITCH])
290
                if (ACC_REVERSED[PITCH])
292
                        acc[PITCH] = accOffset[PITCH] - sensorInputs[AD_ACC_PITCH];
291
                        acc[PITCH] = accOffset[PITCH] - sensorInputs[AD_ACC_PITCH];
293
                else
292
                else
294
                        acc[PITCH] = sensorInputs[AD_ACC_PITCH] - accOffset[PITCH];
293
                        acc[PITCH] = sensorInputs[AD_ACC_PITCH] - accOffset[PITCH];
295
 
294
 
296
                filteredAcc[PITCH] =
295
                filteredAcc[PITCH] =
297
                    (filteredAcc[PITCH] * (ACC_FILTER - 1) + acc[PITCH]) / ACC_FILTER;
296
                    (filteredAcc[PITCH] * (ACC_FILTER - 1) + acc[PITCH]) / ACC_FILTER;
298
 
297
 
299
                stronglyFilteredAcc[PITCH] =
298
                stronglyFilteredAcc[PITCH] =
300
                    (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
299
                    (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
301
 
300
 
302
 
301
 
303
                measureNoise(acc[PITCH], &accNoisePeak[PITCH], 1);
302
                measureNoise(acc[PITCH], &accNoisePeak[PITCH], 1);
304
                break;
303
                break;
305
 
304
 
306
        case 13: // roll axis acc.
305
        case 13: // roll axis acc.
307
                if (ACC_REVERSED[ROLL])
306
                if (ACC_REVERSED[ROLL])
308
                        acc[ROLL] = accOffset[ROLL] - sensorInputs[AD_ACC_ROLL];
307
                        acc[ROLL] = accOffset[ROLL] - sensorInputs[AD_ACC_ROLL];
309
                else
308
                else
310
                        acc[ROLL] = sensorInputs[AD_ACC_ROLL] - accOffset[ROLL];
309
                        acc[ROLL] = sensorInputs[AD_ACC_ROLL] - accOffset[ROLL];
311
                filteredAcc[ROLL] =
310
                filteredAcc[ROLL] =
312
                    (filteredAcc[ROLL] * (ACC_FILTER - 1) + acc[ROLL]) / ACC_FILTER;
311
                    (filteredAcc[ROLL] * (ACC_FILTER - 1) + acc[ROLL]) / ACC_FILTER;
313
 
312
 
314
        stronglyFilteredAcc[ROLL] =
313
        stronglyFilteredAcc[ROLL] =
315
            (stronglyFilteredAcc[ROLL] * 99 + acc[ROLL] * 10) / 100;
314
            (stronglyFilteredAcc[ROLL] * 99 + acc[ROLL] * 10) / 100;
316
 
315
 
317
                measureNoise(acc[ROLL], &accNoisePeak[ROLL], 1);
316
                measureNoise(acc[ROLL], &accNoisePeak[ROLL], 1);
318
                break;
317
                break;
319
 
318
 
320
        case 14: // air pressure
319
        case 14: // air pressure
321
                if (pressureAutorangingWait) {
320
                if (pressureAutorangingWait) {
322
                        //A range switch was done recently. Wait for steadying.
321
                        //A range switch was done recently. Wait for steadying.
323
                        pressureAutorangingWait--;
322
                        pressureAutorangingWait--;
324
                        DebugOut.Analog[27] = (uint16_t) OCR0A;
323
                        DebugOut.Analog[27] = (uint16_t) OCR0A;
325
                        DebugOut.Analog[31] = simpleAirPressure;
324
                        DebugOut.Analog[31] = simpleAirPressure;
326
                        break;
325
                        break;
327
                }
326
                }
328
 
327
 
329
                rawAirPressure = sensorInputs[AD_AIRPRESSURE];
328
                rawAirPressure = sensorInputs[AD_AIRPRESSURE];
330
                if (rawAirPressure < MIN_RAWPRESSURE) {
329
                if (rawAirPressure < MIN_RAWPRESSURE) {
331
                        // value is too low, so decrease voltage on the op amp minus input, making the value higher.
330
                        // value is too low, so decrease voltage on the op amp minus input, making the value higher.
332
                        newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
331
                        newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
333
                        if (newrange > MIN_RANGES_EXTRAPOLATION) {
332
                        if (newrange > MIN_RANGES_EXTRAPOLATION) {
334
                                pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
333
                                pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
335
                                OCR0A = newrange;
334
                                OCR0A = newrange;
336
                        } else {
335
                        } else {
337
                                if (OCR0A) {
336
                                if (OCR0A) {
338
                                        OCR0A--;
337
                                        OCR0A--;
339
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
338
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
340
                                }
339
                                }
341
                        }
340
                        }
342
                } else if (rawAirPressure > MAX_RAWPRESSURE) {
341
                } else if (rawAirPressure > MAX_RAWPRESSURE) {
343
                        // value is too high, so increase voltage on the op amp minus input, making the value lower.
342
                        // value is too high, so increase voltage on the op amp minus input, making the value lower.
344
                        // If near the end, make a limited increase
343
                        // If near the end, make a limited increase
345
                        newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
344
                        newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
346
                        if (newrange < MAX_RANGES_EXTRAPOLATION) {
345
                        if (newrange < MAX_RANGES_EXTRAPOLATION) {
347
                                pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
346
                                pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
348
                                OCR0A = newrange;
347
                                OCR0A = newrange;
349
                        } else {
348
                        } else {
350
                                if (OCR0A < 254) {
349
                                if (OCR0A < 254) {
351
                                        OCR0A++;
350
                                        OCR0A++;
352
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
351
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
353
                                }
352
                                }
354
                        }
353
                        }
355
                }
354
                }
356
 
355
 
357
                // Even if the sample is off-range, use it.
356
                // Even if the sample is off-range, use it.
358
                simpleAirPressure = getSimplePressure(rawAirPressure);
357
                simpleAirPressure = getSimplePressure(rawAirPressure);
359
                DebugOut.Analog[27] = (uint16_t) OCR0A;
358
                DebugOut.Analog[27] = (uint16_t) OCR0A;
360
                DebugOut.Analog[31] = simpleAirPressure;
359
                DebugOut.Analog[31] = simpleAirPressure;
361
 
360
 
362
                if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
361
                if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
363
                        // Danger: pressure near lower end of range. If the measurement saturates, the
362
                        // Danger: pressure near lower end of range. If the measurement saturates, the
364
                        // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
363
                        // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
365
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
364
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
366
                        airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
365
                        airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
367
                                        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
366
                                        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
368
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
367
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
369
                } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
368
                } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
370
                        // Danger: pressure near upper end of range. If the measurement saturates, the
369
                        // Danger: pressure near upper end of range. If the measurement saturates, the
371
                        // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
370
                        // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
372
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
371
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
373
                        airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
372
                        airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
374
                                        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
373
                                        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
375
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
374
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
376
                } else {
375
                } else {
377
                        // normal case.
376
                        // normal case.
378
                        // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
377
                        // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
379
                        // The 2 cases above (end of range) are ignored for this.
378
                        // The 2 cases above (end of range) are ignored for this.
380
                        DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
379
                        DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
381
                        if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
380
                        if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
382
                                airPressureSum += simpleAirPressure / 2;
381
                                airPressureSum += simpleAirPressure / 2;
383
                        else
382
                        else
384
                                airPressureSum += simpleAirPressure;
383
                                airPressureSum += simpleAirPressure;
385
                }
384
                }
386
 
385
 
387
                // 2 samples were added.
386
                // 2 samples were added.
388
                pressureMeasurementCount += 2;
387
                pressureMeasurementCount += 2;
389
                if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
388
                if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
390
                        filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
389
                        filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
391
                                        + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
390
                                        + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
392
                        pressureMeasurementCount = airPressureSum = 0;
391
                        pressureMeasurementCount = airPressureSum = 0;
393
                }
392
                }
394
 
393
 
395
                break;
394
                break;
396
 
395
 
397
        case 15:
396
        case 15:
398
        case 16: // pitch or roll gyro.
397
        case 16: // pitch or roll gyro.
399
                axis = state - 16;
398
                axis = state - 16;
400
                tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
399
                tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
401
                // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
400
                // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
402
                /*
401
                /*
403
                 * Process the gyro data for the PID controller.
402
                 * Process the gyro data for the PID controller.
404
                 */
403
                 */
405
                // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
404
                // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
406
                //    gyro with a wider range, and helps counter saturation at full control.
405
                //    gyro with a wider range, and helps counter saturation at full control.
407
 
406
 
408
                if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
407
                if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
409
                        if (tempGyro < SENSOR_MIN_PITCHROLL) {
408
                        if (tempGyro < SENSOR_MIN_PITCHROLL) {
410
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
409
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
411
                                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
410
                                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
412
                        } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
411
                        } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
413
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
412
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
414
                                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
413
                                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
415
                                                + SENSOR_MAX_PITCHROLL;
414
                                                + SENSOR_MAX_PITCHROLL;
416
                        } else {
415
                        } else {
417
                                DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
416
                                DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
418
                        }
417
                        }
419
                }
418
                }
420
 
419
 
421
                // 2) Apply sign and offset, scale before filtering.
420
                // 2) Apply sign and offset, scale before filtering.
422
                if (GYRO_REVERSED[axis]) {
421
                if (GYRO_REVERSED[axis]) {
423
                        tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
422
                        tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
424
                } else {
423
                } else {
425
                        tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
424
                        tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
426
                }
425
                }
427
 
426
 
428
                // 3) Scale and filter.
427
                // 3) Scale and filter.
429
                tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro)
428
                tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro)
430
                                / GYROS_PID_FILTER;
429
                                / GYROS_PID_FILTER;
431
 
430
 
432
                // 4) Measure noise.
431
                // 4) Measure noise.
433
                measureNoise(tempOffsetGyro, &gyroNoisePeak[axis],
432
                measureNoise(tempOffsetGyro, &gyroNoisePeak[axis],
434
                                GYRO_NOISE_MEASUREMENT_DAMPING);
433
                                GYRO_NOISE_MEASUREMENT_DAMPING);
435
 
434
 
436
                // 5) Differential measurement.
435
                // 5) Differential measurement.
437
                gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro
436
                gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro
438
                                - gyro_PID[axis])) / GYROS_D_FILTER;
437
                                - gyro_PID[axis])) / GYROS_D_FILTER;
439
 
438
 
440
                // 6) Done.
439
                // 6) Done.
441
                gyro_PID[axis] = tempOffsetGyro;
440
                gyro_PID[axis] = tempOffsetGyro;
442
 
441
 
443
                /*
442
                /*
444
                 * Now process the data for attitude angles.
443
                 * Now process the data for attitude angles.
445
                 */
444
                 */
446
                tempGyro = rawGyroSum[axis];
445
                tempGyro = rawGyroSum[axis];
447
 
446
 
448
                // 1) Apply sign and offset, scale before filtering.
447
                // 1) Apply sign and offset, scale before filtering.
449
                if (GYRO_REVERSED[axis]) {
448
                if (GYRO_REVERSED[axis]) {
450
                        tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
449
                        tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
451
                } else {
450
                } else {
452
                        tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
451
                        tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
453
                }
452
                }
454
 
453
 
455
                // 2) Filter.
454
                // 2) Filter.
456
                gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro)
455
                gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro)
457
                                / GYROS_ATT_FILTER;
456
                                / GYROS_ATT_FILTER;
458
                break;
457
                break;
459
 
458
 
460
        case 17:
459
        case 17:
461
                // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
460
                // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
462
                // This is divided by 3 --> 10.34 counts per volt.
461
                // This is divided by 3 --> 10.34 counts per volt.
463
                UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
462
                UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
464
                DebugOut.Analog[11] = UBat;
463
                DebugOut.Analog[11] = UBat;
465
                analogDataReady = 1; // mark
464
                analogDataReady = 1; // mark
466
                ADCycleCount++;
465
                ADCycleCount++;
467
                // Stop the sampling. Cycle is over.
466
                // Stop the sampling. Cycle is over.
468
                state = 0;
467
                state = 0;
469
                for (i = 0; i < 8; i++) {
468
                for (i = 0; i < 8; i++) {
470
                        sensorInputs[i] = 0;
469
                        sensorInputs[i] = 0;
471
                }
470
                }
472
                break;
471
                break;
473
        default: {
472
        default: {
474
        } // do nothing.
473
        } // do nothing.
475
        }
474
        }
476
 
475
 
477
        // set up for next state.
476
        // set up for next state.
478
        ad_channel = pgm_read_byte(&channelsForStates[state]);
477
        ad_channel = pgm_read_byte(&channelsForStates[state]);
479
        // ad_channel = channelsForStates[state];
478
        // ad_channel = channelsForStates[state];
480
 
479
 
481
        // set adc muxer to next ad_channel
480
        // set adc muxer to next ad_channel
482
        ADMUX = (ADMUX & 0xE0) | ad_channel;
481
        ADMUX = (ADMUX & 0xE0) | ad_channel;
483
        // after full cycle stop further interrupts
482
        // after full cycle stop further interrupts
484
        if (state)
483
        if (state)
485
                analog_start();
484
                analog_start();
-
 
485
        else
-
 
486
          J4LOW;
-
 
487
 
-
 
488
        J5LOW;
486
}
489
}
487
 
490
 
488
void analog_calibrate(void) {
491
void analog_calibrate(void) {
489
#define GYRO_OFFSET_CYCLES 32
492
#define GYRO_OFFSET_CYCLES 32
490
        uint8_t i, axis;
493
        uint8_t i, axis;
491
        int32_t deltaOffsets[3] = { 0, 0, 0 };
494
        int32_t deltaOffsets[3] = { 0, 0, 0 };
492
 
495
 
493
        // Set the filters... to be removed again, once some good settings are found.
496
        // Set the filters... to be removed again, once some good settings are found.
494
        GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
497
        GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
495
        GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
498
        GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
496
        GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
499
        GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
497
        ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
500
        ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
498
 
501
 
499
        gyro_calibrate();
502
        gyro_calibrate();
500
 
503
 
501
        // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
504
        // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
502
        for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
505
        for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
503
                Delay_ms_Mess(20);
506
                Delay_ms_Mess(20);
504
                for (axis = PITCH; axis <= YAW; axis++) {
507
                for (axis = PITCH; axis <= YAW; axis++) {
505
                        deltaOffsets[axis] += rawGyroSum[axis];
508
                        deltaOffsets[axis] += rawGyroSum[axis];
506
                }
509
                }
507
        }
510
        }
508
 
511
 
509
        for (axis = PITCH; axis <= YAW; axis++) {
512
        for (axis = PITCH; axis <= YAW; axis++) {
510
                gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
513
                gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
511
                // DebugOut.Analog[20 + axis] = gyroOffset[axis];
514
                // DebugOut.Analog[20 + axis] = gyroOffset[axis];
512
        }
515
        }
513
 
516
 
514
        // Noise is relativ to offset. So, reset noise measurements when changing offsets.
517
        // Noise is relativ to offset. So, reset noise measurements when changing offsets.
515
        gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
518
        gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
516
 
519
 
517
        accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
520
        accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
518
        accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
521
        accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
519
        accOffset[Z] = GetParamWord(PID_ACC_Z);
522
        accOffset[Z] = GetParamWord(PID_ACC_Z);
520
 
523
 
521
        // Rough estimate. Hmm no nothing happens at calibration anyway.
524
        // Rough estimate. Hmm no nothing happens at calibration anyway.
522
        // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
525
        // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
523
        // pressureMeasurementCount = 0;
526
        // pressureMeasurementCount = 0;
524
 
527
 
525
        Delay_ms_Mess(100);
528
        Delay_ms_Mess(100);
526
}
529
}
527
 
530
 
528
/*
531
/*
529
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
532
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
530
 * Does not (!} update the local variables. This must be done with a
533
 * Does not (!} update the local variables. This must be done with a
531
 * call to analog_calibrate() - this always (?) is done by the caller
534
 * call to analog_calibrate() - this always (?) is done by the caller
532
 * anyway. There would be nothing wrong with updating the variables
535
 * anyway. There would be nothing wrong with updating the variables
533
 * directly from here, though.
536
 * directly from here, though.
534
 */
537
 */
535
void analog_calibrateAcc(void) {
538
void analog_calibrateAcc(void) {
536
#define ACC_OFFSET_CYCLES 10
539
#define ACC_OFFSET_CYCLES 10
537
        uint8_t i, axis;
540
        uint8_t i, axis;
538
        int32_t deltaOffset[3] = { 0, 0, 0 };
541
        int32_t deltaOffset[3] = { 0, 0, 0 };
539
        int16_t filteredDelta;
542
        int16_t filteredDelta;
540
        // int16_t pressureDiff, savedRawAirPressure;
543
        // int16_t pressureDiff, savedRawAirPressure;
541
 
544
 
542
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
545
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
543
                Delay_ms_Mess(10);
546
                Delay_ms_Mess(10);
544
                for (axis = PITCH; axis <= YAW; axis++) {
547
                for (axis = PITCH; axis <= YAW; axis++) {
545
                        deltaOffset[axis] += acc[axis];
548
                        deltaOffset[axis] += acc[axis];
546
                }
549
                }
547
        }
550
        }
548
 
551
 
549
        for (axis = PITCH; axis <= YAW; axis++) {
552
        for (axis = PITCH; axis <= YAW; axis++) {
550
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
553
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
551
                                / ACC_OFFSET_CYCLES;
554
                                / ACC_OFFSET_CYCLES;
552
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
555
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
553
        }
556
        }
554
 
557
 
555
        // Save ACC neutral settings to eeprom
558
        // Save ACC neutral settings to eeprom
556
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
559
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
557
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
560
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
558
        SetParamWord(PID_ACC_Z, accOffset[Z]);
561
        SetParamWord(PID_ACC_Z, accOffset[Z]);
559
 
562
 
560
        // Noise is relative to offset. So, reset noise measurements when
563
        // Noise is relative to offset. So, reset noise measurements when
561
        // changing offsets.
564
        // changing offsets.
562
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
565
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
563
 
566
 
564
        // Setting offset values has an influence in the analog.c ISR
567
        // Setting offset values has an influence in the analog.c ISR
565
        // Therefore run measurement for 100ms to achive stable readings
568
        // Therefore run measurement for 100ms to achive stable readings
566
        Delay_ms_Mess(100);
569
        Delay_ms_Mess(100);
567
 
570
 
568
        // Set the feedback so that air pressure ends up in the middle of the range.
571
        // Set the feedback so that air pressure ends up in the middle of the range.
569
        // (raw pressure high --> OCR0A also high...)
572
        // (raw pressure high --> OCR0A also high...)
570
        /*
573
        /*
571
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
574
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
572
         Delay_ms_Mess(1000);
575
         Delay_ms_Mess(1000);
573
 
576
 
574
         pressureDiff = 0;
577
         pressureDiff = 0;
575
         // DebugOut.Analog[16] = rawAirPressure;
578
         // DebugOut.Analog[16] = rawAirPressure;
576
 
579
 
577
         #define PRESSURE_CAL_CYCLE_COUNT 5
580
         #define PRESSURE_CAL_CYCLE_COUNT 5
578
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
581
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
579
         savedRawAirPressure = rawAirPressure;
582
         savedRawAirPressure = rawAirPressure;
580
         OCR0A+=2;
583
         OCR0A+=2;
581
         Delay_ms_Mess(500);
584
         Delay_ms_Mess(500);
582
         // raw pressure will decrease.
585
         // raw pressure will decrease.
583
         pressureDiff += (savedRawAirPressure - rawAirPressure);
586
         pressureDiff += (savedRawAirPressure - rawAirPressure);
584
         savedRawAirPressure = rawAirPressure;
587
         savedRawAirPressure = rawAirPressure;
585
         OCR0A-=2;
588
         OCR0A-=2;
586
         Delay_ms_Mess(500);
589
         Delay_ms_Mess(500);
587
         // raw pressure will increase.
590
         // raw pressure will increase.
588
         pressureDiff += (rawAirPressure - savedRawAirPressure);
591
         pressureDiff += (rawAirPressure - savedRawAirPressure);
589
         }
592
         }
590
 
593
 
591
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
594
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
592
         DebugOut.Analog[27] = rangewidth;
595
         DebugOut.Analog[27] = rangewidth;
593
         */
596
         */
594
}
597
}
595
 
598