Subversion Repositories FlightCtrl

Rev

Rev 2069 | Rev 2073 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2069 Rev 2071
1
#include <avr/io.h>
1
#include <avr/io.h>
2
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
3
#include <avr/pgmspace.h>
3
#include <avr/pgmspace.h>
4
 
4
 
5
#include "analog.h"
5
#include "analog.h"
6
#include "attitude.h"
6
#include "attitude.h"
7
#include "sensors.h"
7
#include "sensors.h"
8
#include "printf_P.h"
8
#include "printf_P.h"
9
#include "mk3mag.h"
9
#include "mk3mag.h"
10
 
10
 
11
// for Delay functions
11
// for Delay functions
12
#include "timer0.h"
12
#include "timer0.h"
13
 
13
 
14
// For reading and writing acc. meter offsets.
14
// For reading and writing acc. meter offsets.
15
#include "eeprom.h"
15
#include "eeprom.h"
16
 
16
 
17
// For debugOut
17
// For debugOut
18
#include "output.h"
18
#include "output.h"
19
 
19
 
20
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
20
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
21
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
21
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
22
 
22
 
23
const char* recal = ", recalibration needed.";
23
const char* recal = ", recalibration needed.";
24
 
24
 
25
/*
25
/*
26
 * For each A/D conversion cycle, each analog channel is sampled a number of times
26
 * For each A/D conversion cycle, each analog channel is sampled a number of times
27
 * (see array channelsForStates), and the results for each channel are summed.
27
 * (see array channelsForStates), and the results for each channel are summed.
28
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
28
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
29
 * They are exported in the analog.h file - but please do not use them! The only
29
 * They are exported in the analog.h file - but please do not use them! The only
30
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
30
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
31
 * the offsets with the DAC.
31
 * the offsets with the DAC.
32
 */
32
 */
33
volatile uint16_t sensorInputs[8];
33
volatile uint16_t sensorInputs[8];
34
int16_t acc[3];
34
int16_t acc[3];
35
int16_t filteredAcc[3] = { 0,0,0 };
35
int16_t filteredAcc[3] = { 0,0,0 };
36
 
36
 
37
/*
37
/*
38
 * These 4 exported variables are zero-offset. The "PID" ones are used
38
 * These 4 exported variables are zero-offset. The "PID" ones are used
39
 * in the attitude control as rotation rates. The "ATT" ones are for
39
 * in the attitude control as rotation rates. The "ATT" ones are for
40
 * integration to angles.
40
 * integration to angles.
41
 */
41
 */
42
int16_t gyro_PID[2];
42
int16_t gyro_PID[2];
43
int16_t gyro_ATT[2];
43
int16_t gyro_ATT[2];
44
int16_t gyroD[2];
44
int16_t gyroD[2];
45
int16_t yawGyro;
45
int16_t yawGyro;
46
int16_t magneticHeading;
46
int16_t magneticHeading;
47
 
47
 
48
int32_t groundPressure;
48
int32_t groundPressure;
49
 
49
 
50
/*
50
/*
51
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
51
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
52
 * standing still. They are used for adjusting the gyro and acc. meter values
52
 * standing still. They are used for adjusting the gyro and acc. meter values
53
 * to be centered on zero.
53
 * to be centered on zero.
54
 */
54
 */
55
 
55
 
56
sensorOffset_t gyroOffset;
56
sensorOffset_t gyroOffset;
57
sensorOffset_t accOffset;
57
sensorOffset_t accOffset;
58
sensorOffset_t gyroAmplifierOffset;
58
sensorOffset_t gyroAmplifierOffset;
59
 
59
 
60
/*
60
/*
61
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
61
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
62
 * If a sensor is used in an orientation where one but not both of the axes has
62
 * If a sensor is used in an orientation where one but not both of the axes has
63
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
63
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
64
 * Transform:
64
 * Transform:
65
 * pitch <- pp*pitch + pr*roll
65
 * pitch <- pp*pitch + pr*roll
66
 * roll  <- rp*pitch + rr*roll
66
 * roll  <- rp*pitch + rr*roll
67
 * Not reversed, GYRO_QUADRANT:
67
 * Not reversed, GYRO_QUADRANT:
68
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
68
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
69
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
69
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
70
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
70
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
71
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
71
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
72
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
72
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
73
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
73
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
74
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
74
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
75
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
75
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
76
 * Reversed, GYRO_QUADRANT:
76
 * Reversed, GYRO_QUADRANT:
77
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
77
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
78
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
78
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
79
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
79
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
80
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
80
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
81
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
81
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
82
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
82
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
83
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
83
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
84
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
84
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
85
 */
85
 */
86
 
86
 
87
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
87
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
88
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
88
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
89
  // Pitch to Pitch part
89
  // Pitch to Pitch part
90
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
90
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
91
  // Roll to Pitch part
91
  // Roll to Pitch part
92
  int8_t xy = rotationTab[(quadrant+2)%8];
92
  int8_t xy = rotationTab[(quadrant+2)%8];
93
  // Pitch to Roll part
93
  // Pitch to Roll part
94
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
94
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
95
  // Roll to Roll part
95
  // Roll to Roll part
96
  int8_t yy = rotationTab[quadrant];
96
  int8_t yy = rotationTab[quadrant];
97
 
97
 
98
  int16_t xIn = result[0];
98
  int16_t xIn = result[0];
99
  result[0] = xx*xIn + xy*result[1];
99
  result[0] = xx*xIn + xy*result[1];
100
  result[1] = yx*xIn + yy*result[1];
100
  result[1] = yx*xIn + yy*result[1];
101
 
101
 
102
  if (quadrant & 1) {
102
  if (quadrant & 1) {
103
        // A rotation was used above, where the factors were too large by sqrt(2).
103
        // A rotation was used above, where the factors were too large by sqrt(2).
104
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
104
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
105
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
105
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
106
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
106
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
107
        result[0] = (result[0]*11) >> 4;
107
        result[0] = (result[0]*11) >> 4;
108
        result[1] = (result[1]*11) >> 4;
108
        result[1] = (result[1]*11) >> 4;
109
  }
109
  }
110
}
110
}
111
 
111
 
112
/*
112
/*
113
 * Air pressure
113
 * Air pressure
114
 */
114
 */
115
volatile uint8_t rangewidth = 105;
115
volatile uint8_t rangewidth = 105;
116
 
116
 
117
// Direct from sensor, irrespective of range.
117
// Direct from sensor, irrespective of range.
118
// volatile uint16_t rawAirPressure;
118
// volatile uint16_t rawAirPressure;
119
 
119
 
120
// Value of 2 samples, with range.
120
// Value of 2 samples, with range.
121
uint16_t simpleAirPressure;
121
uint16_t simpleAirPressure;
122
 
122
 
123
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
123
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
124
int32_t filteredAirPressure;
124
int32_t filteredAirPressure;
-
 
125
 
-
 
126
#define MAX_D_AIRPRESSURE_WINDOW_LENGTH 5
125
int32_t lastFilteredAirPressure;
127
//int32_t lastFilteredAirPressure;
-
 
128
int16_t dAirPressureWindow[MAX_D_AIRPRESSURE_WINDOW_LENGTH];
-
 
129
uint8_t dWindowPtr;
126
 
130
 
127
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
131
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
128
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
132
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
129
int32_t windowedAirPressure;
133
int32_t windowedAirPressure;
130
uint8_t windowPtr;
134
uint8_t windowPtr;
131
 
135
 
132
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
136
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
133
int32_t airPressureSum;
137
int32_t airPressureSum;
134
 
138
 
135
// The number of samples summed into airPressureSum so far.
139
// The number of samples summed into airPressureSum so far.
136
uint8_t pressureMeasurementCount;
140
uint8_t pressureMeasurementCount;
137
 
141
 
138
/*
142
/*
139
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
143
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
140
 * That is divided by 3 below, for a final 10.34 per volt.
144
 * That is divided by 3 below, for a final 10.34 per volt.
141
 * So the initial value of 100 is for 9.7 volts.
145
 * So the initial value of 100 is for 9.7 volts.
142
 */
146
 */
143
int16_t UBat = 100;
147
int16_t UBat = 100;
144
 
148
 
145
/*
149
/*
146
 * Control and status.
150
 * Control and status.
147
 */
151
 */
148
volatile uint16_t ADCycleCount = 0;
152
volatile uint16_t ADCycleCount = 0;
149
volatile uint8_t analogDataReady = 1;
153
volatile uint8_t analogDataReady = 1;
150
 
154
 
151
/*
155
/*
152
 * Experiment: Measuring vibration-induced sensor noise.
156
 * Experiment: Measuring vibration-induced sensor noise.
153
 */
157
 */
154
uint16_t gyroNoisePeak[3];
158
uint16_t gyroNoisePeak[3];
155
uint16_t accNoisePeak[3];
159
uint16_t accNoisePeak[3];
156
 
160
 
157
volatile uint8_t adState;
161
volatile uint8_t adState;
158
volatile uint8_t adChannel;
162
volatile uint8_t adChannel;
159
 
163
 
160
// ADC channels
164
// ADC channels
161
#define AD_GYRO_YAW       0
165
#define AD_GYRO_YAW       0
162
#define AD_GYRO_ROLL      1
166
#define AD_GYRO_ROLL      1
163
#define AD_GYRO_PITCH     2
167
#define AD_GYRO_PITCH     2
164
#define AD_AIRPRESSURE    3
168
#define AD_AIRPRESSURE    3
165
#define AD_UBAT           4
169
#define AD_UBAT           4
166
#define AD_ACC_Z          5
170
#define AD_ACC_Z          5
167
#define AD_ACC_ROLL       6
171
#define AD_ACC_ROLL       6
168
#define AD_ACC_PITCH      7
172
#define AD_ACC_PITCH      7
169
 
173
 
170
/*
174
/*
171
 * Table of AD converter inputs for each state.
175
 * Table of AD converter inputs for each state.
172
 * The number of samples summed for each channel is equal to
176
 * The number of samples summed for each channel is equal to
173
 * the number of times the channel appears in the array.
177
 * the number of times the channel appears in the array.
174
 * The max. number of samples that can be taken in 2 ms is:
178
 * The max. number of samples that can be taken in 2 ms is:
175
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
179
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
176
 * loop needs a little time between reading AD values and
180
 * loop needs a little time between reading AD values and
177
 * re-enabling ADC, the real limit is (how much?) lower.
181
 * re-enabling ADC, the real limit is (how much?) lower.
178
 * The acc. sensor is sampled even if not used - or installed
182
 * The acc. sensor is sampled even if not used - or installed
179
 * at all. The cost is not significant.
183
 * at all. The cost is not significant.
180
 */
184
 */
181
 
185
 
182
const uint8_t channelsForStates[] PROGMEM = {
186
const uint8_t channelsForStates[] PROGMEM = {
183
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
187
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
184
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
188
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
185
 
189
 
186
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
190
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
187
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
191
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
188
 
192
 
189
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
193
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
190
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
194
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
191
  AD_AIRPRESSURE, // at 14, finish air pressure.
195
  AD_AIRPRESSURE, // at 14, finish air pressure.
192
 
196
 
193
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
197
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
194
  AD_GYRO_ROLL,   // at 16, finish roll gyro
198
  AD_GYRO_ROLL,   // at 16, finish roll gyro
195
  AD_UBAT         // at 17, measure battery.
199
  AD_UBAT         // at 17, measure battery.
196
};
200
};
197
 
201
 
198
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
202
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
199
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
203
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
200
 
204
 
201
void analog_init(void) {
205
void analog_init(void) {
202
        uint8_t sreg = SREG;
206
        uint8_t sreg = SREG;
203
        // disable all interrupts before reconfiguration
207
        // disable all interrupts before reconfiguration
204
        cli();
208
        cli();
205
 
209
 
206
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
210
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
207
        DDRA = 0x00;
211
        DDRA = 0x00;
208
        PORTA = 0x00;
212
        PORTA = 0x00;
209
        // Digital Input Disable Register 0
213
        // Digital Input Disable Register 0
210
        // Disable digital input buffer for analog adc_channel pins
214
        // Disable digital input buffer for analog adc_channel pins
211
        DIDR0 = 0xFF;
215
        DIDR0 = 0xFF;
212
        // external reference, adjust data to the right
216
        // external reference, adjust data to the right
213
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
217
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
214
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
218
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
215
        ADMUX = (ADMUX & 0xE0);
219
        ADMUX = (ADMUX & 0xE0);
216
        //Set ADC Control and Status Register A
220
        //Set ADC Control and Status Register A
217
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
221
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
218
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
222
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
219
        //Set ADC Control and Status Register B
223
        //Set ADC Control and Status Register B
220
        //Trigger Source to Free Running Mode
224
        //Trigger Source to Free Running Mode
221
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
225
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
222
 
226
 
223
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
227
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
224
          airPressureWindow[i] = 0;
228
          airPressureWindow[i] = 0;
225
        }
229
        }
226
    windowedAirPressure = 0;
230
    windowedAirPressure = 0;
227
 
231
 
228
        startAnalogConversionCycle();
232
        startAnalogConversionCycle();
229
 
233
 
230
        // restore global interrupt flags
234
        // restore global interrupt flags
231
        SREG = sreg;
235
        SREG = sreg;
232
}
236
}
233
 
237
 
234
uint16_t rawGyroValue(uint8_t axis) {
238
uint16_t rawGyroValue(uint8_t axis) {
235
        return sensorInputs[AD_GYRO_PITCH-axis];
239
        return sensorInputs[AD_GYRO_PITCH-axis];
236
}
240
}
237
 
241
 
238
uint16_t rawAccValue(uint8_t axis) {
242
uint16_t rawAccValue(uint8_t axis) {
239
        return sensorInputs[AD_ACC_PITCH-axis];
243
        return sensorInputs[AD_ACC_PITCH-axis];
240
}
244
}
241
 
245
 
242
void measureNoise(const int16_t sensor,
246
void measureNoise(const int16_t sensor,
243
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
247
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
244
        if (sensor > (int16_t) (*noiseMeasurement)) {
248
        if (sensor > (int16_t) (*noiseMeasurement)) {
245
                *noiseMeasurement = sensor;
249
                *noiseMeasurement = sensor;
246
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
250
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
247
                *noiseMeasurement = -sensor;
251
                *noiseMeasurement = -sensor;
248
        } else if (*noiseMeasurement > damping) {
252
        } else if (*noiseMeasurement > damping) {
249
                *noiseMeasurement -= damping;
253
                *noiseMeasurement -= damping;
250
        } else {
254
        } else {
251
                *noiseMeasurement = 0;
255
                *noiseMeasurement = 0;
252
        }
256
        }
253
}
257
}
254
 
258
 
255
/*
259
/*
256
 * Min.: 0
260
 * Min.: 0
257
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
261
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
258
 */
262
 */
259
uint16_t getSimplePressure(int advalue) {
263
uint16_t getSimplePressure(int advalue) {
260
        uint16_t result = (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
264
        uint16_t result = (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
261
        result += (acc[Z] * (staticParams.airpressureAccZCorrection-128)) >> 10;
265
        result += (acc[Z] * (staticParams.airpressureAccZCorrection-128)) >> 10;
262
        return result;
266
        return result;
263
}
267
}
264
 
268
 
265
void startAnalogConversionCycle(void) {
269
void startAnalogConversionCycle(void) {
266
  analogDataReady = 0;
270
  analogDataReady = 0;
267
 
271
 
268
  // Stop the sampling. Cycle is over.
272
  // Stop the sampling. Cycle is over.
269
  for (uint8_t i = 0; i < 8; i++) {
273
  for (uint8_t i = 0; i < 8; i++) {
270
    sensorInputs[i] = 0;
274
    sensorInputs[i] = 0;
271
  }
275
  }
272
  adState = 0;
276
  adState = 0;
273
  adChannel = AD_GYRO_PITCH;
277
  adChannel = AD_GYRO_PITCH;
274
  ADMUX = (ADMUX & 0xE0) | adChannel;
278
  ADMUX = (ADMUX & 0xE0) | adChannel;
275
  startADC();
279
  startADC();
276
}
280
}
277
 
281
 
278
/*****************************************************
282
/*****************************************************
279
 * Interrupt Service Routine for ADC
283
 * Interrupt Service Routine for ADC
280
 * Runs at 312.5 kHz or 3.2 �s. When all states are
284
 * Runs at 312.5 kHz or 3.2 �s. When all states are
281
 * processed further conversions are stopped.
285
 * processed further conversions are stopped.
282
 *****************************************************/
286
 *****************************************************/
283
ISR(ADC_vect) {
287
ISR(ADC_vect) {
284
  sensorInputs[adChannel] += ADC;
288
  sensorInputs[adChannel] += ADC;
285
  // set up for next state.
289
  // set up for next state.
286
  adState++;
290
  adState++;
287
  if (adState < sizeof(channelsForStates)) {
291
  if (adState < sizeof(channelsForStates)) {
288
    adChannel = pgm_read_byte(&channelsForStates[adState]);
292
    adChannel = pgm_read_byte(&channelsForStates[adState]);
289
    // set adc muxer to next adChannel
293
    // set adc muxer to next adChannel
290
    ADMUX = (ADMUX & 0xE0) | adChannel;
294
    ADMUX = (ADMUX & 0xE0) | adChannel;
291
    // after full cycle stop further interrupts
295
    // after full cycle stop further interrupts
292
    startADC();
296
    startADC();
293
  } else {
297
  } else {
294
    ADCycleCount++;
298
    ADCycleCount++;
295
    analogDataReady = 1;
299
    analogDataReady = 1;
296
    // do not restart ADC converter. 
300
    // do not restart ADC converter. 
297
  }
301
  }
298
}
302
}
299
 
303
 
300
// Experimental gyro shake takeoff detect!
304
// Experimental gyro shake takeoff detect!
301
uint16_t gyroActivity = 0;
305
uint16_t gyroActivity = 0;
302
void measureGyroActivityAndUpdateGyro(uint8_t axis, int16_t newValue) {
306
void measureGyroActivityAndUpdateGyro(uint8_t axis, int16_t newValue) {
303
  int16_t tmp = gyro_ATT[axis];
307
  int16_t tmp = gyro_ATT[axis];
304
  gyro_ATT[axis] = newValue;
308
  gyro_ATT[axis] = newValue;
305
 
309
 
306
  tmp -= newValue;
310
  tmp -= newValue;
307
  tmp = (tmp*tmp) >> 4;
311
  tmp = (tmp*tmp) >> 4;
308
 
312
 
309
  if (gyroActivity + (uint16_t)tmp < 0x8000)
313
  if (gyroActivity + (uint16_t)tmp < 0x8000)
310
    gyroActivity += tmp;
314
    gyroActivity += tmp;
311
}
315
}
312
 
316
 
313
#define GADAMPING 10
317
#define GADAMPING 10
314
void dampenGyroActivity(void) {
318
void dampenGyroActivity(void) {
315
  uint32_t tmp = gyroActivity;
319
  uint32_t tmp = gyroActivity;
316
  tmp *= ((1<<GADAMPING)-1);
320
  tmp *= ((1<<GADAMPING)-1);
317
  tmp >>= GADAMPING;
321
  tmp >>= GADAMPING;
318
  gyroActivity = tmp;
322
  gyroActivity = tmp;
319
}
323
}
320
 
324
 
321
void analog_updateGyros(void) {
325
void analog_updateGyros(void) {
322
  // for various filters...
326
  // for various filters...
323
  int16_t tempOffsetGyro[2], tempGyro;
327
  int16_t tempOffsetGyro[2], tempGyro;
324
 
328
 
325
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
329
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
326
  for (uint8_t axis=0; axis<2; axis++) {
330
  for (uint8_t axis=0; axis<2; axis++) {
327
    tempGyro = rawGyroValue(axis);
331
    tempGyro = rawGyroValue(axis);
328
    /*
332
    /*
329
     * Process the gyro data for the PID controller.
333
     * Process the gyro data for the PID controller.
330
     */
334
     */
331
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
335
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
332
    //    gyro with a wider range, and helps counter saturation at full control.
336
    //    gyro with a wider range, and helps counter saturation at full control.
333
   
337
   
334
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
338
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
335
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
339
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
336
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
340
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
337
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
341
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
338
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
342
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
339
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
343
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
340
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
344
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
341
      }
345
      }
342
    }
346
    }
343
 
347
 
344
    // 2) Apply sign and offset, scale before filtering.
348
    // 2) Apply sign and offset, scale before filtering.
345
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
349
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
346
  }
350
  }
347
 
351
 
348
  // 2.1: Transform axes.
352
  // 2.1: Transform axes.
349
  rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
353
  rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
350
 
354
 
351
  for (uint8_t axis=0; axis<2; axis++) {
355
  for (uint8_t axis=0; axis<2; axis++) {
352
        // 3) Filter.
356
        // 3) Filter.
353
    tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / staticParams.gyroPIDFilterConstant;
357
    tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / staticParams.gyroPIDFilterConstant;
354
 
358
 
355
    // 4) Measure noise.
359
    // 4) Measure noise.
356
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
360
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
357
 
361
 
358
    // 5) Differential measurement.
362
    // 5) Differential measurement.
359
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
363
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
360
 
364
 
361
    // 6) Done.
365
    // 6) Done.
362
    gyro_PID[axis] = tempOffsetGyro[axis];
366
    gyro_PID[axis] = tempOffsetGyro[axis];
363
 
367
 
364
    // Prepare tempOffsetGyro for next calculation below...
368
    // Prepare tempOffsetGyro for next calculation below...
365
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
369
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
366
  }
370
  }
367
 
371
 
368
  /*
372
  /*
369
   * Now process the data for attitude angles.
373
   * Now process the data for attitude angles.
370
   */
374
   */
371
   rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
375
   rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
372
 
376
 
373
   measureGyroActivityAndUpdateGyro(0, tempOffsetGyro[PITCH]);
377
   measureGyroActivityAndUpdateGyro(0, tempOffsetGyro[PITCH]);
374
   measureGyroActivityAndUpdateGyro(1, tempOffsetGyro[ROLL]);
378
   measureGyroActivityAndUpdateGyro(1, tempOffsetGyro[ROLL]);
375
   dampenGyroActivity();
379
   dampenGyroActivity();
376
 
380
 
377
  // Yaw gyro.
381
  // Yaw gyro.
378
  if (staticParams.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
382
  if (staticParams.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
379
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
383
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
380
  else
384
  else
381
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
385
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
382
}
386
}
383
 
387
 
384
void analog_updateAccelerometers(void) {
388
void analog_updateAccelerometers(void) {
385
  // Pitch and roll axis accelerations.
389
  // Pitch and roll axis accelerations.
386
  for (uint8_t axis=0; axis<2; axis++) {
390
  for (uint8_t axis=0; axis<2; axis++) {
387
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
391
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
388
  }
392
  }
389
 
393
 
390
  rotate(acc, staticParams.accQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_ACC_XY);
394
  rotate(acc, staticParams.accQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_ACC_XY);
391
  for(uint8_t axis=0; axis<3; axis++) {
395
  for(uint8_t axis=0; axis<3; axis++) {
392
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
396
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
393
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
397
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
394
  }
398
  }
395
 
399
 
396
  // Z acc.
400
  // Z acc.
397
  if (staticParams.imuReversedFlags & 8)
401
  if (staticParams.imuReversedFlags & 8)
398
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
402
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
399
  else
403
  else
400
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
404
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
401
 
405
 
402
  debugOut.analog[29] = acc[Z];
406
  debugOut.analog[29] = acc[Z];
403
}
407
}
404
 
408
 
405
void analog_updateAirPressure(void) {
409
void analog_updateAirPressure(void) {
406
  static uint16_t pressureAutorangingWait = 25;
410
  static uint16_t pressureAutorangingWait = 25;
407
  uint16_t rawAirPressure;
411
  uint16_t rawAirPressure;
408
  int16_t newrange;
412
  int16_t newrange;
409
  // air pressure
413
  // air pressure
410
  if (pressureAutorangingWait) {
414
  if (pressureAutorangingWait) {
411
    //A range switch was done recently. Wait for steadying.
415
    //A range switch was done recently. Wait for steadying.
412
    pressureAutorangingWait--;
416
    pressureAutorangingWait--;
413
  } else {
417
  } else {
414
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
418
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
415
    if (rawAirPressure < MIN_RAWPRESSURE) {
419
    if (rawAirPressure < MIN_RAWPRESSURE) {
416
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
420
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
417
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
421
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
418
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
422
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
419
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
423
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
420
        OCR0A = newrange;
424
        OCR0A = newrange;
421
      } else {
425
      } else {
422
        if (OCR0A) {
426
        if (OCR0A) {
423
          OCR0A--;
427
          OCR0A--;
424
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
428
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
425
        }
429
        }
426
      }
430
      }
427
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
431
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
428
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
432
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
429
      // If near the end, make a limited increase
433
      // If near the end, make a limited increase
430
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
434
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
431
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
435
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
432
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
436
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
433
        OCR0A = newrange;
437
        OCR0A = newrange;
434
      } else {
438
      } else {
435
        if (OCR0A < 254) {
439
        if (OCR0A < 254) {
436
          OCR0A++;
440
          OCR0A++;
437
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
441
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
438
        }
442
        }
439
      }
443
      }
440
    }
444
    }
441
   
445
   
442
    // Even if the sample is off-range, use it.
446
    // Even if the sample is off-range, use it.
443
    simpleAirPressure = getSimplePressure(rawAirPressure);
447
    simpleAirPressure = getSimplePressure(rawAirPressure);
444
    debugOut.analog[6] = rawAirPressure;
448
    debugOut.analog[6] = rawAirPressure;
445
    debugOut.analog[7] = simpleAirPressure;
449
    debugOut.analog[7] = simpleAirPressure;
446
   
450
   
447
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
451
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
448
      // Danger: pressure near lower end of range. If the measurement saturates, the
452
      // Danger: pressure near lower end of range. If the measurement saturates, the
449
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
453
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
450
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
454
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
451
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
455
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
452
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
456
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
453
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
457
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
454
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
458
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
455
      // Danger: pressure near upper end of range. If the measurement saturates, the
459
      // Danger: pressure near upper end of range. If the measurement saturates, the
456
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
460
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
457
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
461
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
458
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
462
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
459
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
463
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
460
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
464
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
461
    } else {
465
    } else {
462
      // normal case.
466
      // normal case.
463
      // If AIRPRESSURE_OVERSAMPLING is an odd number we only want to add half the double sample.
467
      // If AIRPRESSURE_OVERSAMPLING is an odd number we only want to add half the double sample.
464
      // The 2 cases above (end of range) are ignored for this.
468
      // The 2 cases above (end of range) are ignored for this.
465
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
469
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
466
          airPressureSum += simpleAirPressure;
470
          airPressureSum += simpleAirPressure;
467
    }
471
    }
468
   
472
   
469
    // 2 samples were added.
473
    // 2 samples were added.
470
    pressureMeasurementCount += 2;
474
    pressureMeasurementCount += 2;
471
    // Assumption here: AIRPRESSURE_OVERSAMPLING is even (well we all know it's 14 haha...)
475
    // Assumption here: AIRPRESSURE_OVERSAMPLING is even (well we all know it's 14 haha...)
472
    if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING) {
476
    if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING) {
473
 
477
 
474
      // The best oversampling count is 14.5. We add a quarter of the double ADC value to get the final half.
478
      // The best oversampling count is 14.5. We add a quarter of the double ADC value to get the final half.
475
      airPressureSum += simpleAirPressure >> 2;
479
      airPressureSum += simpleAirPressure >> 2;
476
 
480
 
477
      lastFilteredAirPressure = filteredAirPressure;
-
 
478
 
481
      uint32_t lastFilteredAirPressure = filteredAirPressure;
479
 
482
 
480
      if (!staticParams.airpressureWindowLength) {
483
      if (!staticParams.airpressureWindowLength) {
481
          filteredAirPressure = (filteredAirPressure * (staticParams.airpressureFilterConstant - 1)
484
          filteredAirPressure = (filteredAirPressure * (staticParams.airpressureFilterConstant - 1)
482
                          + airPressureSum + staticParams.airpressureFilterConstant / 2) / staticParams.airpressureFilterConstant;
485
                          + airPressureSum + staticParams.airpressureFilterConstant / 2) / staticParams.airpressureFilterConstant;
483
      } else {
486
      } else {
484
          // use windowed.
487
          // use windowed.
485
          windowedAirPressure += simpleAirPressure;
488
          windowedAirPressure += simpleAirPressure;
486
          windowedAirPressure -= airPressureWindow[windowPtr];
489
          windowedAirPressure -= airPressureWindow[windowPtr];
487
          airPressureWindow[windowPtr] = simpleAirPressure;
490
          airPressureWindow[windowPtr++] = simpleAirPressure;
488
          windowPtr = (windowPtr+1) % staticParams.airpressureWindowLength;
491
          if (windowPtr == staticParams.airpressureWindowLength) windowPtr = 0;
489
          filteredAirPressure = windowedAirPressure / staticParams.airpressureWindowLength;
492
          filteredAirPressure = windowedAirPressure / staticParams.airpressureWindowLength;
490
      }
493
      }
-
 
494
 
-
 
495
      dAirPressureWindow[dWindowPtr++] = (int16_t)(filteredAirPressure - lastFilteredAirPressure);
-
 
496
      if (dWindowPtr == staticParams.dAirpressureWindowLength) dWindowPtr = 0;
491
 
497
 
492
      pressureMeasurementCount = airPressureSum = 0;
498
      pressureMeasurementCount = airPressureSum = 0;
493
    }
499
    }
494
  }
500
  }
495
}
501
}
496
 
502
 
497
void analog_updateBatteryVoltage(void) {
503
void analog_updateBatteryVoltage(void) {
498
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
504
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
499
  // This is divided by 3 --> 10.34 counts per volt.
505
  // This is divided by 3 --> 10.34 counts per volt.
500
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
506
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
501
}
507
}
502
 
508
 
503
void analog_update(void) {
509
void analog_update(void) {
504
  analog_updateGyros();
510
  analog_updateGyros();
505
  analog_updateAccelerometers();
511
  analog_updateAccelerometers();
506
  analog_updateAirPressure();
512
  analog_updateAirPressure();
507
  analog_updateBatteryVoltage();
513
  analog_updateBatteryVoltage();
508
#ifdef USE_MK3MAG
514
#ifdef USE_MK3MAG
509
  magneticHeading = volatileMagneticHeading;
515
  magneticHeading = volatileMagneticHeading;
510
#endif
516
#endif
511
}
517
}
512
 
518
 
513
void analog_setNeutral() {
519
void analog_setNeutral() {
514
  gyro_init();
520
  gyro_init();
515
 
521
 
516
  if (gyroOffset_readFromEEProm()) {
522
  if (gyroOffset_readFromEEProm()) {
517
    printf("gyro offsets invalid%s",recal);
523
    printf("gyro offsets invalid%s",recal);
518
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
524
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
519
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
525
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
520
  }
526
  }
521
 
527
 
522
  if (accOffset_readFromEEProm()) {
528
  if (accOffset_readFromEEProm()) {
523
    printf("acc. meter offsets invalid%s",recal);
529
    printf("acc. meter offsets invalid%s",recal);
524
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
530
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
525
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
531
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
526
  }
532
  }
527
 
533
 
528
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
534
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
529
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
535
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
530
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
536
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
531
 
537
 
532
  // Setting offset values has an influence in the analog.c ISR
538
  // Setting offset values has an influence in the analog.c ISR
533
  // Therefore run measurement for 100ms to achive stable readings
539
  // Therefore run measurement for 100ms to achive stable readings
534
  delay_ms_with_adc_measurement(100, 0);
540
  delay_ms_with_adc_measurement(100, 0);
535
 
541
 
536
  gyroActivity = 0;
542
  gyroActivity = 0;
537
}
543
}
538
 
544
 
539
void analog_calibrateGyros(void) {
545
void analog_calibrateGyros(void) {
540
#define GYRO_OFFSET_CYCLES 32
546
#define GYRO_OFFSET_CYCLES 32
541
  uint8_t i, axis;
547
  uint8_t i, axis;
542
  int32_t offsets[3] = { 0, 0, 0 };
548
  int32_t offsets[3] = { 0, 0, 0 };
543
  gyro_calibrate();
549
  gyro_calibrate();
544
 
550
 
545
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
551
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
546
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
552
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
547
    delay_ms_with_adc_measurement(10, 1);
553
    delay_ms_with_adc_measurement(10, 1);
548
    for (axis = PITCH; axis <= YAW; axis++) {
554
    for (axis = PITCH; axis <= YAW; axis++) {
549
      offsets[axis] += rawGyroValue(axis);
555
      offsets[axis] += rawGyroValue(axis);
550
    }
556
    }
551
  }
557
  }
552
 
558
 
553
  for (axis = PITCH; axis <= YAW; axis++) {
559
  for (axis = PITCH; axis <= YAW; axis++) {
554
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
560
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
555
 
561
 
556
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
562
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
557
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
563
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
558
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
564
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
559
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
565
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
560
  }
566
  }
561
 
567
 
562
  gyroOffset_writeToEEProm();  
568
  gyroOffset_writeToEEProm();  
563
  startAnalogConversionCycle();
569
  startAnalogConversionCycle();
564
}
570
}
565
 
571
 
566
/*
572
/*
567
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
573
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
568
 * Does not (!} update the local variables. This must be done with a
574
 * Does not (!} update the local variables. This must be done with a
569
 * call to analog_calibrate() - this always (?) is done by the caller
575
 * call to analog_calibrate() - this always (?) is done by the caller
570
 * anyway. There would be nothing wrong with updating the variables
576
 * anyway. There would be nothing wrong with updating the variables
571
 * directly from here, though.
577
 * directly from here, though.
572
 */
578
 */
573
void analog_calibrateAcc(void) {
579
void analog_calibrateAcc(void) {
574
#define ACC_OFFSET_CYCLES 32
580
#define ACC_OFFSET_CYCLES 32
575
  uint8_t i, axis;
581
  uint8_t i, axis;
576
  int32_t offsets[3] = { 0, 0, 0 };
582
  int32_t offsets[3] = { 0, 0, 0 };
577
 
583
 
578
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
584
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
579
    delay_ms_with_adc_measurement(10, 1);
585
    delay_ms_with_adc_measurement(10, 1);
580
    for (axis = PITCH; axis <= YAW; axis++) {
586
    for (axis = PITCH; axis <= YAW; axis++) {
581
      offsets[axis] += rawAccValue(axis);
587
      offsets[axis] += rawAccValue(axis);
582
    }
588
    }
583
  }
589
  }
584
 
590
 
585
  for (axis = PITCH; axis <= YAW; axis++) {
591
  for (axis = PITCH; axis <= YAW; axis++) {
586
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
592
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
587
    int16_t min,max;
593
    int16_t min,max;
588
    if (axis==Z) {
594
    if (axis==Z) {
589
        if (staticParams.imuReversedFlags & IMU_REVERSE_ACC_Z) {
595
        if (staticParams.imuReversedFlags & IMU_REVERSE_ACC_Z) {
590
        // TODO: This assumes a sensitivity of +/- 2g.
596
        // TODO: This assumes a sensitivity of +/- 2g.
591
                min = (256-200) * ACC_OVERSAMPLING_Z;
597
                min = (256-200) * ACC_OVERSAMPLING_Z;
592
                        max = (256+200) * ACC_OVERSAMPLING_Z;
598
                        max = (256+200) * ACC_OVERSAMPLING_Z;
593
        } else {
599
        } else {
594
        // TODO: This assumes a sensitivity of +/- 2g.
600
        // TODO: This assumes a sensitivity of +/- 2g.
595
                min = (768-200) * ACC_OVERSAMPLING_Z;
601
                min = (768-200) * ACC_OVERSAMPLING_Z;
596
                        max = (768+200) * ACC_OVERSAMPLING_Z;
602
                        max = (768+200) * ACC_OVERSAMPLING_Z;
597
        }
603
        }
598
    } else {
604
    } else {
599
        min = (512-200) * ACC_OVERSAMPLING_XY;
605
        min = (512-200) * ACC_OVERSAMPLING_XY;
600
        max = (512+200) * ACC_OVERSAMPLING_XY;
606
        max = (512+200) * ACC_OVERSAMPLING_XY;
601
    }
607
    }
602
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
608
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
603
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
609
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
604
    }
610
    }
605
  }
611
  }
606
 
612
 
607
  accOffset_writeToEEProm();
613
  accOffset_writeToEEProm();
608
  startAnalogConversionCycle();
614
  startAnalogConversionCycle();
609
}
615
}
610
 
616
 
611
void analog_setGround() {
617
void analog_setGround() {
612
  groundPressure = filteredAirPressure;
618
  groundPressure = filteredAirPressure;
613
}
619
}
614
 
620
 
615
int32_t analog_getHeight(void) {
621
int32_t analog_getHeight(void) {
616
  return groundPressure - filteredAirPressure;
622
  return groundPressure - filteredAirPressure;
617
}
623
}
618
 
624
 
619
int16_t analog_getDHeight(void) {
625
int16_t analog_getDHeight(void) {
-
 
626
        int16_t result = 0;
-
 
627
        for (int i=0; i<staticParams.dAirpressureWindowLength; i++) {
-
 
628
                result += dAirPressureWindow[i];
-
 
629
        }
-
 
630
 
620
  // dHeight = -dPressure, so here it is the old pressure minus the current, not opposite.
631
  // dHeight = -dPressure, so here it is the old pressure minus the current, not opposite.
621
  return lastFilteredAirPressure - filteredAirPressure;
632
  return result;
622
}
633
}
623
 
634