Subversion Repositories FlightCtrl

Rev

Rev 1986 | Rev 1991 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1986 Rev 1987
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
18
// + eindeutig als Ursprung verlinkt und genannt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
#include <avr/io.h>
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
53
#include <avr/interrupt.h>
54
#include <avr/pgmspace.h>
54
#include <avr/pgmspace.h>
55
 
55
 
56
#include "analog.h"
56
#include "analog.h"
57
#include "attitude.h"
57
#include "attitude.h"
58
#include "sensors.h"
58
#include "sensors.h"
59
#include "printf_P.h"
59
#include "printf_P.h"
60
 
60
 
61
// for Delay functions
61
// for Delay functions
62
#include "timer0.h"
62
#include "timer0.h"
63
 
63
 
64
// For debugOut
64
// For debugOut
65
#include "uart0.h"
65
#include "uart0.h"
66
 
66
 
67
// For reading and writing acc. meter offsets.
67
// For reading and writing acc. meter offsets.
68
#include "eeprom.h"
68
#include "eeprom.h"
69
 
69
 
70
// For debugOut.digital
70
// For debugOut.digital
71
#include "output.h"
71
#include "output.h"
72
 
72
 
73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
75
 
75
 
76
const char* recal = ", recalibration needed.";
76
const char* recal = ", recalibration needed.";
77
 
77
 
78
/*
78
/*
79
 * For each A/D conversion cycle, each analog channel is sampled a number of times
79
 * For each A/D conversion cycle, each analog channel is sampled a number of times
80
 * (see array channelsForStates), and the results for each channel are summed.
80
 * (see array channelsForStates), and the results for each channel are summed.
81
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
81
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
82
 * They are exported in the analog.h file - but please do not use them! The only
82
 * They are exported in the analog.h file - but please do not use them! The only
83
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
83
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
84
 * the offsets with the DAC.
84
 * the offsets with the DAC.
85
 */
85
 */
86
volatile uint16_t sensorInputs[8];
86
volatile uint16_t sensorInputs[8];
87
volatile int16_t rawGyroSum[3];
87
volatile int16_t rawGyroSum[3];
88
volatile int16_t acc[3];
88
volatile int16_t acc[3];
89
volatile int16_t filteredAcc[3] = { 0,0,0 };
89
volatile int16_t filteredAcc[3] = { 0,0,0 };
90
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
90
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
91
 
91
 
92
/*
92
/*
93
 * These 4 exported variables are zero-offset. The "PID" ones are used
93
 * These 4 exported variables are zero-offset. The "PID" ones are used
94
 * in the attitude control as rotation rates. The "ATT" ones are for
94
 * in the attitude control as rotation rates. The "ATT" ones are for
95
 * integration to angles.
95
 * integration to angles.
96
 */
96
 */
97
volatile int16_t gyro_PID[2];
97
volatile int16_t gyro_PID[2];
98
volatile int16_t gyro_ATT[2];
98
volatile int16_t gyro_ATT[2];
99
volatile int16_t gyroD[2];
99
volatile int16_t gyroD[2];
100
volatile int16_t yawGyro;
100
volatile int16_t yawGyro;
101
 
101
 
102
/*
102
/*
103
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
103
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
104
 * standing still. They are used for adjusting the gyro and acc. meter values
104
 * standing still. They are used for adjusting the gyro and acc. meter values
105
 * to be centered on zero.
105
 * to be centered on zero.
106
 */
106
 */
107
 
107
 
108
sensorOffset_t gyroOffset;
108
sensorOffset_t gyroOffset;
109
sensorOffset_t accOffset;
109
sensorOffset_t accOffset;
110
sensorOffset_t gyroAmplifierOffset;
110
sensorOffset_t gyroAmplifierOffset;
111
 
111
 
112
/*
112
/*
113
 * This allows some experimentation with the gyro filters.
113
 * This allows some experimentation with the gyro filters.
114
 * Should be replaced by #define's later on...
114
 * Should be replaced by #define's later on...
115
 */
115
 */
116
 
116
 
117
/*
117
/*
118
 * Air pressure
118
 * Air pressure
119
 */
119
 */
120
volatile uint8_t rangewidth = 105;
120
volatile uint8_t rangewidth = 105;
121
 
121
 
122
// Direct from sensor, irrespective of range.
122
// Direct from sensor, irrespective of range.
123
// volatile uint16_t rawAirPressure;
123
// volatile uint16_t rawAirPressure;
124
 
124
 
125
// Value of 2 samples, with range.
125
// Value of 2 samples, with range.
126
volatile uint16_t simpleAirPressure;
126
volatile uint16_t simpleAirPressure;
127
 
127
 
128
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
128
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
129
volatile int32_t filteredAirPressure;
129
volatile int32_t filteredAirPressure;
130
 
130
 
131
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
131
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
132
volatile int32_t airPressureSum;
132
volatile int32_t airPressureSum;
133
 
133
 
134
// The number of samples summed into airPressureSum so far.
134
// The number of samples summed into airPressureSum so far.
135
volatile uint8_t pressureMeasurementCount;
135
volatile uint8_t pressureMeasurementCount;
136
 
136
 
137
/*
137
/*
138
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
138
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
139
 * That is divided by 3 below, for a final 10.34 per volt.
139
 * That is divided by 3 below, for a final 10.34 per volt.
140
 * So the initial value of 100 is for 9.7 volts.
140
 * So the initial value of 100 is for 9.7 volts.
141
 */
141
 */
142
volatile int16_t UBat = 100;
142
volatile int16_t UBat = 100;
143
 
143
 
144
/*
144
/*
145
 * Control and status.
145
 * Control and status.
146
 */
146
 */
147
volatile uint16_t ADCycleCount = 0;
147
volatile uint16_t ADCycleCount = 0;
148
volatile uint8_t analogDataReady = 1;
148
volatile uint8_t analogDataReady = 1;
149
 
149
 
150
/*
150
/*
151
 * Experiment: Measuring vibration-induced sensor noise.
151
 * Experiment: Measuring vibration-induced sensor noise.
152
 */
152
 */
153
volatile uint16_t gyroNoisePeak[3];
153
volatile uint16_t gyroNoisePeak[3];
154
volatile uint16_t accNoisePeak[3];
154
volatile uint16_t accNoisePeak[3];
155
 
155
 
156
volatile uint8_t adState;
156
volatile uint8_t adState;
-
 
157
volatile uint8_t adChannel;
157
 
158
 
158
// ADC channels
159
// ADC channels
159
#define AD_GYRO_YAW       0
160
#define AD_GYRO_YAW       0
160
#define AD_GYRO_ROLL      1
161
#define AD_GYRO_ROLL      1
161
#define AD_GYRO_PITCH     2
162
#define AD_GYRO_PITCH     2
162
#define AD_AIRPRESSURE    3
163
#define AD_AIRPRESSURE    3
163
#define AD_UBAT           4
164
#define AD_UBAT           4
164
#define AD_ACC_Z          5
165
#define AD_ACC_Z          5
165
#define AD_ACC_ROLL       6
166
#define AD_ACC_ROLL       6
166
#define AD_ACC_PITCH      7
167
#define AD_ACC_PITCH      7
167
 
168
 
168
/*
169
/*
169
 * Table of AD converter inputs for each state.
170
 * Table of AD converter inputs for each state.
170
 * The number of samples summed for each channel is equal to
171
 * The number of samples summed for each channel is equal to
171
 * the number of times the channel appears in the array.
172
 * the number of times the channel appears in the array.
172
 * The max. number of samples that can be taken in 2 ms is:
173
 * The max. number of samples that can be taken in 2 ms is:
173
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
174
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
174
 * loop needs a little time between reading AD values and
175
 * loop needs a little time between reading AD values and
175
 * re-enabling ADC, the real limit is (how much?) lower.
176
 * re-enabling ADC, the real limit is (how much?) lower.
176
 * The acc. sensor is sampled even if not used - or installed
177
 * The acc. sensor is sampled even if not used - or installed
177
 * at all. The cost is not significant.
178
 * at all. The cost is not significant.
178
 */
179
 */
179
 
180
 
180
const uint8_t channelsForStates[] PROGMEM = {
181
const uint8_t channelsForStates[] PROGMEM = {
181
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
182
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
182
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
183
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
183
 
184
 
184
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
185
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
185
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
186
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
186
 
187
 
187
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
188
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
188
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
189
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
189
  AD_AIRPRESSURE, // at 14, finish air pressure.
190
  AD_AIRPRESSURE, // at 14, finish air pressure.
190
 
191
 
191
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
192
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
192
  AD_GYRO_ROLL,   // at 16, finish roll gyro
193
  AD_GYRO_ROLL,   // at 16, finish roll gyro
193
  AD_UBAT         // at 17, measure battery.
194
  AD_UBAT         // at 17, measure battery.
194
};
195
};
195
 
196
 
196
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
197
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
197
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
198
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
198
 
199
 
199
void analog_init(void) {
200
void analog_init(void) {
200
        uint8_t sreg = SREG;
201
        uint8_t sreg = SREG;
201
        // disable all interrupts before reconfiguration
202
        // disable all interrupts before reconfiguration
202
        cli();
203
        cli();
203
 
204
 
204
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
205
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
205
        DDRA = 0x00;
206
        DDRA = 0x00;
206
        PORTA = 0x00;
207
        PORTA = 0x00;
207
        // Digital Input Disable Register 0
208
        // Digital Input Disable Register 0
208
        // Disable digital input buffer for analog adc_channel pins
209
        // Disable digital input buffer for analog adc_channel pins
209
        DIDR0 = 0xFF;
210
        DIDR0 = 0xFF;
210
        // external reference, adjust data to the right
211
        // external reference, adjust data to the right
211
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
212
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
212
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
213
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
213
        ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
214
        ADMUX = (ADMUX & 0xE0);
214
        //Set ADC Control and Status Register A
215
        //Set ADC Control and Status Register A
215
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
216
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
216
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
217
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
217
        //Set ADC Control and Status Register B
218
        //Set ADC Control and Status Register B
218
        //Trigger Source to Free Running Mode
219
        //Trigger Source to Free Running Mode
219
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
220
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
220
 
221
 
221
        startAnalogConversionCycle();
222
        startAnalogConversionCycle();
222
 
223
 
223
        // restore global interrupt flags
224
        // restore global interrupt flags
224
        SREG = sreg;
225
        SREG = sreg;
225
}
226
}
226
 
227
 
227
void measureNoise(const int16_t sensor,
228
void measureNoise(const int16_t sensor,
228
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
229
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
229
        if (sensor > (int16_t) (*noiseMeasurement)) {
230
        if (sensor > (int16_t) (*noiseMeasurement)) {
230
                *noiseMeasurement = sensor;
231
                *noiseMeasurement = sensor;
231
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
232
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
232
                *noiseMeasurement = -sensor;
233
                *noiseMeasurement = -sensor;
233
        } else if (*noiseMeasurement > damping) {
234
        } else if (*noiseMeasurement > damping) {
234
                *noiseMeasurement -= damping;
235
                *noiseMeasurement -= damping;
235
        } else {
236
        } else {
236
                *noiseMeasurement = 0;
237
                *noiseMeasurement = 0;
237
        }
238
        }
238
}
239
}
239
 
240
 
240
/*
241
/*
241
 * Min.: 0
242
 * Min.: 0
242
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
243
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
243
 */
244
 */
244
uint16_t getSimplePressure(int advalue) {
245
uint16_t getSimplePressure(int advalue) {
245
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
246
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
246
}
247
}
247
 
248
 
248
void startAnalogConversionCycle(void) {
249
void startAnalogConversionCycle(void) {
249
  analogDataReady = 0;
250
  analogDataReady = 0;
250
  // Stop the sampling. Cycle is over.
251
  // Stop the sampling. Cycle is over.
251
  for (uint8_t i = 0; i < 8; i++) {
252
  for (uint8_t i = 0; i < 8; i++) {
252
    sensorInputs[i] = 0;
253
    sensorInputs[i] = 0;
253
  }
254
  }
254
  adState = 0;
255
  adState = 0;
-
 
256
  adChannel = AD_GYRO_PITCH;
255
  ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
257
  ADMUX = (ADMUX & 0xE0) | adChannel;
256
  startADC();
258
  startADC();
257
}
259
}
258
 
260
 
259
/*****************************************************
261
/*****************************************************
260
 * Interrupt Service Routine for ADC
262
 * Interrupt Service Routine for ADC
261
 * Runs at 312.5 kHz or 3.2 �s. When all states are
263
 * Runs at 312.5 kHz or 3.2 �s. When all states are
262
 * processed further conversions are stopped.
264
 * processed further conversions are stopped.
263
 *****************************************************/
265
 *****************************************************/
264
ISR(ADC_vect) {
266
ISR(ADC_vect) {
265
  static uint8_t adChannel = AD_GYRO_PITCH;
-
 
266
  sensorInputs[adChannel] += ADC;
267
  sensorInputs[adChannel] += ADC;
267
  // set up for next state.
268
  // set up for next state.
268
  adState++;
269
  adState++;
269
  if (adState < sizeof(channelsForStates)) {
270
  if (adState < sizeof(channelsForStates)) {
270
    adChannel = pgm_read_byte(&channelsForStates[adState]);
271
    adChannel = pgm_read_byte(&channelsForStates[adState]);
271
    // set adc muxer to next adChannel
272
    // set adc muxer to next adChannel
272
    ADMUX = (ADMUX & 0xE0) | adChannel;
273
    ADMUX = (ADMUX & 0xE0) | adChannel;
273
    // after full cycle stop further interrupts
274
    // after full cycle stop further interrupts
274
    startADC();
275
    startADC();
275
  } else {
276
  } else {
276
    ADCycleCount++;
277
    ADCycleCount++;
277
    analogDataReady = 1;
278
    analogDataReady = 1;
278
    // do not restart ADC converter. 
279
    // do not restart ADC converter. 
279
  }
280
  }
280
}
281
}
281
 
282
 
282
void analog_updateGyros(void) {
283
void analog_updateGyros(void) {
283
  // for various filters...
284
  // for various filters...
284
  int16_t tempOffsetGyro, tempGyro;
285
  int16_t tempOffsetGyro, tempGyro;
285
 
286
 
286
  for (uint8_t axis=0; axis<2; axis++) {
287
  for (uint8_t axis=0; axis<2; axis++) {
287
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
288
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
288
   
289
   
289
    /*
290
    /*
290
     * Process the gyro data for the PID controller.
291
     * Process the gyro data for the PID controller.
291
     */
292
     */
292
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
293
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
293
    //    gyro with a wider range, and helps counter saturation at full control.
294
    //    gyro with a wider range, and helps counter saturation at full control.
294
   
295
   
295
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
296
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
296
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
297
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
297
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
298
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
298
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
299
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
299
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
300
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
300
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
301
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
301
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
302
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
302
          + SENSOR_MAX_PITCHROLL;
303
          + SENSOR_MAX_PITCHROLL;
303
      } else {
304
      } else {
304
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
305
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
305
      }
306
      }
306
    }
307
    }
307
   
308
   
308
    // 2) Apply sign and offset, scale before filtering.
309
    // 2) Apply sign and offset, scale before filtering.
309
    if (GYRO_REVERSED[axis]) {
310
    if (GYRO_REVERSED[axis]) {
310
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
311
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
311
    } else {
312
    } else {
312
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
313
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
313
    }
314
    }
314
   
315
   
315
    // 3) Scale and filter.
316
    // 3) Scale and filter.
316
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
317
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
317
   
318
   
318
    // 4) Measure noise.
319
    // 4) Measure noise.
319
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
320
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
320
   
321
   
321
    // 5) Differential measurement.
322
    // 5) Differential measurement.
322
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
323
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
323
   
324
   
324
    // 6) Done.
325
    // 6) Done.
325
    gyro_PID[axis] = tempOffsetGyro;
326
    gyro_PID[axis] = tempOffsetGyro;
326
   
327
   
327
    /*
328
    /*
328
     * Now process the data for attitude angles.
329
     * Now process the data for attitude angles.
329
     */
330
     */
330
    tempGyro = rawGyroSum[axis];
331
    tempGyro = rawGyroSum[axis];
331
   
332
   
332
    // 1) Apply sign and offset, scale before filtering.
333
    // 1) Apply sign and offset, scale before filtering.
333
    if (GYRO_REVERSED[axis]) {
334
    if (GYRO_REVERSED[axis]) {
334
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
335
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
335
    } else {
336
    } else {
336
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
337
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
337
    }
338
    }
338
   
339
   
339
    // 2) Filter.
340
    // 2) Filter.
340
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
341
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
341
  }
342
  }
342
 
343
 
343
  // Yaw gyro.
344
  // Yaw gyro.
344
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
345
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
345
  if (GYRO_REVERSED[YAW])
346
  if (GYRO_REVERSED[YAW])
346
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
347
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
347
  else
348
  else
348
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
349
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
349
}
350
}
350
 
351
 
351
void analog_updateAccelerometers(void) {
352
void analog_updateAccelerometers(void) {
352
  // Z acc.
353
  // Z acc.
353
  if (ACC_REVERSED[Z])
354
  if (ACC_REVERSED[Z])
354
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
355
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
355
  else
356
  else
356
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
357
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
357
 
358
 
358
  // Pitch and roll axis accelerations.
359
  // Pitch and roll axis accelerations.
359
  for (uint8_t axis=0; axis<2; axis++) {
360
  for (uint8_t axis=0; axis<2; axis++) {
360
    if (ACC_REVERSED[axis])
361
    if (ACC_REVERSED[axis])
361
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
362
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
362
    else
363
    else
363
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
364
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
364
  }
365
  }
365
 
366
 
366
  for (uint8_t axis=0; axis<3; axis++) {
367
  for (uint8_t axis=0; axis<3; axis++) {
367
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
368
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
368
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
369
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
369
  }
370
  }
370
}
371
}
371
 
372
 
372
void analog_updateAirPressure(void) {
373
void analog_updateAirPressure(void) {
373
  static uint16_t pressureAutorangingWait = 25;
374
  static uint16_t pressureAutorangingWait = 25;
374
  uint16_t rawAirPressure;
375
  uint16_t rawAirPressure;
375
  int16_t newrange;
376
  int16_t newrange;
376
  // air pressure
377
  // air pressure
377
  if (pressureAutorangingWait) {
378
  if (pressureAutorangingWait) {
378
    //A range switch was done recently. Wait for steadying.
379
    //A range switch was done recently. Wait for steadying.
379
    pressureAutorangingWait--;
380
    pressureAutorangingWait--;
380
    debugOut.analog[27] = (uint16_t) OCR0A;
381
    debugOut.analog[27] = (uint16_t) OCR0A;
381
    debugOut.analog[31] = simpleAirPressure;
382
    debugOut.analog[31] = simpleAirPressure;
382
  } else {
383
  } else {
383
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
384
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
384
    if (rawAirPressure < MIN_RAWPRESSURE) {
385
    if (rawAirPressure < MIN_RAWPRESSURE) {
385
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
386
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
386
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
387
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
387
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
388
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
388
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
389
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
389
        OCR0A = newrange;
390
        OCR0A = newrange;
390
      } else {
391
      } else {
391
        if (OCR0A) {
392
        if (OCR0A) {
392
          OCR0A--;
393
          OCR0A--;
393
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
394
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
394
        }
395
        }
395
      }
396
      }
396
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
397
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
397
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
398
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
398
      // If near the end, make a limited increase
399
      // If near the end, make a limited increase
399
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
400
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
400
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
401
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
401
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
402
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
402
        OCR0A = newrange;
403
        OCR0A = newrange;
403
      } else {
404
      } else {
404
        if (OCR0A < 254) {
405
        if (OCR0A < 254) {
405
          OCR0A++;
406
          OCR0A++;
406
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
407
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
407
        }
408
        }
408
      }
409
      }
409
    }
410
    }
410
   
411
   
411
    // Even if the sample is off-range, use it.
412
    // Even if the sample is off-range, use it.
412
    simpleAirPressure = getSimplePressure(rawAirPressure);
413
    simpleAirPressure = getSimplePressure(rawAirPressure);
413
    debugOut.analog[27] = (uint16_t) OCR0A;
414
    debugOut.analog[27] = (uint16_t) OCR0A;
414
    debugOut.analog[31] = simpleAirPressure;
415
    debugOut.analog[31] = simpleAirPressure;
415
   
416
   
416
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
417
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
417
      // Danger: pressure near lower end of range. If the measurement saturates, the
418
      // Danger: pressure near lower end of range. If the measurement saturates, the
418
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
419
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
419
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
420
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
420
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
421
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
421
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
422
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
422
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
423
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
423
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
424
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
424
      // Danger: pressure near upper end of range. If the measurement saturates, the
425
      // Danger: pressure near upper end of range. If the measurement saturates, the
425
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
426
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
426
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
427
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
427
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
428
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
428
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
429
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
429
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
430
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
430
    } else {
431
    } else {
431
      // normal case.
432
      // normal case.
432
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
433
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
433
      // The 2 cases above (end of range) are ignored for this.
434
      // The 2 cases above (end of range) are ignored for this.
434
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
435
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
435
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
436
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
436
        airPressureSum += simpleAirPressure / 2;
437
        airPressureSum += simpleAirPressure / 2;
437
      else
438
      else
438
        airPressureSum += simpleAirPressure;
439
        airPressureSum += simpleAirPressure;
439
    }
440
    }
440
   
441
   
441
    // 2 samples were added.
442
    // 2 samples were added.
442
    pressureMeasurementCount += 2;
443
    pressureMeasurementCount += 2;
443
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
444
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
444
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
445
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
445
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
446
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
446
      pressureMeasurementCount = airPressureSum = 0;
447
      pressureMeasurementCount = airPressureSum = 0;
447
    }
448
    }
448
  }
449
  }
449
}
450
}
450
 
451
 
451
void analog_updateBatteryVoltage(void) {
452
void analog_updateBatteryVoltage(void) {
452
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
453
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
453
  // This is divided by 3 --> 10.34 counts per volt.
454
  // This is divided by 3 --> 10.34 counts per volt.
454
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
455
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
455
  debugOut.analog[11] = UBat;
456
  debugOut.analog[11] = UBat;
456
  debugOut.analog[21] = sensorInputs[AD_UBAT];
457
  debugOut.analog[21] = sensorInputs[AD_UBAT];
457
}
458
}
458
 
459
 
459
void analog_update(void) {
460
void analog_update(void) {
460
  analog_updateGyros();
461
  analog_updateGyros();
461
  analog_updateAccelerometers();
462
  analog_updateAccelerometers();
462
  analog_updateAirPressure();
463
  analog_updateAirPressure();
463
  analog_updateBatteryVoltage();
464
  analog_updateBatteryVoltage();
464
}
465
}
465
 
466
 
466
void analog_setNeutral() {
467
void analog_setNeutral() {
467
  if (gyroAmplifierOffset_readFromEEProm()) {
468
  if (gyroAmplifierOffset_readFromEEProm()) {
468
    printf("gyro amp invalid%s",recal);
469
    printf("gyro amp invalid%s",recal);
469
    gyro_loadAmplifierOffsets(1);
470
    gyro_loadAmplifierOffsets(1);
470
  } else
471
  } else
471
      gyro_loadAmplifierOffsets(0);
472
      gyro_loadAmplifierOffsets(0);
472
 
473
 
473
  if (gyroOffset_readFromEEProm()) {
474
  if (gyroOffset_readFromEEProm()) {
474
    printf("gyro offsets invalid%s",recal);
475
    printf("gyro offsets invalid%s",recal);
475
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
476
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
476
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
477
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
477
  }
478
  }
478
 
479
 
479
  if (accOffset_readFromEEProm()) {
480
  if (accOffset_readFromEEProm()) {
480
    printf("acc. meter offsets invalid%s",recal);
481
    printf("acc. meter offsets invalid%s",recal);
481
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
482
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
482
    accOffset.offsets[Z] = 717 * ACC_SUMMATION_FACTOR_Z;
483
    accOffset.offsets[Z] = 717 * ACC_SUMMATION_FACTOR_Z;
483
  }
484
  }
484
 
485
 
485
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
486
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
486
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
487
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
487
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
488
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
488
 
489
 
489
  // Setting offset values has an influence in the analog.c ISR
490
  // Setting offset values has an influence in the analog.c ISR
490
  // Therefore run measurement for 100ms to achive stable readings
491
  // Therefore run measurement for 100ms to achive stable readings
491
  delay_ms_with_adc_measurement(100);
492
  delay_ms_with_adc_measurement(100);
492
 
493
 
493
  // Rough estimate. Hmm no nothing happens at calibration anyway.
494
  // Rough estimate. Hmm no nothing happens at calibration anyway.
494
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
495
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
495
  // pressureMeasurementCount = 0;
496
  // pressureMeasurementCount = 0;
496
}
497
}
497
 
498
 
498
void analog_calibrateGyros(void) {
499
void analog_calibrateGyros(void) {
499
#define GYRO_OFFSET_CYCLES 32
500
#define GYRO_OFFSET_CYCLES 32
500
  uint8_t i, axis;
501
  uint8_t i, axis;
501
  int32_t offsets[3] = { 0, 0, 0 };
502
  int32_t offsets[3] = { 0, 0, 0 };
502
  gyro_calibrate();
503
  gyro_calibrate();
503
 
504
 
504
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
505
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
505
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
506
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
506
    delay_ms_with_adc_measurement(20);
507
    delay_ms_with_adc_measurement(20);
507
    for (axis = PITCH; axis <= YAW; axis++) {
508
    for (axis = PITCH; axis <= YAW; axis++) {
508
      offsets[axis] += rawGyroSum[axis];
509
      offsets[axis] += rawGyroSum[axis];
509
    }
510
    }
510
  }
511
  }
511
 
512
 
512
  for (axis = PITCH; axis <= YAW; axis++) {
513
  for (axis = PITCH; axis <= YAW; axis++) {
513
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
514
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
514
  }
515
  }
515
 
516
 
516
  gyroOffset_writeToEEProm();  
517
  gyroOffset_writeToEEProm();  
517
}
518
}
518
 
519
 
519
/*
520
/*
520
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
521
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
521
 * Does not (!} update the local variables. This must be done with a
522
 * Does not (!} update the local variables. This must be done with a
522
 * call to analog_calibrate() - this always (?) is done by the caller
523
 * call to analog_calibrate() - this always (?) is done by the caller
523
 * anyway. There would be nothing wrong with updating the variables
524
 * anyway. There would be nothing wrong with updating the variables
524
 * directly from here, though.
525
 * directly from here, though.
525
 */
526
 */
526
void analog_calibrateAcc(void) {
527
void analog_calibrateAcc(void) {
527
#define ACC_OFFSET_CYCLES 10
528
#define ACC_OFFSET_CYCLES 10
528
  uint8_t i, axis;
529
  uint8_t i, axis;
529
  int32_t deltaOffset[3] = { 0, 0, 0 };
530
  int32_t deltaOffset[3] = { 0, 0, 0 };
530
  int16_t filteredDelta;
531
  int16_t filteredDelta;
531
 
532
 
532
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
533
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
533
    delay_ms_with_adc_measurement(10);
534
    delay_ms_with_adc_measurement(10);
534
    for (axis = PITCH; axis <= YAW; axis++) {
535
    for (axis = PITCH; axis <= YAW; axis++) {
535
      deltaOffset[axis] += acc[axis];
536
      deltaOffset[axis] += acc[axis];
536
    }
537
    }
537
  }
538
  }
538
 
539
 
539
  for (axis = PITCH; axis <= YAW; axis++) {
540
  for (axis = PITCH; axis <= YAW; axis++) {
540
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
541
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
541
      / ACC_OFFSET_CYCLES;
542
      / ACC_OFFSET_CYCLES;
542
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
543
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
543
  }
544
  }
544
 
545
 
545
  accOffset_writeToEEProm();  
546
  accOffset_writeToEEProm();  
546
}
547
}
547
 
548