Subversion Repositories FlightCtrl

Rev

Rev 1991 | Rev 2017 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1991 Rev 2015
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
18
// + eindeutig als Ursprung verlinkt und genannt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
#include <avr/io.h>
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
53
#include <avr/interrupt.h>
54
#include <avr/pgmspace.h>
54
#include <avr/pgmspace.h>
55
 
55
 
56
#include "analog.h"
56
#include "analog.h"
57
#include "attitude.h"
57
#include "attitude.h"
58
#include "sensors.h"
58
#include "sensors.h"
59
#include "printf_P.h"
59
#include "printf_P.h"
60
 
60
 
61
// for Delay functions
61
// for Delay functions
62
#include "timer0.h"
62
#include "timer0.h"
63
 
63
 
64
// For debugOut
64
// For debugOut
65
#include "uart0.h"
65
#include "uart0.h"
66
 
66
 
67
// For reading and writing acc. meter offsets.
67
// For reading and writing acc. meter offsets.
68
#include "eeprom.h"
68
#include "eeprom.h"
69
 
69
 
70
// For debugOut.digital
70
// For debugOut.digital
71
#include "output.h"
71
#include "output.h"
72
 
72
 
73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
75
 
75
 
76
const char* recal = ", recalibration needed.";
76
const char* recal = ", recalibration needed.";
77
 
77
 
78
/*
78
/*
79
 * For each A/D conversion cycle, each analog channel is sampled a number of times
79
 * For each A/D conversion cycle, each analog channel is sampled a number of times
80
 * (see array channelsForStates), and the results for each channel are summed.
80
 * (see array channelsForStates), and the results for each channel are summed.
81
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
81
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
82
 * They are exported in the analog.h file - but please do not use them! The only
82
 * They are exported in the analog.h file - but please do not use them! The only
83
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
83
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
84
 * the offsets with the DAC.
84
 * the offsets with the DAC.
85
 */
85
 */
86
volatile uint16_t sensorInputs[8];
86
volatile uint16_t sensorInputs[8];
87
volatile int16_t rawGyroSum[3];
-
 
88
volatile int16_t acc[3];
87
int16_t acc[3];
89
volatile int16_t filteredAcc[3] = { 0,0,0 };
88
int16_t filteredAcc[3] = { 0,0,0 };
90
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
-
 
91
 
89
 
92
/*
90
/*
93
 * These 4 exported variables are zero-offset. The "PID" ones are used
91
 * These 4 exported variables are zero-offset. The "PID" ones are used
94
 * in the attitude control as rotation rates. The "ATT" ones are for
92
 * in the attitude control as rotation rates. The "ATT" ones are for
95
 * integration to angles.
93
 * integration to angles.
96
 */
94
 */
97
volatile int16_t gyro_PID[2];
95
int16_t gyro_PID[2];
98
volatile int16_t gyro_ATT[2];
96
int16_t gyro_ATT[2];
99
volatile int16_t gyroD[2];
97
int16_t gyroD[2];
100
volatile int16_t yawGyro;
98
int16_t yawGyro;
101
 
99
 
102
/*
100
/*
103
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
101
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
104
 * standing still. They are used for adjusting the gyro and acc. meter values
102
 * standing still. They are used for adjusting the gyro and acc. meter values
105
 * to be centered on zero.
103
 * to be centered on zero.
106
 */
104
 */
107
 
105
 
108
sensorOffset_t gyroOffset;
106
sensorOffset_t gyroOffset;
109
sensorOffset_t accOffset;
107
sensorOffset_t accOffset;
110
sensorOffset_t gyroAmplifierOffset;
108
sensorOffset_t gyroAmplifierOffset;
111
 
109
 
112
/*
110
/*
-
 
111
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
113
 * This allows some experimentation with the gyro filters.
112
 * If a sensor is used in an orientation where one but not both of the axes has
-
 
113
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
-
 
114
 * Transform:
-
 
115
 * pitch <- pp*pitch + pr*roll
114
 * Should be replaced by #define's later on...
116
 * roll  <- rp*pitch + rr*roll
-
 
117
 * Not reversed, GYRO_QUADRANT:
-
 
118
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
-
 
119
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
-
 
120
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
-
 
121
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
-
 
122
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
-
 
123
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
-
 
124
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
-
 
125
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
-
 
126
 * Reversed, GYRO_QUADRANT:
-
 
127
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
-
 
128
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
-
 
129
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
-
 
130
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
-
 
131
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
-
 
132
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
-
 
133
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
-
 
134
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
115
 */
135
 */
-
 
136
 
-
 
137
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
-
 
138
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
-
 
139
  // Pitch to Pitch part
-
 
140
  int8_t xx = (reverse & 1) ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
-
 
141
  // Roll to Pitch part
-
 
142
  int8_t xy = rotationTab[(quadrant+2)%8];
-
 
143
  // Pitch to Roll part
-
 
144
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
-
 
145
  // Roll to Roll part
-
 
146
  int8_t yy = rotationTab[quadrant];
-
 
147
 
-
 
148
  int16_t xIn = result[0];
-
 
149
  result[0] = xx*result[0] + xy*result[1];
-
 
150
  result[1] = yx*xIn + yy*result[1];
-
 
151
 
-
 
152
  if (quadrant & 1) {
-
 
153
        // A rotation was used above, where the factors were too large by sqrt(2).
-
 
154
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
-
 
155
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
-
 
156
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
-
 
157
        result[0] = (result[0]*11) >> 4;
-
 
158
        result[1] = (result[1]*11) >> 4;
-
 
159
  }
-
 
160
}
116
 
161
 
117
/*
162
/*
118
 * Air pressure
163
 * Air pressure
119
 */
164
 */
120
volatile uint8_t rangewidth = 105;
165
volatile uint8_t rangewidth = 105;
121
 
166
 
122
// Direct from sensor, irrespective of range.
167
// Direct from sensor, irrespective of range.
123
// volatile uint16_t rawAirPressure;
168
// volatile uint16_t rawAirPressure;
124
 
169
 
125
// Value of 2 samples, with range.
170
// Value of 2 samples, with range.
126
volatile uint16_t simpleAirPressure;
171
uint16_t simpleAirPressure;
127
 
172
 
128
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
173
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
129
volatile int32_t filteredAirPressure;
174
int32_t filteredAirPressure;
130
 
175
 
131
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
176
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
132
volatile int32_t airPressureSum;
177
int32_t airPressureSum;
133
 
178
 
134
// The number of samples summed into airPressureSum so far.
179
// The number of samples summed into airPressureSum so far.
135
volatile uint8_t pressureMeasurementCount;
180
uint8_t pressureMeasurementCount;
136
 
181
 
137
/*
182
/*
138
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
183
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
139
 * That is divided by 3 below, for a final 10.34 per volt.
184
 * That is divided by 3 below, for a final 10.34 per volt.
140
 * So the initial value of 100 is for 9.7 volts.
185
 * So the initial value of 100 is for 9.7 volts.
141
 */
186
 */
142
volatile int16_t UBat = 100;
187
int16_t UBat = 100;
143
 
188
 
144
/*
189
/*
145
 * Control and status.
190
 * Control and status.
146
 */
191
 */
147
volatile uint16_t ADCycleCount = 0;
192
volatile uint16_t ADCycleCount = 0;
148
volatile uint8_t analogDataReady = 1;
193
volatile uint8_t analogDataReady = 1;
149
 
194
 
150
/*
195
/*
151
 * Experiment: Measuring vibration-induced sensor noise.
196
 * Experiment: Measuring vibration-induced sensor noise.
152
 */
197
 */
153
volatile uint16_t gyroNoisePeak[3];
198
uint16_t gyroNoisePeak[3];
154
volatile uint16_t accNoisePeak[3];
199
uint16_t accNoisePeak[3];
155
 
200
 
156
volatile uint8_t adState;
201
volatile uint8_t adState;
157
volatile uint8_t adChannel;
202
volatile uint8_t adChannel;
158
 
203
 
159
// ADC channels
204
// ADC channels
160
#define AD_GYRO_YAW       0
205
#define AD_GYRO_YAW       0
161
#define AD_GYRO_ROLL      1
206
#define AD_GYRO_ROLL      1
162
#define AD_GYRO_PITCH     2
207
#define AD_GYRO_PITCH     2
163
#define AD_AIRPRESSURE    3
208
#define AD_AIRPRESSURE    3
164
#define AD_UBAT           4
209
#define AD_UBAT           4
165
#define AD_ACC_Z          5
210
#define AD_ACC_Z          5
166
#define AD_ACC_ROLL       6
211
#define AD_ACC_ROLL       6
167
#define AD_ACC_PITCH      7
212
#define AD_ACC_PITCH      7
168
 
213
 
169
/*
214
/*
170
 * Table of AD converter inputs for each state.
215
 * Table of AD converter inputs for each state.
171
 * The number of samples summed for each channel is equal to
216
 * The number of samples summed for each channel is equal to
172
 * the number of times the channel appears in the array.
217
 * the number of times the channel appears in the array.
173
 * The max. number of samples that can be taken in 2 ms is:
218
 * The max. number of samples that can be taken in 2 ms is:
174
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
219
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
175
 * loop needs a little time between reading AD values and
220
 * loop needs a little time between reading AD values and
176
 * re-enabling ADC, the real limit is (how much?) lower.
221
 * re-enabling ADC, the real limit is (how much?) lower.
177
 * The acc. sensor is sampled even if not used - or installed
222
 * The acc. sensor is sampled even if not used - or installed
178
 * at all. The cost is not significant.
223
 * at all. The cost is not significant.
179
 */
224
 */
180
 
225
 
181
const uint8_t channelsForStates[] PROGMEM = {
226
const uint8_t channelsForStates[] PROGMEM = {
182
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
227
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
183
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
228
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
184
 
229
 
185
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
230
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
186
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
231
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
187
 
232
 
188
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
233
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
189
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
234
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
190
  AD_AIRPRESSURE, // at 14, finish air pressure.
235
  AD_AIRPRESSURE, // at 14, finish air pressure.
191
 
236
 
192
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
237
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
193
  AD_GYRO_ROLL,   // at 16, finish roll gyro
238
  AD_GYRO_ROLL,   // at 16, finish roll gyro
194
  AD_UBAT         // at 17, measure battery.
239
  AD_UBAT         // at 17, measure battery.
195
};
240
};
196
 
241
 
197
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
242
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
198
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
243
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
199
 
244
 
200
void analog_init(void) {
245
void analog_init(void) {
201
        uint8_t sreg = SREG;
246
        uint8_t sreg = SREG;
202
        // disable all interrupts before reconfiguration
247
        // disable all interrupts before reconfiguration
203
        cli();
248
        cli();
204
 
249
 
205
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
250
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
206
        DDRA = 0x00;
251
        DDRA = 0x00;
207
        PORTA = 0x00;
252
        PORTA = 0x00;
208
        // Digital Input Disable Register 0
253
        // Digital Input Disable Register 0
209
        // Disable digital input buffer for analog adc_channel pins
254
        // Disable digital input buffer for analog adc_channel pins
210
        DIDR0 = 0xFF;
255
        DIDR0 = 0xFF;
211
        // external reference, adjust data to the right
256
        // external reference, adjust data to the right
212
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
257
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
213
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
258
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
214
        ADMUX = (ADMUX & 0xE0);
259
        ADMUX = (ADMUX & 0xE0);
215
        //Set ADC Control and Status Register A
260
        //Set ADC Control and Status Register A
216
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
261
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
217
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
262
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
218
        //Set ADC Control and Status Register B
263
        //Set ADC Control and Status Register B
219
        //Trigger Source to Free Running Mode
264
        //Trigger Source to Free Running Mode
220
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
265
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
221
 
266
 
222
        startAnalogConversionCycle();
267
        startAnalogConversionCycle();
223
 
268
 
224
        // restore global interrupt flags
269
        // restore global interrupt flags
225
        SREG = sreg;
270
        SREG = sreg;
226
}
271
}
-
 
272
 
-
 
273
uint16_t rawGyroValue(uint8_t axis) {
-
 
274
        return sensorInputs[AD_GYRO_PITCH-axis];
-
 
275
}
-
 
276
 
-
 
277
uint16_t rawAccValue(uint8_t axis) {
-
 
278
        return sensorInputs[AD_ACC_PITCH-axis];
-
 
279
}
227
 
280
 
228
void measureNoise(const int16_t sensor,
281
void measureNoise(const int16_t sensor,
229
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
282
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
230
        if (sensor > (int16_t) (*noiseMeasurement)) {
283
        if (sensor > (int16_t) (*noiseMeasurement)) {
231
                *noiseMeasurement = sensor;
284
                *noiseMeasurement = sensor;
232
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
285
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
233
                *noiseMeasurement = -sensor;
286
                *noiseMeasurement = -sensor;
234
        } else if (*noiseMeasurement > damping) {
287
        } else if (*noiseMeasurement > damping) {
235
                *noiseMeasurement -= damping;
288
                *noiseMeasurement -= damping;
236
        } else {
289
        } else {
237
                *noiseMeasurement = 0;
290
                *noiseMeasurement = 0;
238
        }
291
        }
239
}
292
}
240
 
293
 
241
/*
294
/*
242
 * Min.: 0
295
 * Min.: 0
243
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
296
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
244
 */
297
 */
245
uint16_t getSimplePressure(int advalue) {
298
uint16_t getSimplePressure(int advalue) {
246
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
299
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
247
}
300
}
248
 
301
 
249
void startAnalogConversionCycle(void) {
302
void startAnalogConversionCycle(void) {
250
  analogDataReady = 0;
303
  analogDataReady = 0;
251
  // Stop the sampling. Cycle is over.
304
  // Stop the sampling. Cycle is over.
252
  for (uint8_t i = 0; i < 8; i++) {
305
  for (uint8_t i = 0; i < 8; i++) {
253
    sensorInputs[i] = 0;
306
    sensorInputs[i] = 0;
254
  }
307
  }
255
  adState = 0;
308
  adState = 0;
256
  adChannel = AD_GYRO_PITCH;
309
  adChannel = AD_GYRO_PITCH;
257
  ADMUX = (ADMUX & 0xE0) | adChannel;
310
  ADMUX = (ADMUX & 0xE0) | adChannel;
258
  startADC();
311
  startADC();
259
}
312
}
260
 
313
 
261
/*****************************************************
314
/*****************************************************
262
 * Interrupt Service Routine for ADC
315
 * Interrupt Service Routine for ADC
263
 * Runs at 312.5 kHz or 3.2 �s. When all states are
316
 * Runs at 312.5 kHz or 3.2 �s. When all states are
264
 * processed further conversions are stopped.
317
 * processed further conversions are stopped.
265
 *****************************************************/
318
 *****************************************************/
266
ISR(ADC_vect) {
319
ISR(ADC_vect) {
267
  sensorInputs[adChannel] += ADC;
320
  sensorInputs[adChannel] += ADC;
268
  // set up for next state.
321
  // set up for next state.
269
  adState++;
322
  adState++;
270
  if (adState < sizeof(channelsForStates)) {
323
  if (adState < sizeof(channelsForStates)) {
271
    adChannel = pgm_read_byte(&channelsForStates[adState]);
324
    adChannel = pgm_read_byte(&channelsForStates[adState]);
272
    // set adc muxer to next adChannel
325
    // set adc muxer to next adChannel
273
    ADMUX = (ADMUX & 0xE0) | adChannel;
326
    ADMUX = (ADMUX & 0xE0) | adChannel;
274
    // after full cycle stop further interrupts
327
    // after full cycle stop further interrupts
275
    startADC();
328
    startADC();
276
  } else {
329
  } else {
277
    ADCycleCount++;
330
    ADCycleCount++;
278
    analogDataReady = 1;
331
    analogDataReady = 1;
279
    // do not restart ADC converter. 
332
    // do not restart ADC converter. 
280
  }
333
  }
281
}
334
}
282
 
335
 
283
void analog_updateGyros(void) {
336
void analog_updateGyros(void) {
284
  // for various filters...
337
  // for various filters...
285
  int16_t tempOffsetGyro, tempGyro;
338
  int16_t tempOffsetGyro[2], tempGyro;
286
 
339
 
287
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
340
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
288
  for (uint8_t axis=0; axis<2; axis++) {
341
  for (uint8_t axis=0; axis<2; axis++) {
289
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
342
    tempGyro = rawGyroValue(axis);
290
   
343
 
291
    /*
344
    /*
292
     * Process the gyro data for the PID controller.
345
     * Process the gyro data for the PID controller.
293
     */
346
     */
294
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
347
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
295
    //    gyro with a wider range, and helps counter saturation at full control.
348
    //    gyro with a wider range, and helps counter saturation at full control.
296
   
349
   
297
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
350
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
298
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
351
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
299
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
352
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
300
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
353
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
301
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
354
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
302
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
355
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
303
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
356
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
304
          + SENSOR_MAX_PITCHROLL;
-
 
305
      }
357
      }
306
    }
358
    }
307
   
359
 
308
    // 2) Apply sign and offset, scale before filtering.
360
    // 2) Apply sign and offset, scale before filtering.
309
    if (GYRO_REVERSED[axis]) {
-
 
310
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
361
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
362
  }
-
 
363
 
311
    } else {
364
  // 2.1: Transform axes.
312
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
365
  rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & 1);
313
    }
-
 
314
   
366
 
-
 
367
  for (uint8_t axis=0; axis<2; axis++) {
315
    // 3) Scale and filter.
368
        // 3) Filter.
316
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
369
    tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / staticParams.gyroPIDFilterConstant;
317
   
370
 
318
    // 4) Measure noise.
371
    // 4) Measure noise.
319
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
372
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
320
   
373
 
321
    // 5) Differential measurement.
374
    // 5) Differential measurement.
322
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
375
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
323
   
376
 
324
    // 6) Done.
377
    // 6) Done.
325
    gyro_PID[axis] = tempOffsetGyro;
378
    gyro_PID[axis] = tempOffsetGyro[axis];
326
   
-
 
327
    /*
-
 
328
     * Now process the data for attitude angles.
-
 
329
     */
-
 
330
    tempGyro = rawGyroSum[axis];
-
 
331
   
379
 
332
    // 1) Apply sign and offset, scale before filtering.
380
    // Prepare tempOffsetGyro for next calculation below...
333
    if (GYRO_REVERSED[axis]) {
-
 
334
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
-
 
335
    } else {
-
 
336
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
381
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
337
    }
-
 
338
   
-
 
339
    // 2) Filter.
-
 
340
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
-
 
341
  }
382
  }
-
 
383
 
-
 
384
  /*
-
 
385
   * Now process the data for attitude angles.
-
 
386
   */
-
 
387
   rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & 1);
-
 
388
 
-
 
389
  // 2) Filter. This should really be quite unnecessary. The integration should gobble up any noise anyway and the values are not used for anything else.
-
 
390
  // gyro_ATT[PITCH] = (gyro_ATT[PITCH] * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[PITCH]) / staticParams.attitudeGyroFilter;
-
 
391
  // gyro_ATT[ROLL]  = (gyro_ATT[ROLL]  * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[ROLL])  / staticParams.attitudeGyroFilter;
342
 
392
 
343
  // Yaw gyro.
-
 
344
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
393
  // Yaw gyro.
345
  if (GYRO_REVERSED[YAW])
394
  if (staticParams.imuReversedFlags & 2)
346
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
395
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
347
  else
396
  else
348
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
397
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
349
}
398
}
350
 
399
 
351
void analog_updateAccelerometers(void) {
400
void analog_updateAccelerometers(void) {
352
  // Z acc.
-
 
353
  if (ACC_REVERSED[Z])
-
 
354
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
-
 
355
  else
-
 
356
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
-
 
357
 
-
 
358
  // Pitch and roll axis accelerations.
401
  // Pitch and roll axis accelerations.
359
  for (uint8_t axis=0; axis<2; axis++) {
402
  for (uint8_t axis=0; axis<2; axis++) {
360
    if (ACC_REVERSED[axis])
-
 
361
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
-
 
362
    else
-
 
363
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
403
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
364
  }
404
  }
365
 
405
 
-
 
406
  rotate(acc, staticParams.accQuadrant, staticParams.imuReversedFlags & 4);
-
 
407
 
366
  for (uint8_t axis=0; axis<3; axis++) {
408
  for(uint8_t axis=0; axis<3; axis++) {
367
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
409
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
368
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
410
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
369
  }
411
  }
-
 
412
 
-
 
413
  // Z acc.
-
 
414
  if (staticParams.imuReversedFlags & 8)
-
 
415
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
-
 
416
  else
-
 
417
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
370
}
418
}
371
 
419
 
372
void analog_updateAirPressure(void) {
420
void analog_updateAirPressure(void) {
373
  static uint16_t pressureAutorangingWait = 25;
421
  static uint16_t pressureAutorangingWait = 25;
374
  uint16_t rawAirPressure;
422
  uint16_t rawAirPressure;
375
  int16_t newrange;
423
  int16_t newrange;
376
  // air pressure
424
  // air pressure
377
  if (pressureAutorangingWait) {
425
  if (pressureAutorangingWait) {
378
    //A range switch was done recently. Wait for steadying.
426
    //A range switch was done recently. Wait for steadying.
379
    pressureAutorangingWait--;
427
    pressureAutorangingWait--;
380
    debugOut.analog[27] = (uint16_t) OCR0A;
428
    debugOut.analog[27] = (uint16_t) OCR0A;
381
    debugOut.analog[31] = simpleAirPressure;
429
    debugOut.analog[31] = simpleAirPressure;
382
  } else {
430
  } else {
383
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
431
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
384
    if (rawAirPressure < MIN_RAWPRESSURE) {
432
    if (rawAirPressure < MIN_RAWPRESSURE) {
385
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
433
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
386
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
434
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
387
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
435
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
388
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
436
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
389
        OCR0A = newrange;
437
        OCR0A = newrange;
390
      } else {
438
      } else {
391
        if (OCR0A) {
439
        if (OCR0A) {
392
          OCR0A--;
440
          OCR0A--;
393
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
441
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
394
        }
442
        }
395
      }
443
      }
396
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
444
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
397
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
445
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
398
      // If near the end, make a limited increase
446
      // If near the end, make a limited increase
399
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
447
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
400
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
448
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
401
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
449
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
402
        OCR0A = newrange;
450
        OCR0A = newrange;
403
      } else {
451
      } else {
404
        if (OCR0A < 254) {
452
        if (OCR0A < 254) {
405
          OCR0A++;
453
          OCR0A++;
406
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
454
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
407
        }
455
        }
408
      }
456
      }
409
    }
457
    }
410
   
458
   
411
    // Even if the sample is off-range, use it.
459
    // Even if the sample is off-range, use it.
412
    simpleAirPressure = getSimplePressure(rawAirPressure);
460
    simpleAirPressure = getSimplePressure(rawAirPressure);
413
    debugOut.analog[27] = (uint16_t) OCR0A;
461
    debugOut.analog[27] = (uint16_t) OCR0A;
414
    debugOut.analog[31] = simpleAirPressure;
462
    debugOut.analog[31] = simpleAirPressure;
415
   
463
   
416
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
464
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
417
      // Danger: pressure near lower end of range. If the measurement saturates, the
465
      // Danger: pressure near lower end of range. If the measurement saturates, the
418
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
466
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
419
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
467
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
420
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
468
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
421
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
469
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
422
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
470
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
423
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
471
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
424
      // Danger: pressure near upper end of range. If the measurement saturates, the
472
      // Danger: pressure near upper end of range. If the measurement saturates, the
425
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
473
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
426
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
474
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
427
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
475
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
428
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
476
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
429
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
477
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
430
    } else {
478
    } else {
431
      // normal case.
479
      // normal case.
432
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
480
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
433
      // The 2 cases above (end of range) are ignored for this.
481
      // The 2 cases above (end of range) are ignored for this.
434
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
482
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
435
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
483
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
436
        airPressureSum += simpleAirPressure / 2;
484
        airPressureSum += simpleAirPressure / 2;
437
      else
485
      else
438
        airPressureSum += simpleAirPressure;
486
        airPressureSum += simpleAirPressure;
439
    }
487
    }
440
   
488
   
441
    // 2 samples were added.
489
    // 2 samples were added.
442
    pressureMeasurementCount += 2;
490
    pressureMeasurementCount += 2;
443
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
491
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
444
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
492
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
445
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
493
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
446
      pressureMeasurementCount = airPressureSum = 0;
494
      pressureMeasurementCount = airPressureSum = 0;
447
    }
495
    }
448
  }
496
  }
449
}
497
}
450
 
498
 
451
void analog_updateBatteryVoltage(void) {
499
void analog_updateBatteryVoltage(void) {
452
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
500
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
453
  // This is divided by 3 --> 10.34 counts per volt.
501
  // This is divided by 3 --> 10.34 counts per volt.
454
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
502
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
455
  debugOut.analog[11] = UBat;
503
  debugOut.analog[11] = UBat;
456
  debugOut.analog[21] = sensorInputs[AD_UBAT];
504
  debugOut.analog[21] = sensorInputs[AD_UBAT];
457
}
505
}
458
 
506
 
459
void analog_update(void) {
507
void analog_update(void) {
460
  analog_updateGyros();
508
  analog_updateGyros();
461
  analog_updateAccelerometers();
509
  analog_updateAccelerometers();
462
  analog_updateAirPressure();
510
  analog_updateAirPressure();
463
  analog_updateBatteryVoltage();
511
  analog_updateBatteryVoltage();
464
}
512
}
465
 
513
 
466
void analog_setNeutral() {
514
void analog_setNeutral() {
467
  if (gyroAmplifierOffset_readFromEEProm()) {
515
  if (gyroAmplifierOffset_readFromEEProm()) {
468
    printf("gyro amp invalid%s",recal);
516
    printf("gyro amp invalid%s",recal);
469
    gyro_loadAmplifierOffsets(1);
517
    gyro_loadAmplifierOffsets(1);
470
  } else
518
  } else
471
      gyro_loadAmplifierOffsets(0);
519
      gyro_loadAmplifierOffsets(0);
472
 
520
 
473
  if (gyroOffset_readFromEEProm()) {
521
  if (gyroOffset_readFromEEProm()) {
474
    printf("gyro offsets invalid%s",recal);
522
    printf("gyro offsets invalid%s",recal);
475
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
523
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
476
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
524
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
477
  }
525
  }
478
 
526
 
479
  if (accOffset_readFromEEProm()) {
527
  if (accOffset_readFromEEProm()) {
480
    printf("acc. meter offsets invalid%s",recal);
528
    printf("acc. meter offsets invalid%s",recal);
481
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
529
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
482
    accOffset.offsets[Z] = 717 * ACC_SUMMATION_FACTOR_Z;
530
    accOffset.offsets[Z] = 717 * ACC_SUMMATION_FACTOR_Z;
483
  }
531
  }
484
 
532
 
485
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
533
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
486
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
534
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
487
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
535
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
488
 
536
 
489
  // Setting offset values has an influence in the analog.c ISR
537
  // Setting offset values has an influence in the analog.c ISR
490
  // Therefore run measurement for 100ms to achive stable readings
538
  // Therefore run measurement for 100ms to achive stable readings
491
  delay_ms_with_adc_measurement(100);
539
  delay_ms_with_adc_measurement(100, 0);
492
 
540
 
493
  // Rough estimate. Hmm no nothing happens at calibration anyway.
541
  // Rough estimate. Hmm no nothing happens at calibration anyway.
494
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
542
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
495
  // pressureMeasurementCount = 0;
543
  // pressureMeasurementCount = 0;
496
}
544
}
497
 
545
 
498
void analog_calibrateGyros(void) {
546
void analog_calibrateGyros(void) {
499
#define GYRO_OFFSET_CYCLES 32
547
#define GYRO_OFFSET_CYCLES 32
500
  uint8_t i, axis;
548
  uint8_t i, axis;
501
  int32_t offsets[3] = { 0, 0, 0 };
549
  int32_t offsets[3] = { 0, 0, 0 };
502
  gyro_calibrate();
550
  gyro_calibrate();
503
 
551
 
504
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
552
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
505
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
553
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
506
    delay_ms_with_adc_measurement(20);
554
    delay_ms_with_adc_measurement(10, 1);
507
    for (axis = PITCH; axis <= YAW; axis++) {
555
    for (axis = PITCH; axis <= YAW; axis++) {
508
      offsets[axis] += rawGyroSum[axis];
556
      offsets[axis] += rawGyroValue(axis);
509
    }
557
    }
510
  }
558
  }
511
 
559
 
512
  for (axis = PITCH; axis <= YAW; axis++) {
560
  for (axis = PITCH; axis <= YAW; axis++) {
513
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
561
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
514
  }
562
  }
515
 
563
 
516
  gyroOffset_writeToEEProm();  
564
  gyroOffset_writeToEEProm();  
-
 
565
  startAnalogConversionCycle();
517
}
566
}
518
 
567
 
519
/*
568
/*
520
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
569
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
521
 * Does not (!} update the local variables. This must be done with a
570
 * Does not (!} update the local variables. This must be done with a
522
 * call to analog_calibrate() - this always (?) is done by the caller
571
 * call to analog_calibrate() - this always (?) is done by the caller
523
 * anyway. There would be nothing wrong with updating the variables
572
 * anyway. There would be nothing wrong with updating the variables
524
 * directly from here, though.
573
 * directly from here, though.
525
 */
574
 */
526
void analog_calibrateAcc(void) {
575
void analog_calibrateAcc(void) {
527
#define ACC_OFFSET_CYCLES 10
576
#define ACC_OFFSET_CYCLES 32
528
  uint8_t i, axis;
577
  uint8_t i, axis;
529
  int32_t deltaOffset[3] = { 0, 0, 0 };
578
  int32_t offsets[3] = { 0, 0, 0 };
530
  int16_t filteredDelta;
579
  int16_t filteredDelta;
531
 
580
 
532
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
581
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
533
    delay_ms_with_adc_measurement(10);
582
    delay_ms_with_adc_measurement(10, 1);
534
    for (axis = PITCH; axis <= YAW; axis++) {
583
    for (axis = PITCH; axis <= YAW; axis++) {
535
      deltaOffset[axis] += acc[axis];
584
      offsets[axis] += rawAccValue(axis);
536
    }
585
    }
537
  }
586
  }
538
 
587
 
539
  for (axis = PITCH; axis <= YAW; axis++) {
588
  for (axis = PITCH; axis <= YAW; axis++) {
540
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
589
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
541
      / ACC_OFFSET_CYCLES;
-
 
542
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
-
 
543
  }
590
  }
544
 
591
 
-
 
592
  accOffset_writeToEEProm();
545
  accOffset_writeToEEProm();  
593
  startAnalogConversionCycle();
546
}
594
}
547
 
595