Subversion Repositories FlightCtrl

Rev

Rev 2095 | Rev 2112 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2095 Rev 2097
1
#include <avr/io.h>
1
#include <avr/io.h>
2
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
3
#include <avr/pgmspace.h>
3
#include <avr/pgmspace.h>
4
#include <stdlib.h>
4
#include <stdlib.h>
5
 
5
 
6
#include "analog.h"
6
#include "analog.h"
7
#include "attitude.h"
7
#include "attitude.h"
8
#include "sensors.h"
8
#include "sensors.h"
9
#include "printf_P.h"
9
#include "printf_P.h"
10
#include "mk3mag.h"
10
#include "mk3mag.h"
11
 
11
 
12
// for Delay functions
12
// for Delay functions
13
#include "timer0.h"
13
#include "timer0.h"
14
 
14
 
15
// For reading and writing acc. meter offsets.
15
// For reading and writing acc. meter offsets.
16
#include "eeprom.h"
16
#include "eeprom.h"
17
 
17
 
18
// For debugOut
18
// For debugOut
19
#include "output.h"
19
#include "output.h"
20
 
20
 
21
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
21
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
22
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
22
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
23
 
23
 
24
const char* recal = ", recalibration needed.";
24
const char* recal = ", recalibration needed.";
25
 
25
 
26
/*
26
/*
27
 * For each A/D conversion cycle, each analog channel is sampled a number of times
27
 * For each A/D conversion cycle, each analog channel is sampled a number of times
28
 * (see array channelsForStates), and the results for each channel are summed.
28
 * (see array channelsForStates), and the results for each channel are summed.
29
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
29
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
30
 * They are exported in the analog.h file - but please do not use them! The only
30
 * They are exported in the analog.h file - but please do not use them! The only
31
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
31
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
32
 * the offsets with the DAC.
32
 * the offsets with the DAC.
33
 */
33
 */
34
volatile uint16_t sensorInputs[8];
34
volatile uint16_t sensorInputs[8];
35
int16_t acc[3];
35
int16_t acc[3];
36
int16_t filteredAcc[3] = { 0,0,0 };
36
int16_t filteredAcc[3] = { 0,0,0 };
37
 
37
 
38
/*
38
/*
39
 * These 4 exported variables are zero-offset. The "PID" ones are used
39
 * These 4 exported variables are zero-offset. The "PID" ones are used
40
 * in the attitude control as rotation rates. The "ATT" ones are for
40
 * in the attitude control as rotation rates. The "ATT" ones are for
41
 * integration to angles.
41
 * integration to angles.
42
 */
42
 */
43
int16_t gyro_PID[2];
43
int16_t gyro_PID[2];
44
int16_t gyro_ATT[2];
44
int16_t gyro_ATT[2];
45
int16_t gyroD[2];
45
int16_t gyroD[2];
46
int16_t gyroDWindow[2][GYRO_D_WINDOW_LENGTH];
46
int16_t gyroDWindow[2][GYRO_D_WINDOW_LENGTH];
47
uint8_t gyroDWindowIdx = 0;
47
uint8_t gyroDWindowIdx = 0;
48
int16_t yawGyro;
48
int16_t yawGyro;
49
int16_t magneticHeading;
49
int16_t magneticHeading;
50
 
50
 
51
int32_t groundPressure;
51
int32_t groundPressure;
52
int16_t dHeight;
52
int16_t dHeight;
53
 
53
 
54
uint32_t gyroActivity;
54
uint32_t gyroActivity;
55
 
55
 
56
/*
56
/*
57
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
57
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
58
 * standing still. They are used for adjusting the gyro and acc. meter values
58
 * standing still. They are used for adjusting the gyro and acc. meter values
59
 * to be centered on zero.
59
 * to be centered on zero.
60
 */
60
 */
61
 
61
 
62
sensorOffset_t gyroOffset;
62
sensorOffset_t gyroOffset;
63
sensorOffset_t accOffset;
63
sensorOffset_t accOffset;
64
sensorOffset_t gyroAmplifierOffset;
64
sensorOffset_t gyroAmplifierOffset;
65
 
65
 
66
/*
66
/*
67
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
67
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
68
 * If a sensor is used in an orientation where one but not both of the axes has
68
 * If a sensor is used in an orientation where one but not both of the axes has
69
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
69
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
70
 * Transform:
70
 * Transform:
71
 * pitch <- pp*pitch + pr*roll
71
 * pitch <- pp*pitch + pr*roll
72
 * roll  <- rp*pitch + rr*roll
72
 * roll  <- rp*pitch + rr*roll
73
 * Not reversed, GYRO_QUADRANT:
73
 * Not reversed, GYRO_QUADRANT:
74
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
74
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
75
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
75
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
76
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
76
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
77
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
77
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
78
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
78
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
79
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
79
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
80
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
80
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
81
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
81
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
82
 * Reversed, GYRO_QUADRANT:
82
 * Reversed, GYRO_QUADRANT:
83
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
83
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
84
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
84
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
85
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
85
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
86
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
86
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
87
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
87
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
88
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
88
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
89
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
89
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
90
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
90
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
91
 */
91
 */
92
 
92
 
93
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
93
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
94
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
94
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
95
  // Pitch to Pitch part
95
  // Pitch to Pitch part
96
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
96
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
97
  // Roll to Pitch part
97
  // Roll to Pitch part
98
  int8_t xy = rotationTab[(quadrant+2)%8];
98
  int8_t xy = rotationTab[(quadrant+2)%8];
99
  // Pitch to Roll part
99
  // Pitch to Roll part
100
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
100
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
101
  // Roll to Roll part
101
  // Roll to Roll part
102
  int8_t yy = rotationTab[quadrant];
102
  int8_t yy = rotationTab[quadrant];
103
 
103
 
104
  int16_t xIn = result[0];
104
  int16_t xIn = result[0];
105
  result[0] = xx*xIn + xy*result[1];
105
  result[0] = xx*xIn + xy*result[1];
106
  result[1] = yx*xIn + yy*result[1];
106
  result[1] = yx*xIn + yy*result[1];
107
 
107
 
108
  if (quadrant & 1) {
108
  if (quadrant & 1) {
109
        // A rotation was used above, where the factors were too large by sqrt(2).
109
        // A rotation was used above, where the factors were too large by sqrt(2).
110
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
110
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
111
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
111
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
112
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
112
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
113
        result[0] = (result[0]*11) >> 4;
113
        result[0] = (result[0]*11) >> 4;
114
        result[1] = (result[1]*11) >> 4;
114
        result[1] = (result[1]*11) >> 4;
115
  }
115
  }
116
}
116
}
117
 
117
 
118
/*
118
/*
119
 * Air pressure
119
 * Air pressure
120
 */
120
 */
121
volatile uint8_t rangewidth = 105;
121
volatile uint8_t rangewidth = 105;
122
 
122
 
123
// Direct from sensor, irrespective of range.
123
// Direct from sensor, irrespective of range.
124
// volatile uint16_t rawAirPressure;
124
// volatile uint16_t rawAirPressure;
125
 
125
 
126
// Value of 2 samples, with range.
126
// Value of 2 samples, with range.
127
uint16_t simpleAirPressure;
127
uint16_t simpleAirPressure;
128
 
128
 
129
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
129
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
130
int32_t filteredAirPressure;
130
int32_t filteredAirPressure;
131
 
131
 
132
#define MAX_D_AIRPRESSURE_WINDOW_LENGTH 32
132
#define MAX_D_AIRPRESSURE_WINDOW_LENGTH 32
133
//int32_t lastFilteredAirPressure;
133
//int32_t lastFilteredAirPressure;
134
int16_t dAirPressureWindow[MAX_D_AIRPRESSURE_WINDOW_LENGTH];
134
int16_t dAirPressureWindow[MAX_D_AIRPRESSURE_WINDOW_LENGTH];
135
uint8_t dWindowPtr = 0;
135
uint8_t dWindowPtr = 0;
136
 
136
 
137
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
137
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
138
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
138
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
139
int32_t windowedAirPressure;
139
int32_t windowedAirPressure;
140
uint8_t windowPtr = 0;
140
uint8_t windowPtr = 0;
141
 
141
 
142
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
142
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
143
int32_t airPressureSum;
143
int32_t airPressureSum;
144
 
144
 
145
// The number of samples summed into airPressureSum so far.
145
// The number of samples summed into airPressureSum so far.
146
uint8_t pressureMeasurementCount;
146
uint8_t pressureMeasurementCount;
147
 
147
 
148
/*
148
/*
149
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
149
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
150
 * That is divided by 3 below, for a final 10.34 per volt.
150
 * That is divided by 3 below, for a final 10.34 per volt.
151
 * So the initial value of 100 is for 9.7 volts.
151
 * So the initial value of 100 is for 9.7 volts.
152
 */
152
 */
153
int16_t UBat = 100;
153
int16_t UBat = 100;
154
 
154
 
155
/*
155
/*
156
 * Control and status.
156
 * Control and status.
157
 */
157
 */
158
volatile uint16_t ADCycleCount = 0;
-
 
159
volatile uint8_t analogDataReady = 1;
158
volatile uint8_t analogDataReady = 1;
160
 
159
 
161
/*
160
/*
162
 * Experiment: Measuring vibration-induced sensor noise.
161
 * Experiment: Measuring vibration-induced sensor noise.
163
 */
162
 */
164
uint16_t gyroNoisePeak[3];
163
uint16_t gyroNoisePeak[3];
165
uint16_t accNoisePeak[3];
164
uint16_t accNoisePeak[3];
166
 
165
 
167
volatile uint8_t adState;
166
volatile uint8_t adState;
168
volatile uint8_t adChannel;
167
volatile uint8_t adChannel;
169
 
168
 
170
// ADC channels
169
// ADC channels
171
#define AD_GYRO_YAW       0
170
#define AD_GYRO_YAW       0
172
#define AD_GYRO_ROLL      1
171
#define AD_GYRO_ROLL      1
173
#define AD_GYRO_PITCH     2
172
#define AD_GYRO_PITCH     2
174
#define AD_AIRPRESSURE    3
173
#define AD_AIRPRESSURE    3
175
#define AD_UBAT           4
174
#define AD_UBAT           4
176
#define AD_ACC_Z          5
175
#define AD_ACC_Z          5
177
#define AD_ACC_ROLL       6
176
#define AD_ACC_ROLL       6
178
#define AD_ACC_PITCH      7
177
#define AD_ACC_PITCH      7
179
 
178
 
180
/*
179
/*
181
 * Table of AD converter inputs for each state.
180
 * Table of AD converter inputs for each state.
182
 * The number of samples summed for each channel is equal to
181
 * The number of samples summed for each channel is equal to
183
 * the number of times the channel appears in the array.
182
 * the number of times the channel appears in the array.
184
 * The max. number of samples that can be taken in 2 ms is:
183
 * The max. number of samples that can be taken in 2 ms is:
185
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
184
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
186
 * loop needs a little time between reading AD values and
185
 * loop needs a little time between reading AD values and
187
 * re-enabling ADC, the real limit is (how much?) lower.
186
 * re-enabling ADC, the real limit is (how much?) lower.
188
 * The acc. sensor is sampled even if not used - or installed
187
 * The acc. sensor is sampled even if not used - or installed
189
 * at all. The cost is not significant.
188
 * at all. The cost is not significant.
190
 */
189
 */
191
 
190
 
192
const uint8_t channelsForStates[] PROGMEM = {
191
const uint8_t channelsForStates[] PROGMEM = {
193
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
192
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
194
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
193
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
195
 
194
 
196
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
195
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
197
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
196
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
198
 
197
 
199
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
198
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
200
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
199
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
201
  AD_AIRPRESSURE, // at 14, finish air pressure.
200
  AD_AIRPRESSURE, // at 14, finish air pressure.
202
 
201
 
203
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
202
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
204
  AD_GYRO_ROLL,   // at 16, finish roll gyro
203
  AD_GYRO_ROLL,   // at 16, finish roll gyro
205
  AD_UBAT         // at 17, measure battery.
204
  AD_UBAT         // at 17, measure battery.
206
};
205
};
207
 
206
 
208
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
207
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
209
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
208
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
210
 
209
 
211
void analog_init(void) {
210
void analog_init(void) {
212
        uint8_t sreg = SREG;
211
        uint8_t sreg = SREG;
213
        // disable all interrupts before reconfiguration
212
        // disable all interrupts before reconfiguration
214
        cli();
213
        cli();
215
 
214
 
216
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
215
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
217
        DDRA = 0x00;
216
        DDRA = 0x00;
218
        PORTA = 0x00;
217
        PORTA = 0x00;
219
        // Digital Input Disable Register 0
218
        // Digital Input Disable Register 0
220
        // Disable digital input buffer for analog adc_channel pins
219
        // Disable digital input buffer for analog adc_channel pins
221
        DIDR0 = 0xFF;
220
        DIDR0 = 0xFF;
222
        // external reference, adjust data to the right
221
        // external reference, adjust data to the right
223
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
222
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
224
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
223
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
225
        ADMUX = (ADMUX & 0xE0);
224
        ADMUX = (ADMUX & 0xE0);
226
        //Set ADC Control and Status Register A
225
        //Set ADC Control and Status Register A
227
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
226
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
228
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
227
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
229
        //Set ADC Control and Status Register B
228
        //Set ADC Control and Status Register B
230
        //Trigger Source to Free Running Mode
229
        //Trigger Source to Free Running Mode
231
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
230
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
232
 
231
 
233
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
232
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
234
          airPressureWindow[i] = 0;
233
          airPressureWindow[i] = 0;
235
        }
234
        }
236
    windowedAirPressure = 0;
235
    windowedAirPressure = 0;
237
 
236
 
238
        startAnalogConversionCycle();
237
        startAnalogConversionCycle();
239
 
238
 
240
        // restore global interrupt flags
239
        // restore global interrupt flags
241
        SREG = sreg;
240
        SREG = sreg;
242
}
241
}
243
 
242
 
244
uint16_t rawGyroValue(uint8_t axis) {
243
uint16_t rawGyroValue(uint8_t axis) {
245
        return sensorInputs[AD_GYRO_PITCH-axis];
244
        return sensorInputs[AD_GYRO_PITCH-axis];
246
}
245
}
247
 
246
 
248
uint16_t rawAccValue(uint8_t axis) {
247
uint16_t rawAccValue(uint8_t axis) {
249
        return sensorInputs[AD_ACC_PITCH-axis];
248
        return sensorInputs[AD_ACC_PITCH-axis];
250
}
249
}
251
 
250
 
252
void measureNoise(const int16_t sensor,
251
void measureNoise(const int16_t sensor,
253
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
252
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
254
        if (sensor > (int16_t) (*noiseMeasurement)) {
253
        if (sensor > (int16_t) (*noiseMeasurement)) {
255
                *noiseMeasurement = sensor;
254
                *noiseMeasurement = sensor;
256
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
255
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
257
                *noiseMeasurement = -sensor;
256
                *noiseMeasurement = -sensor;
258
        } else if (*noiseMeasurement > damping) {
257
        } else if (*noiseMeasurement > damping) {
259
                *noiseMeasurement -= damping;
258
                *noiseMeasurement -= damping;
260
        } else {
259
        } else {
261
                *noiseMeasurement = 0;
260
                *noiseMeasurement = 0;
262
        }
261
        }
263
}
262
}
264
 
263
 
265
/*
264
/*
266
 * Min.: 0
265
 * Min.: 0
267
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
266
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
268
 */
267
 */
269
uint16_t getSimplePressure(int advalue) {
268
uint16_t getSimplePressure(int advalue) {
270
        uint16_t result = (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
269
        uint16_t result = (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
271
        result += (acc[Z] * (staticParams.airpressureAccZCorrection-128)) >> 10;
270
        result += (acc[Z] * (staticParams.airpressureAccZCorrection-128)) >> 10;
272
        return result;
271
        return result;
273
}
272
}
274
 
273
 
275
void startAnalogConversionCycle(void) {
274
void startAnalogConversionCycle(void) {
276
  analogDataReady = 0;
275
  analogDataReady = 0;
277
 
276
 
278
  // Stop the sampling. Cycle is over.
277
  // Stop the sampling. Cycle is over.
279
  for (uint8_t i = 0; i < 8; i++) {
278
  for (uint8_t i = 0; i < 8; i++) {
280
    sensorInputs[i] = 0;
279
    sensorInputs[i] = 0;
281
  }
280
  }
282
  adState = 0;
281
  adState = 0;
283
  adChannel = AD_GYRO_PITCH;
282
  adChannel = AD_GYRO_PITCH;
284
  ADMUX = (ADMUX & 0xE0) | adChannel;
283
  ADMUX = (ADMUX & 0xE0) | adChannel;
285
  startADC();
284
  startADC();
286
}
285
}
287
 
286
 
288
/*****************************************************
287
/*****************************************************
289
 * Interrupt Service Routine for ADC
288
 * Interrupt Service Routine for ADC
290
 * Runs at 312.5 kHz or 3.2 �s. When all states are
289
 * Runs at 312.5 kHz or 3.2 �s. When all states are
291
 * processed further conversions are stopped.
290
 * processed further conversions are stopped.
292
 *****************************************************/
291
 *****************************************************/
293
ISR(ADC_vect) {
292
ISR(ADC_vect) {
294
  sensorInputs[adChannel] += ADC;
293
  sensorInputs[adChannel] += ADC;
295
  // set up for next state.
294
  // set up for next state.
296
  adState++;
295
  adState++;
297
  if (adState < sizeof(channelsForStates)) {
296
  if (adState < sizeof(channelsForStates)) {
298
    adChannel = pgm_read_byte(&channelsForStates[adState]);
297
    adChannel = pgm_read_byte(&channelsForStates[adState]);
299
    // set adc muxer to next adChannel
298
    // set adc muxer to next adChannel
300
    ADMUX = (ADMUX & 0xE0) | adChannel;
299
    ADMUX = (ADMUX & 0xE0) | adChannel;
301
    // after full cycle stop further interrupts
300
    // after full cycle stop further interrupts
302
    startADC();
301
    startADC();
303
  } else {
302
  } else {
304
    ADCycleCount++;
-
 
305
    analogDataReady = 1;
303
    analogDataReady = 1;
306
    // do not restart ADC converter. 
304
    // do not restart ADC converter. 
307
  }
305
  }
308
}
306
}
309
 
307
 
310
void measureGyroActivity(int16_t newValue) {
308
void measureGyroActivity(int16_t newValue) {
311
  gyroActivity += (uint32_t)((int32_t)newValue * newValue);
309
  gyroActivity += (uint32_t)((int32_t)newValue * newValue);
312
}
310
}
313
 
311
 
314
#define GADAMPING 6
312
#define GADAMPING 6
315
void dampenGyroActivity(void) {
313
void dampenGyroActivity(void) {
316
  static uint8_t cnt = 0;
314
  static uint8_t cnt = 0;
317
  if (++cnt >= IMUConfig.gyroActivityDamping) {
315
  if (++cnt >= IMUConfig.gyroActivityDamping) {
318
    cnt = 0;
316
    cnt = 0;
319
    gyroActivity *= (uint32_t)((1L<<GADAMPING)-1);
317
    gyroActivity *= (uint32_t)((1L<<GADAMPING)-1);
320
    gyroActivity >>= GADAMPING;
318
    gyroActivity >>= GADAMPING;
321
  }
319
  }
322
}
320
}
323
/*
-
 
324
void dampenGyroActivity(void) {
-
 
325
  if (gyroActivity >= 2000) {
-
 
326
    gyroActivity -= 2000;
-
 
327
  }
-
 
328
}
-
 
329
*/
-
 
330
 
321
 
331
void analog_updateGyros(void) {
322
void analog_updateGyros(void) {
332
  // for various filters...
323
  // for various filters...
333
  int16_t tempOffsetGyro[2], tempGyro;
324
  int16_t tempOffsetGyro[2], tempGyro;
334
 
325
 
335
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
326
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
336
  for (uint8_t axis=0; axis<2; axis++) {
327
  for (uint8_t axis=0; axis<2; axis++) {
337
    tempGyro = rawGyroValue(axis);
328
    tempGyro = rawGyroValue(axis);
338
    /*
329
    /*
339
     * Process the gyro data for the PID controller.
330
     * Process the gyro data for the PID controller.
340
     */
331
     */
341
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
332
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
342
    //    gyro with a wider range, and helps counter saturation at full control.
333
    //    gyro with a wider range, and helps counter saturation at full control.
343
   
334
   
344
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
335
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
345
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
336
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
346
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
337
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
347
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
338
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
348
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
339
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
349
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
340
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
350
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
341
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
351
      }
342
      }
352
    }
343
    }
353
 
344
 
354
    // 2) Apply sign and offset, scale before filtering.
345
    // 2) Apply sign and offset, scale before filtering.
355
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
346
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
356
  }
347
  }
357
 
348
 
358
  // 2.1: Transform axes.
349
  // 2.1: Transform axes.
359
  rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR);
350
  rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR);
360
 
351
 
361
  for (uint8_t axis=0; axis<2; axis++) {
352
  for (uint8_t axis=0; axis<2; axis++) {
362
        // 3) Filter.
353
        // 3) Filter.
363
    tempOffsetGyro[axis] = (gyro_PID[axis] * (IMUConfig.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / IMUConfig.gyroPIDFilterConstant;
354
    tempOffsetGyro[axis] = (gyro_PID[axis] * (IMUConfig.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / IMUConfig.gyroPIDFilterConstant;
364
 
355
 
365
    // 4) Measure noise.
356
    // 4) Measure noise.
366
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
357
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
367
 
358
 
368
    // 5) Differential measurement.
359
    // 5) Differential measurement.
369
    // gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
360
    // gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
370
    int16_t diff = tempOffsetGyro[axis] - gyro_PID[axis];
361
    int16_t diff = tempOffsetGyro[axis] - gyro_PID[axis];
371
    gyroD[axis] -= gyroDWindow[axis][gyroDWindowIdx];
362
    gyroD[axis] -= gyroDWindow[axis][gyroDWindowIdx];
372
    gyroD[axis] += diff;
363
    gyroD[axis] += diff;
373
    gyroDWindow[axis][gyroDWindowIdx] = diff;
364
    gyroDWindow[axis][gyroDWindowIdx] = diff;
374
 
365
 
375
    // 6) Done.
366
    // 6) Done.
376
    gyro_PID[axis] = tempOffsetGyro[axis];
367
    gyro_PID[axis] = tempOffsetGyro[axis];
377
 
368
 
378
    // Prepare tempOffsetGyro for next calculation below...
369
    // Prepare tempOffsetGyro for next calculation below...
379
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
370
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
380
  }
371
  }
381
 
372
 
382
  /*
373
  /*
383
   * Now process the data for attitude angles.
374
   * Now process the data for attitude angles.
384
   */
375
   */
385
   rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR);
376
   rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR);
386
 
377
 
387
   dampenGyroActivity();
378
   dampenGyroActivity();
388
   gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
379
   gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
389
   gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
380
   gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
390
 
381
 
391
   /*
382
   /*
392
   measureGyroActivity(tempOffsetGyro[PITCH]);
383
   measureGyroActivity(tempOffsetGyro[PITCH]);
393
   measureGyroActivity(tempOffsetGyro[ROLL]);
384
   measureGyroActivity(tempOffsetGyro[ROLL]);
394
   */
385
   */
395
   measureGyroActivity(gyroD[PITCH]);
386
   measureGyroActivity(gyroD[PITCH]);
396
   measureGyroActivity(gyroD[ROLL]);
387
   measureGyroActivity(gyroD[ROLL]);
397
 
388
 
398
   // We measure activity of yaw by plain gyro value and not d/dt, because:
389
   // We measure activity of yaw by plain gyro value and not d/dt, because:
399
   // - There is no drift correction anyway
390
   // - There is no drift correction anyway
400
   // - Effect of steady circular flight would vanish (it should have effect).
391
   // - Effect of steady circular flight would vanish (it should have effect).
401
   // int16_t diff = yawGyro;
392
   // int16_t diff = yawGyro;
402
   // Yaw gyro.
393
   // Yaw gyro.
403
  if (IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
394
  if (IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
404
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
395
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
405
  else
396
  else
406
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
397
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
407
 
398
 
408
  // diff -= yawGyro;
399
  // diff -= yawGyro;
409
  // gyroD[YAW] -= gyroDWindow[YAW][gyroDWindowIdx];
400
  // gyroD[YAW] -= gyroDWindow[YAW][gyroDWindowIdx];
410
  // gyroD[YAW] += diff;
401
  // gyroD[YAW] += diff;
411
  // gyroDWindow[YAW][gyroDWindowIdx] = diff;
402
  // gyroDWindow[YAW][gyroDWindowIdx] = diff;
412
 
403
 
413
  // gyroActivity += (uint32_t)(abs(yawGyro)* IMUConfig.yawRateFactor);
404
  // gyroActivity += (uint32_t)(abs(yawGyro)* IMUConfig.yawRateFactor);
414
  measureGyroActivity(yawGyro);
405
  measureGyroActivity(yawGyro);
415
 
406
 
416
  if (++gyroDWindowIdx >= IMUConfig.gyroDWindowLength) {
407
  if (++gyroDWindowIdx >= IMUConfig.gyroDWindowLength) {
417
      gyroDWindowIdx = 0;
408
      gyroDWindowIdx = 0;
418
  }
409
  }
419
}
410
}
420
 
411
 
421
void analog_updateAccelerometers(void) {
412
void analog_updateAccelerometers(void) {
422
  // Pitch and roll axis accelerations.
413
  // Pitch and roll axis accelerations.
423
  for (uint8_t axis=0; axis<2; axis++) {
414
  for (uint8_t axis=0; axis<2; axis++) {
424
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
415
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
425
  }
416
  }
426
 
417
 
427
  rotate(acc, IMUConfig.accQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_ACC_XY);
418
  rotate(acc, IMUConfig.accQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_ACC_XY);
428
  for(uint8_t axis=0; axis<3; axis++) {
419
  for(uint8_t axis=0; axis<3; axis++) {
429
    filteredAcc[axis] = (filteredAcc[axis] * (IMUConfig.accFilterConstant - 1) + acc[axis]) / IMUConfig.accFilterConstant;
420
    filteredAcc[axis] = (filteredAcc[axis] * (IMUConfig.accFilterConstant - 1) + acc[axis]) / IMUConfig.accFilterConstant;
430
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
421
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
431
  }
422
  }
432
 
423
 
433
  // Z acc.
424
  // Z acc.
434
  if (IMUConfig.imuReversedFlags & 8)
425
  if (IMUConfig.imuReversedFlags & 8)
435
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
426
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
436
  else
427
  else
437
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
428
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
438
 
429
 
439
  // debugOut.analog[29] = acc[Z];
430
  // debugOut.analog[29] = acc[Z];
440
}
431
}
441
 
432
 
442
void analog_updateAirPressure(void) {
433
void analog_updateAirPressure(void) {
443
  static uint16_t pressureAutorangingWait = 25;
434
  static uint16_t pressureAutorangingWait = 25;
444
  uint16_t rawAirPressure;
435
  uint16_t rawAirPressure;
445
  int16_t newrange;
436
  int16_t newrange;
446
  // air pressure
437
  // air pressure
447
  if (pressureAutorangingWait) {
438
  if (pressureAutorangingWait) {
448
    //A range switch was done recently. Wait for steadying.
439
    //A range switch was done recently. Wait for steadying.
449
    pressureAutorangingWait--;
440
    pressureAutorangingWait--;
450
  } else {
441
  } else {
451
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
442
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
452
    if (rawAirPressure < MIN_RAWPRESSURE) {
443
    if (rawAirPressure < MIN_RAWPRESSURE) {
453
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
444
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
454
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
445
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
455
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
446
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
456
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
447
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
457
        OCR0A = newrange;
448
        OCR0A = newrange;
458
      } else {
449
      } else {
459
        if (OCR0A) {
450
        if (OCR0A) {
460
          OCR0A--;
451
          OCR0A--;
461
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
452
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
462
        }
453
        }
463
      }
454
      }
464
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
455
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
465
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
456
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
466
      // If near the end, make a limited increase
457
      // If near the end, make a limited increase
467
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
458
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
468
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
459
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
469
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
460
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
470
        OCR0A = newrange;
461
        OCR0A = newrange;
471
      } else {
462
      } else {
472
        if (OCR0A < 254) {
463
        if (OCR0A < 254) {
473
          OCR0A++;
464
          OCR0A++;
474
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
465
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
475
        }
466
        }
476
      }
467
      }
477
    }
468
    }
478
   
469
   
479
    // Even if the sample is off-range, use it.
470
    // Even if the sample is off-range, use it.
480
    simpleAirPressure = getSimplePressure(rawAirPressure);
471
    simpleAirPressure = getSimplePressure(rawAirPressure);
481
    debugOut.analog[6] = rawAirPressure;
472
    debugOut.analog[6] = rawAirPressure;
482
    debugOut.analog[7] = simpleAirPressure;
473
    debugOut.analog[7] = simpleAirPressure;
483
   
474
   
484
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
475
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
485
      // Danger: pressure near lower end of range. If the measurement saturates, the
476
      // Danger: pressure near lower end of range. If the measurement saturates, the
486
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
477
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
487
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
478
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
488
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
479
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
489
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
480
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
490
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
481
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
491
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
482
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
492
      // Danger: pressure near upper end of range. If the measurement saturates, the
483
      // Danger: pressure near upper end of range. If the measurement saturates, the
493
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
484
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
494
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
485
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
495
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
486
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
496
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
487
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
497
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
488
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
498
    } else {
489
    } else {
499
      // normal case.
490
      // normal case.
500
      // If AIRPRESSURE_OVERSAMPLING is an odd number we only want to add half the double sample.
491
      // If AIRPRESSURE_OVERSAMPLING is an odd number we only want to add half the double sample.
501
      // The 2 cases above (end of range) are ignored for this.
492
      // The 2 cases above (end of range) are ignored for this.
502
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
493
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
503
          airPressureSum += simpleAirPressure;
494
          airPressureSum += simpleAirPressure;
504
    }
495
    }
505
   
496
   
506
    // 2 samples were added.
497
    // 2 samples were added.
507
    pressureMeasurementCount += 2;
498
    pressureMeasurementCount += 2;
508
    // Assumption here: AIRPRESSURE_OVERSAMPLING is even (well we all know it's 14 haha...)
499
    // Assumption here: AIRPRESSURE_OVERSAMPLING is even (well we all know it's 14 haha...)
509
    if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING) {
500
    if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING) {
510
 
501
 
511
      // The best oversampling count is 14.5. We add a quarter of the double ADC value to get the final half.
502
      // The best oversampling count is 14.5. We add a quarter of the double ADC value to get the final half.
512
      airPressureSum += simpleAirPressure >> 2;
503
      airPressureSum += simpleAirPressure >> 2;
513
 
504
 
514
      uint32_t lastFilteredAirPressure = filteredAirPressure;
505
      uint32_t lastFilteredAirPressure = filteredAirPressure;
515
 
506
 
516
      if (!staticParams.airpressureWindowLength) {
507
      if (!staticParams.airpressureWindowLength) {
517
          filteredAirPressure = (filteredAirPressure * (staticParams.airpressureFilterConstant - 1)
508
          filteredAirPressure = (filteredAirPressure * (staticParams.airpressureFilterConstant - 1)
518
                          + airPressureSum + staticParams.airpressureFilterConstant / 2) / staticParams.airpressureFilterConstant;
509
                          + airPressureSum + staticParams.airpressureFilterConstant / 2) / staticParams.airpressureFilterConstant;
519
      } else {
510
      } else {
520
          // use windowed.
511
          // use windowed.
521
          windowedAirPressure += simpleAirPressure;
512
          windowedAirPressure += simpleAirPressure;
522
          windowedAirPressure -= airPressureWindow[windowPtr];
513
          windowedAirPressure -= airPressureWindow[windowPtr];
523
          airPressureWindow[windowPtr++] = simpleAirPressure;
514
          airPressureWindow[windowPtr++] = simpleAirPressure;
524
          if (windowPtr >= staticParams.airpressureWindowLength) windowPtr = 0;
515
          if (windowPtr >= staticParams.airpressureWindowLength) windowPtr = 0;
525
          filteredAirPressure = windowedAirPressure / staticParams.airpressureWindowLength;
516
          filteredAirPressure = windowedAirPressure / staticParams.airpressureWindowLength;
526
      }
517
      }
527
 
518
 
528
      // positive diff of pressure
519
      // positive diff of pressure
529
      int16_t diff = filteredAirPressure - lastFilteredAirPressure;
520
      int16_t diff = filteredAirPressure - lastFilteredAirPressure;
530
      // is a negative diff of height.
521
      // is a negative diff of height.
531
      dHeight -= diff;
522
      dHeight -= diff;
532
      // remove old sample (fifo) from window.
523
      // remove old sample (fifo) from window.
533
      dHeight += dAirPressureWindow[dWindowPtr];
524
      dHeight += dAirPressureWindow[dWindowPtr];
534
      dAirPressureWindow[dWindowPtr++] = diff;
525
      dAirPressureWindow[dWindowPtr++] = diff;
535
      if (dWindowPtr >= staticParams.airpressureDWindowLength) dWindowPtr = 0;
526
      if (dWindowPtr >= staticParams.airpressureDWindowLength) dWindowPtr = 0;
536
      pressureMeasurementCount = airPressureSum = 0;
527
      pressureMeasurementCount = airPressureSum = 0;
537
    }
528
    }
538
  }
529
  }
539
}
530
}
540
 
531
 
541
void analog_updateBatteryVoltage(void) {
532
void analog_updateBatteryVoltage(void) {
542
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
533
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
543
  // This is divided by 3 --> 10.34 counts per volt.
534
  // This is divided by 3 --> 10.34 counts per volt.
544
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
535
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
545
}
536
}
546
 
537
 
547
void analog_update(void) {
538
void analog_update(void) {
548
  analog_updateGyros();
539
  analog_updateGyros();
549
  analog_updateAccelerometers();
540
  analog_updateAccelerometers();
550
  analog_updateAirPressure();
541
  analog_updateAirPressure();
551
  analog_updateBatteryVoltage();
542
  analog_updateBatteryVoltage();
552
#ifdef USE_MK3MAG
543
#ifdef USE_MK3MAG
553
  magneticHeading = volatileMagneticHeading;
544
  magneticHeading = volatileMagneticHeading;
554
#endif
545
#endif
555
}
546
}
556
 
547
 
557
void analog_setNeutral() {
548
void analog_setNeutral() {
558
  gyro_init();
549
  gyro_init();
559
 
550
 
560
  if (gyroOffset_readFromEEProm()) {
551
  if (gyroOffset_readFromEEProm()) {
561
    printf("gyro offsets invalid%s",recal);
552
    printf("gyro offsets invalid%s",recal);
562
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
553
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
563
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
554
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
564
  }
555
  }
565
 
556
 
566
  if (accOffset_readFromEEProm()) {
557
  if (accOffset_readFromEEProm()) {
567
    printf("acc. meter offsets invalid%s",recal);
558
    printf("acc. meter offsets invalid%s",recal);
568
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
559
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
569
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
560
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
570
  }
561
  }
571
 
562
 
572
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
563
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
573
  for (uint8_t i=PITCH; i<=ROLL; i++) {
564
  for (uint8_t i=PITCH; i<=ROLL; i++) {
574
          gyroNoisePeak[i] = 0;
565
          gyroNoisePeak[i] = 0;
575
          accNoisePeak[i] = 0;
566
          accNoisePeak[i] = 0;
576
          gyroD[i] = 0;
567
          gyroD[i] = 0;
577
          for (uint8_t j=0; j<GYRO_D_WINDOW_LENGTH; j++) {
568
          for (uint8_t j=0; j<GYRO_D_WINDOW_LENGTH; j++) {
578
                  gyroDWindow[i][j] = 0;
569
                  gyroDWindow[i][j] = 0;
579
          }
570
          }
580
  }
571
  }
581
  // Setting offset values has an influence in the analog.c ISR
572
  // Setting offset values has an influence in the analog.c ISR
582
  // Therefore run measurement for 100ms to achive stable readings
573
  // Therefore run measurement for 100ms to achive stable readings
583
  delay_ms_with_adc_measurement(100, 0);
574
  delay_ms_with_adc_measurement(100, 0);
584
 
575
 
585
  gyroActivity = 0;
576
  gyroActivity = 0;
586
}
577
}
587
 
578
 
588
void analog_calibrateGyros(void) {
579
void analog_calibrateGyros(void) {
589
#define GYRO_OFFSET_CYCLES 32
580
#define GYRO_OFFSET_CYCLES 32
590
  uint8_t i, axis;
581
  uint8_t i, axis;
591
  int32_t offsets[3] = { 0, 0, 0 };
582
  int32_t offsets[3] = { 0, 0, 0 };
592
  gyro_calibrate();
583
  gyro_calibrate();
593
 
584
 
594
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
585
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
595
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
586
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
596
    delay_ms_with_adc_measurement(10, 1);
587
    delay_ms_with_adc_measurement(10, 1);
597
    for (axis = PITCH; axis <= YAW; axis++) {
588
    for (axis = PITCH; axis <= YAW; axis++) {
598
      offsets[axis] += rawGyroValue(axis);
589
      offsets[axis] += rawGyroValue(axis);
599
    }
590
    }
600
  }
591
  }
601
 
592
 
602
  for (axis = PITCH; axis <= YAW; axis++) {
593
  for (axis = PITCH; axis <= YAW; axis++) {
603
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
594
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
604
 
595
 
605
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
596
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
606
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
597
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
607
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
598
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
608
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
599
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
609
  }
600
  }
610
 
601
 
611
  gyroOffset_writeToEEProm();  
602
  gyroOffset_writeToEEProm();  
612
  startAnalogConversionCycle();
603
  startAnalogConversionCycle();
613
}
604
}
614
 
605
 
615
/*
606
/*
616
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
607
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
617
 * Does not (!} update the local variables. This must be done with a
608
 * Does not (!} update the local variables. This must be done with a
618
 * call to analog_calibrate() - this always (?) is done by the caller
609
 * call to analog_calibrate() - this always (?) is done by the caller
619
 * anyway. There would be nothing wrong with updating the variables
610
 * anyway. There would be nothing wrong with updating the variables
620
 * directly from here, though.
611
 * directly from here, though.
621
 */
612
 */
622
void analog_calibrateAcc(void) {
613
void analog_calibrateAcc(void) {
623
#define ACC_OFFSET_CYCLES 32
614
#define ACC_OFFSET_CYCLES 32
624
  uint8_t i, axis;
615
  uint8_t i, axis;
625
  int32_t offsets[3] = { 0, 0, 0 };
616
  int32_t offsets[3] = { 0, 0, 0 };
626
 
617
 
627
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
618
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
628
    delay_ms_with_adc_measurement(10, 1);
619
    delay_ms_with_adc_measurement(10, 1);
629
    for (axis = PITCH; axis <= YAW; axis++) {
620
    for (axis = PITCH; axis <= YAW; axis++) {
630
      offsets[axis] += rawAccValue(axis);
621
      offsets[axis] += rawAccValue(axis);
631
    }
622
    }
632
  }
623
  }
633
 
624
 
634
  for (axis = PITCH; axis <= YAW; axis++) {
625
  for (axis = PITCH; axis <= YAW; axis++) {
635
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
626
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
636
    int16_t min,max;
627
    int16_t min,max;
637
    if (axis==Z) {
628
    if (axis==Z) {
638
        if (IMUConfig.imuReversedFlags & IMU_REVERSE_ACC_Z) {
629
        if (IMUConfig.imuReversedFlags & IMU_REVERSE_ACC_Z) {
639
        // TODO: This assumes a sensitivity of +/- 2g.
630
        // TODO: This assumes a sensitivity of +/- 2g.
640
                min = (256-200) * ACC_OVERSAMPLING_Z;
631
                min = (256-200) * ACC_OVERSAMPLING_Z;
641
                        max = (256+200) * ACC_OVERSAMPLING_Z;
632
                        max = (256+200) * ACC_OVERSAMPLING_Z;
642
        } else {
633
        } else {
643
        // TODO: This assumes a sensitivity of +/- 2g.
634
        // TODO: This assumes a sensitivity of +/- 2g.
644
                min = (768-200) * ACC_OVERSAMPLING_Z;
635
                min = (768-200) * ACC_OVERSAMPLING_Z;
645
                        max = (768+200) * ACC_OVERSAMPLING_Z;
636
                        max = (768+200) * ACC_OVERSAMPLING_Z;
646
        }
637
        }
647
    } else {
638
    } else {
648
        min = (512-200) * ACC_OVERSAMPLING_XY;
639
        min = (512-200) * ACC_OVERSAMPLING_XY;
649
        max = (512+200) * ACC_OVERSAMPLING_XY;
640
        max = (512+200) * ACC_OVERSAMPLING_XY;
650
    }
641
    }
651
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
642
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
652
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
643
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
653
    }
644
    }
654
  }
645
  }
655
 
646
 
656
  accOffset_writeToEEProm();
647
  accOffset_writeToEEProm();
657
  startAnalogConversionCycle();
648
  startAnalogConversionCycle();
658
}
649
}
659
 
650
 
660
void analog_setGround() {
651
void analog_setGround() {
661
  groundPressure = filteredAirPressure;
652
  groundPressure = filteredAirPressure;
662
}
653
}
663
 
654
 
664
int32_t analog_getHeight(void) {
655
int32_t analog_getHeight(void) {
665
  return groundPressure - filteredAirPressure;
656
  return groundPressure - filteredAirPressure;
666
}
657
}
667
 
658
 
668
int16_t analog_getDHeight(void) {
659
int16_t analog_getDHeight(void) {
669
/*
660
/*
670
        int16_t result = 0;
661
        int16_t result = 0;
671
        for (int i=0; i<staticParams.airpressureDWindowLength; i++) {
662
        for (int i=0; i<staticParams.airpressureDWindowLength; i++) {
672
                result -= dAirPressureWindow[i]; // minus pressure is plus height.
663
                result -= dAirPressureWindow[i]; // minus pressure is plus height.
673
        }
664
        }
674
  // dHeight = -dPressure, so here it is the old pressure minus the current, not opposite.
665
  // dHeight = -dPressure, so here it is the old pressure minus the current, not opposite.
675
  return result;
666
  return result;
676
*/
667
*/
677
  return dHeight;
668
  return dHeight;
678
}
669
}
679
 
670