Subversion Repositories FlightCtrl

Rev

Rev 2051 | Rev 2069 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2051 Rev 2052
1
#include <avr/io.h>
1
#include <avr/io.h>
2
#include <avr/interrupt.h>
2
#include <avr/interrupt.h>
3
#include <avr/pgmspace.h>
3
#include <avr/pgmspace.h>
4
 
4
 
5
#include "analog.h"
5
#include "analog.h"
6
#include "attitude.h"
6
#include "attitude.h"
7
#include "sensors.h"
7
#include "sensors.h"
8
#include "printf_P.h"
8
#include "printf_P.h"
9
#include "mk3mag.h"
9
#include "mk3mag.h"
10
 
10
 
11
// for Delay functions
11
// for Delay functions
12
#include "timer0.h"
12
#include "timer0.h"
13
 
-
 
14
// For debugOut
-
 
15
#include "uart0.h"
-
 
16
 
13
 
17
// For reading and writing acc. meter offsets.
14
// For reading and writing acc. meter offsets.
18
#include "eeprom.h"
15
#include "eeprom.h"
19
 
16
 
20
// For debugOut.digital
17
// For debugOut
21
#include "output.h"
18
#include "output.h"
22
 
19
 
23
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
20
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
24
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
21
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
25
 
22
 
26
const char* recal = ", recalibration needed.";
23
const char* recal = ", recalibration needed.";
27
 
24
 
28
/*
25
/*
29
 * For each A/D conversion cycle, each analog channel is sampled a number of times
26
 * For each A/D conversion cycle, each analog channel is sampled a number of times
30
 * (see array channelsForStates), and the results for each channel are summed.
27
 * (see array channelsForStates), and the results for each channel are summed.
31
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
28
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
32
 * They are exported in the analog.h file - but please do not use them! The only
29
 * They are exported in the analog.h file - but please do not use them! The only
33
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
30
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
34
 * the offsets with the DAC.
31
 * the offsets with the DAC.
35
 */
32
 */
36
volatile uint16_t sensorInputs[8];
33
volatile uint16_t sensorInputs[8];
37
int16_t acc[3];
34
int16_t acc[3];
38
int16_t filteredAcc[3] = { 0,0,0 };
35
int16_t filteredAcc[3] = { 0,0,0 };
39
 
36
 
40
/*
37
/*
41
 * These 4 exported variables are zero-offset. The "PID" ones are used
38
 * These 4 exported variables are zero-offset. The "PID" ones are used
42
 * in the attitude control as rotation rates. The "ATT" ones are for
39
 * in the attitude control as rotation rates. The "ATT" ones are for
43
 * integration to angles.
40
 * integration to angles.
44
 */
41
 */
45
int16_t gyro_PID[2];
42
int16_t gyro_PID[2];
46
int16_t gyro_ATT[2];
43
int16_t gyro_ATT[2];
47
int16_t gyroD[2];
44
int16_t gyroD[2];
48
int16_t yawGyro;
45
int16_t yawGyro;
49
int16_t magneticHeading;
46
int16_t magneticHeading;
50
 
47
 
51
int32_t groundPressure;
48
int32_t groundPressure;
52
 
49
 
53
/*
50
/*
54
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
51
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
55
 * standing still. They are used for adjusting the gyro and acc. meter values
52
 * standing still. They are used for adjusting the gyro and acc. meter values
56
 * to be centered on zero.
53
 * to be centered on zero.
57
 */
54
 */
58
 
55
 
59
sensorOffset_t gyroOffset;
56
sensorOffset_t gyroOffset;
60
sensorOffset_t accOffset;
57
sensorOffset_t accOffset;
61
sensorOffset_t gyroAmplifierOffset;
58
sensorOffset_t gyroAmplifierOffset;
62
 
59
 
63
/*
60
/*
64
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
61
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
65
 * If a sensor is used in an orientation where one but not both of the axes has
62
 * If a sensor is used in an orientation where one but not both of the axes has
66
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
63
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
67
 * Transform:
64
 * Transform:
68
 * pitch <- pp*pitch + pr*roll
65
 * pitch <- pp*pitch + pr*roll
69
 * roll  <- rp*pitch + rr*roll
66
 * roll  <- rp*pitch + rr*roll
70
 * Not reversed, GYRO_QUADRANT:
67
 * Not reversed, GYRO_QUADRANT:
71
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
68
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
72
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
69
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
73
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
70
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
74
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
71
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
75
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
72
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
76
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
73
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
77
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
74
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
78
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
75
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
79
 * Reversed, GYRO_QUADRANT:
76
 * Reversed, GYRO_QUADRANT:
80
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
77
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
81
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
78
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
82
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
79
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
83
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
80
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
84
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
81
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
85
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
82
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
86
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
83
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
87
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
84
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
88
 */
85
 */
89
 
86
 
90
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
87
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
91
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
88
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
92
  // Pitch to Pitch part
89
  // Pitch to Pitch part
93
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
90
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
94
  // Roll to Pitch part
91
  // Roll to Pitch part
95
  int8_t xy = rotationTab[(quadrant+2)%8];
92
  int8_t xy = rotationTab[(quadrant+2)%8];
96
  // Pitch to Roll part
93
  // Pitch to Roll part
97
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
94
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
98
  // Roll to Roll part
95
  // Roll to Roll part
99
  int8_t yy = rotationTab[quadrant];
96
  int8_t yy = rotationTab[quadrant];
100
 
97
 
101
  int16_t xIn = result[0];
98
  int16_t xIn = result[0];
102
  result[0] = xx*xIn + xy*result[1];
99
  result[0] = xx*xIn + xy*result[1];
103
  result[1] = yx*xIn + yy*result[1];
100
  result[1] = yx*xIn + yy*result[1];
104
 
101
 
105
  if (quadrant & 1) {
102
  if (quadrant & 1) {
106
        // A rotation was used above, where the factors were too large by sqrt(2).
103
        // A rotation was used above, where the factors were too large by sqrt(2).
107
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
104
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
108
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
105
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
109
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
106
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
110
        result[0] = (result[0]*11) >> 4;
107
        result[0] = (result[0]*11) >> 4;
111
        result[1] = (result[1]*11) >> 4;
108
        result[1] = (result[1]*11) >> 4;
112
  }
109
  }
113
}
110
}
114
 
111
 
115
/*
112
/*
116
 * Air pressure
113
 * Air pressure
117
 */
114
 */
118
volatile uint8_t rangewidth = 105;
115
volatile uint8_t rangewidth = 105;
119
 
116
 
120
// Direct from sensor, irrespective of range.
117
// Direct from sensor, irrespective of range.
121
// volatile uint16_t rawAirPressure;
118
// volatile uint16_t rawAirPressure;
122
 
119
 
123
// Value of 2 samples, with range.
120
// Value of 2 samples, with range.
124
uint16_t simpleAirPressure;
121
uint16_t simpleAirPressure;
125
 
122
 
126
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
123
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
127
int32_t filteredAirPressure;
124
int32_t filteredAirPressure;
128
int32_t lastFilteredAirPressure;
125
int32_t lastFilteredAirPressure;
129
 
126
 
130
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
127
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
131
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
128
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
132
int32_t windowedAirPressure;
129
int32_t windowedAirPressure;
133
uint8_t windowPtr;
130
uint8_t windowPtr;
134
 
131
 
135
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
132
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
136
int32_t airPressureSum;
133
int32_t airPressureSum;
137
 
134
 
138
// The number of samples summed into airPressureSum so far.
135
// The number of samples summed into airPressureSum so far.
139
uint8_t pressureMeasurementCount;
136
uint8_t pressureMeasurementCount;
140
 
137
 
141
/*
138
/*
142
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
139
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
143
 * That is divided by 3 below, for a final 10.34 per volt.
140
 * That is divided by 3 below, for a final 10.34 per volt.
144
 * So the initial value of 100 is for 9.7 volts.
141
 * So the initial value of 100 is for 9.7 volts.
145
 */
142
 */
146
int16_t UBat = 100;
143
int16_t UBat = 100;
147
 
144
 
148
/*
145
/*
149
 * Control and status.
146
 * Control and status.
150
 */
147
 */
151
volatile uint16_t ADCycleCount = 0;
148
volatile uint16_t ADCycleCount = 0;
152
volatile uint8_t analogDataReady = 1;
149
volatile uint8_t analogDataReady = 1;
153
 
150
 
154
/*
151
/*
155
 * Experiment: Measuring vibration-induced sensor noise.
152
 * Experiment: Measuring vibration-induced sensor noise.
156
 */
153
 */
157
uint16_t gyroNoisePeak[3];
154
uint16_t gyroNoisePeak[3];
158
uint16_t accNoisePeak[3];
155
uint16_t accNoisePeak[3];
159
 
156
 
160
volatile uint8_t adState;
157
volatile uint8_t adState;
161
volatile uint8_t adChannel;
158
volatile uint8_t adChannel;
162
 
159
 
163
// ADC channels
160
// ADC channels
164
#define AD_GYRO_YAW       0
161
#define AD_GYRO_YAW       0
165
#define AD_GYRO_ROLL      1
162
#define AD_GYRO_ROLL      1
166
#define AD_GYRO_PITCH     2
163
#define AD_GYRO_PITCH     2
167
#define AD_AIRPRESSURE    3
164
#define AD_AIRPRESSURE    3
168
#define AD_UBAT           4
165
#define AD_UBAT           4
169
#define AD_ACC_Z          5
166
#define AD_ACC_Z          5
170
#define AD_ACC_ROLL       6
167
#define AD_ACC_ROLL       6
171
#define AD_ACC_PITCH      7
168
#define AD_ACC_PITCH      7
172
 
169
 
173
/*
170
/*
174
 * Table of AD converter inputs for each state.
171
 * Table of AD converter inputs for each state.
175
 * The number of samples summed for each channel is equal to
172
 * The number of samples summed for each channel is equal to
176
 * the number of times the channel appears in the array.
173
 * the number of times the channel appears in the array.
177
 * The max. number of samples that can be taken in 2 ms is:
174
 * The max. number of samples that can be taken in 2 ms is:
178
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
175
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
179
 * loop needs a little time between reading AD values and
176
 * loop needs a little time between reading AD values and
180
 * re-enabling ADC, the real limit is (how much?) lower.
177
 * re-enabling ADC, the real limit is (how much?) lower.
181
 * The acc. sensor is sampled even if not used - or installed
178
 * The acc. sensor is sampled even if not used - or installed
182
 * at all. The cost is not significant.
179
 * at all. The cost is not significant.
183
 */
180
 */
184
 
181
 
185
const uint8_t channelsForStates[] PROGMEM = {
182
const uint8_t channelsForStates[] PROGMEM = {
186
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
183
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
187
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
184
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
188
 
185
 
189
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
186
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
190
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
187
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
191
 
188
 
192
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
189
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
193
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
190
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
194
  AD_AIRPRESSURE, // at 14, finish air pressure.
191
  AD_AIRPRESSURE, // at 14, finish air pressure.
195
 
192
 
196
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
193
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
197
  AD_GYRO_ROLL,   // at 16, finish roll gyro
194
  AD_GYRO_ROLL,   // at 16, finish roll gyro
198
  AD_UBAT         // at 17, measure battery.
195
  AD_UBAT         // at 17, measure battery.
199
};
196
};
200
 
197
 
201
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
198
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
202
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
199
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
203
 
200
 
204
void analog_init(void) {
201
void analog_init(void) {
205
        uint8_t sreg = SREG;
202
        uint8_t sreg = SREG;
206
        // disable all interrupts before reconfiguration
203
        // disable all interrupts before reconfiguration
207
        cli();
204
        cli();
208
 
205
 
209
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
206
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
210
        DDRA = 0x00;
207
        DDRA = 0x00;
211
        PORTA = 0x00;
208
        PORTA = 0x00;
212
        // Digital Input Disable Register 0
209
        // Digital Input Disable Register 0
213
        // Disable digital input buffer for analog adc_channel pins
210
        // Disable digital input buffer for analog adc_channel pins
214
        DIDR0 = 0xFF;
211
        DIDR0 = 0xFF;
215
        // external reference, adjust data to the right
212
        // external reference, adjust data to the right
216
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
213
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
217
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
214
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
218
        ADMUX = (ADMUX & 0xE0);
215
        ADMUX = (ADMUX & 0xE0);
219
        //Set ADC Control and Status Register A
216
        //Set ADC Control and Status Register A
220
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
217
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
221
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
218
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
222
        //Set ADC Control and Status Register B
219
        //Set ADC Control and Status Register B
223
        //Trigger Source to Free Running Mode
220
        //Trigger Source to Free Running Mode
224
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
221
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
225
 
222
 
226
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
223
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
227
          airPressureWindow[i] = 0;
224
          airPressureWindow[i] = 0;
228
        }
225
        }
229
    windowedAirPressure = 0;
226
    windowedAirPressure = 0;
230
 
227
 
231
        startAnalogConversionCycle();
228
        startAnalogConversionCycle();
232
 
229
 
233
        // restore global interrupt flags
230
        // restore global interrupt flags
234
        SREG = sreg;
231
        SREG = sreg;
235
}
232
}
236
 
233
 
237
uint16_t rawGyroValue(uint8_t axis) {
234
uint16_t rawGyroValue(uint8_t axis) {
238
        return sensorInputs[AD_GYRO_PITCH-axis];
235
        return sensorInputs[AD_GYRO_PITCH-axis];
239
}
236
}
240
 
237
 
241
uint16_t rawAccValue(uint8_t axis) {
238
uint16_t rawAccValue(uint8_t axis) {
242
        return sensorInputs[AD_ACC_PITCH-axis];
239
        return sensorInputs[AD_ACC_PITCH-axis];
243
}
240
}
244
 
241
 
245
void measureNoise(const int16_t sensor,
242
void measureNoise(const int16_t sensor,
246
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
243
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
247
        if (sensor > (int16_t) (*noiseMeasurement)) {
244
        if (sensor > (int16_t) (*noiseMeasurement)) {
248
                *noiseMeasurement = sensor;
245
                *noiseMeasurement = sensor;
249
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
246
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
250
                *noiseMeasurement = -sensor;
247
                *noiseMeasurement = -sensor;
251
        } else if (*noiseMeasurement > damping) {
248
        } else if (*noiseMeasurement > damping) {
252
                *noiseMeasurement -= damping;
249
                *noiseMeasurement -= damping;
253
        } else {
250
        } else {
254
                *noiseMeasurement = 0;
251
                *noiseMeasurement = 0;
255
        }
252
        }
256
}
253
}
257
 
254
 
258
/*
255
/*
259
 * Min.: 0
256
 * Min.: 0
260
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
257
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
261
 */
258
 */
262
uint16_t getSimplePressure(int advalue) {
259
uint16_t getSimplePressure(int advalue) {
263
        uint16_t result = (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
260
        uint16_t result = (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
264
        result += (acc[Z] * (staticParams.airpressureAccZCorrection-128)) >> 10;
261
        result += (acc[Z] * (staticParams.airpressureAccZCorrection-128)) >> 10;
265
        return result;
262
        return result;
266
}
263
}
267
 
264
 
268
void startAnalogConversionCycle(void) {
265
void startAnalogConversionCycle(void) {
269
  analogDataReady = 0;
266
  analogDataReady = 0;
270
 
267
 
271
  // Stop the sampling. Cycle is over.
268
  // Stop the sampling. Cycle is over.
272
  for (uint8_t i = 0; i < 8; i++) {
269
  for (uint8_t i = 0; i < 8; i++) {
273
    sensorInputs[i] = 0;
270
    sensorInputs[i] = 0;
274
  }
271
  }
275
  adState = 0;
272
  adState = 0;
276
  adChannel = AD_GYRO_PITCH;
273
  adChannel = AD_GYRO_PITCH;
277
  ADMUX = (ADMUX & 0xE0) | adChannel;
274
  ADMUX = (ADMUX & 0xE0) | adChannel;
278
  startADC();
275
  startADC();
279
}
276
}
280
 
277
 
281
/*****************************************************
278
/*****************************************************
282
 * Interrupt Service Routine for ADC
279
 * Interrupt Service Routine for ADC
283
 * Runs at 312.5 kHz or 3.2 �s. When all states are
280
 * Runs at 312.5 kHz or 3.2 �s. When all states are
284
 * processed further conversions are stopped.
281
 * processed further conversions are stopped.
285
 *****************************************************/
282
 *****************************************************/
286
ISR(ADC_vect) {
283
ISR(ADC_vect) {
287
  sensorInputs[adChannel] += ADC;
284
  sensorInputs[adChannel] += ADC;
288
  // set up for next state.
285
  // set up for next state.
289
  adState++;
286
  adState++;
290
  if (adState < sizeof(channelsForStates)) {
287
  if (adState < sizeof(channelsForStates)) {
291
    adChannel = pgm_read_byte(&channelsForStates[adState]);
288
    adChannel = pgm_read_byte(&channelsForStates[adState]);
292
    // set adc muxer to next adChannel
289
    // set adc muxer to next adChannel
293
    ADMUX = (ADMUX & 0xE0) | adChannel;
290
    ADMUX = (ADMUX & 0xE0) | adChannel;
294
    // after full cycle stop further interrupts
291
    // after full cycle stop further interrupts
295
    startADC();
292
    startADC();
296
  } else {
293
  } else {
297
    ADCycleCount++;
294
    ADCycleCount++;
298
    analogDataReady = 1;
295
    analogDataReady = 1;
299
    // do not restart ADC converter. 
296
    // do not restart ADC converter. 
300
  }
297
  }
301
}
298
}
302
 
299
 
303
void analog_updateGyros(void) {
300
void analog_updateGyros(void) {
304
  // for various filters...
301
  // for various filters...
305
  int16_t tempOffsetGyro[2], tempGyro;
302
  int16_t tempOffsetGyro[2], tempGyro;
306
 
303
 
307
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
304
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
308
  for (uint8_t axis=0; axis<2; axis++) {
305
  for (uint8_t axis=0; axis<2; axis++) {
309
    tempGyro = rawGyroValue(axis);
306
    tempGyro = rawGyroValue(axis);
310
    /*
307
    /*
311
     * Process the gyro data for the PID controller.
308
     * Process the gyro data for the PID controller.
312
     */
309
     */
313
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
310
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
314
    //    gyro with a wider range, and helps counter saturation at full control.
311
    //    gyro with a wider range, and helps counter saturation at full control.
315
   
312
   
316
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
313
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
317
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
314
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
318
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
315
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
319
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
316
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
320
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
317
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
321
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
318
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
322
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
319
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
323
      }
320
      }
324
    }
321
    }
325
 
322
 
326
    // 2) Apply sign and offset, scale before filtering.
323
    // 2) Apply sign and offset, scale before filtering.
327
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
324
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
328
  }
325
  }
329
 
326
 
330
  // 2.1: Transform axes.
327
  // 2.1: Transform axes.
331
  rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
328
  rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
332
 
329
 
333
  for (uint8_t axis=0; axis<2; axis++) {
330
  for (uint8_t axis=0; axis<2; axis++) {
334
        // 3) Filter.
331
        // 3) Filter.
335
    tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / staticParams.gyroPIDFilterConstant;
332
    tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / staticParams.gyroPIDFilterConstant;
336
 
333
 
337
    // 4) Measure noise.
334
    // 4) Measure noise.
338
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
335
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
339
 
336
 
340
    // 5) Differential measurement.
337
    // 5) Differential measurement.
341
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
338
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
342
 
339
 
343
    // 6) Done.
340
    // 6) Done.
344
    gyro_PID[axis] = tempOffsetGyro[axis];
341
    gyro_PID[axis] = tempOffsetGyro[axis];
345
 
342
 
346
    // Prepare tempOffsetGyro for next calculation below...
343
    // Prepare tempOffsetGyro for next calculation below...
347
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
344
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
348
  }
345
  }
349
 
346
 
350
  /*
347
  /*
351
   * Now process the data for attitude angles.
348
   * Now process the data for attitude angles.
352
   */
349
   */
353
   rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
350
   rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
354
 
351
 
355
   gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
352
   gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
356
   gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
353
   gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
357
 
354
 
358
   debugOut.analog[22 + 0] = gyro_PID[0];
355
   debugOut.analog[22 + 0] = gyro_PID[0];
359
   debugOut.analog[22 + 1] = gyro_PID[1];
356
   debugOut.analog[22 + 1] = gyro_PID[1];
360
 
357
 
361
   debugOut.analog[24 + 0] = gyro_ATT[0];
358
   debugOut.analog[24 + 0] = gyro_ATT[0];
362
   debugOut.analog[24 + 1] = gyro_ATT[1];
359
   debugOut.analog[24 + 1] = gyro_ATT[1];
363
 
360
 
364
  // 2) Filter. This should really be quite unnecessary. The integration should gobble up any noise anyway and the values are not used for anything else.
361
  // 2) Filter. This should really be quite unnecessary. The integration should gobble up any noise anyway and the values are not used for anything else.
365
  // gyro_ATT[PITCH] = (gyro_ATT[PITCH] * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[PITCH]) / staticParams.attitudeGyroFilter;
362
  // gyro_ATT[PITCH] = (gyro_ATT[PITCH] * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[PITCH]) / staticParams.attitudeGyroFilter;
366
  // gyro_ATT[ROLL]  = (gyro_ATT[ROLL]  * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[ROLL])  / staticParams.attitudeGyroFilter;
363
  // gyro_ATT[ROLL]  = (gyro_ATT[ROLL]  * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[ROLL])  / staticParams.attitudeGyroFilter;
367
 
364
 
368
  // Yaw gyro.
365
  // Yaw gyro.
369
  if (staticParams.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
366
  if (staticParams.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
370
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
367
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
371
  else
368
  else
372
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
369
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
373
}
370
}
374
 
371
 
375
void analog_updateAccelerometers(void) {
372
void analog_updateAccelerometers(void) {
376
  // Pitch and roll axis accelerations.
373
  // Pitch and roll axis accelerations.
377
  for (uint8_t axis=0; axis<2; axis++) {
374
  for (uint8_t axis=0; axis<2; axis++) {
378
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
375
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
379
  }
376
  }
380
 
377
 
381
  rotate(acc, staticParams.accQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_ACC_XY);
378
  rotate(acc, staticParams.accQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_ACC_XY);
382
  for(uint8_t axis=0; axis<3; axis++) {
379
  for(uint8_t axis=0; axis<3; axis++) {
383
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
380
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
384
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
381
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
385
  }
382
  }
386
 
383
 
387
  // Z acc.
384
  // Z acc.
388
  if (staticParams.imuReversedFlags & 8)
385
  if (staticParams.imuReversedFlags & 8)
389
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
386
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
390
  else
387
  else
391
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
388
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
392
}
389
}
393
 
390
 
394
void analog_updateAirPressure(void) {
391
void analog_updateAirPressure(void) {
395
  static uint16_t pressureAutorangingWait = 25;
392
  static uint16_t pressureAutorangingWait = 25;
396
  uint16_t rawAirPressure;
393
  uint16_t rawAirPressure;
397
  int16_t newrange;
394
  int16_t newrange;
398
  // air pressure
395
  // air pressure
399
  if (pressureAutorangingWait) {
396
  if (pressureAutorangingWait) {
400
    //A range switch was done recently. Wait for steadying.
397
    //A range switch was done recently. Wait for steadying.
401
    pressureAutorangingWait--;
398
    pressureAutorangingWait--;
402
  } else {
399
  } else {
403
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
400
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
404
    if (rawAirPressure < MIN_RAWPRESSURE) {
401
    if (rawAirPressure < MIN_RAWPRESSURE) {
405
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
402
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
406
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
403
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
407
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
404
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
408
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
405
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
409
        OCR0A = newrange;
406
        OCR0A = newrange;
410
      } else {
407
      } else {
411
        if (OCR0A) {
408
        if (OCR0A) {
412
          OCR0A--;
409
          OCR0A--;
413
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
410
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
414
        }
411
        }
415
      }
412
      }
416
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
413
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
417
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
414
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
418
      // If near the end, make a limited increase
415
      // If near the end, make a limited increase
419
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
416
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
420
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
417
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
421
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
418
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
422
        OCR0A = newrange;
419
        OCR0A = newrange;
423
      } else {
420
      } else {
424
        if (OCR0A < 254) {
421
        if (OCR0A < 254) {
425
          OCR0A++;
422
          OCR0A++;
426
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
423
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
427
        }
424
        }
428
      }
425
      }
429
    }
426
    }
430
   
427
   
431
    // Even if the sample is off-range, use it.
428
    // Even if the sample is off-range, use it.
432
    simpleAirPressure = getSimplePressure(rawAirPressure);
429
    simpleAirPressure = getSimplePressure(rawAirPressure);
433
   
430
   
434
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
431
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
435
      // Danger: pressure near lower end of range. If the measurement saturates, the
432
      // Danger: pressure near lower end of range. If the measurement saturates, the
436
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
433
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
437
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
434
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
438
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
435
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
439
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
436
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
440
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
437
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
441
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
438
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
442
      // Danger: pressure near upper end of range. If the measurement saturates, the
439
      // Danger: pressure near upper end of range. If the measurement saturates, the
443
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
440
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
444
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
441
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
445
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
442
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
446
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
443
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
447
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
444
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
448
    } else {
445
    } else {
449
      // normal case.
446
      // normal case.
450
      // If AIRPRESSURE_OVERSAMPLING is an odd number we only want to add half the double sample.
447
      // If AIRPRESSURE_OVERSAMPLING is an odd number we only want to add half the double sample.
451
      // The 2 cases above (end of range) are ignored for this.
448
      // The 2 cases above (end of range) are ignored for this.
452
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
449
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
453
          airPressureSum += simpleAirPressure;
450
          airPressureSum += simpleAirPressure;
454
    }
451
    }
455
   
452
   
456
    // 2 samples were added.
453
    // 2 samples were added.
457
    pressureMeasurementCount += 2;
454
    pressureMeasurementCount += 2;
458
    // Assumption here: AIRPRESSURE_OVERSAMPLING is even (well we all know it's 14 haha...)
455
    // Assumption here: AIRPRESSURE_OVERSAMPLING is even (well we all know it's 14 haha...)
459
    if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING) {
456
    if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING) {
460
 
457
 
461
      // The best oversampling count is 14.5. We add a quarter of the double ADC value to get the final half.
458
      // The best oversampling count is 14.5. We add a quarter of the double ADC value to get the final half.
462
      airPressureSum += simpleAirPressure >> 2;
459
      airPressureSum += simpleAirPressure >> 2;
463
 
460
 
464
      lastFilteredAirPressure = filteredAirPressure;
461
      lastFilteredAirPressure = filteredAirPressure;
465
 
462
 
466
 
463
 
467
      if (!staticParams.airpressureWindowLength) {
464
      if (!staticParams.airpressureWindowLength) {
468
          filteredAirPressure = (filteredAirPressure * (staticParams.airpressureFilterConstant - 1)
465
          filteredAirPressure = (filteredAirPressure * (staticParams.airpressureFilterConstant - 1)
469
                          + airPressureSum + staticParams.airpressureFilterConstant / 2) / staticParams.airpressureFilterConstant;
466
                          + airPressureSum + staticParams.airpressureFilterConstant / 2) / staticParams.airpressureFilterConstant;
470
      } else {
467
      } else {
471
          // use windowed.
468
          // use windowed.
472
          windowedAirPressure += simpleAirPressure;
469
          windowedAirPressure += simpleAirPressure;
473
          windowedAirPressure -= airPressureWindow[windowPtr];
470
          windowedAirPressure -= airPressureWindow[windowPtr];
474
          airPressureWindow[windowPtr] = simpleAirPressure;
471
          airPressureWindow[windowPtr] = simpleAirPressure;
475
          windowPtr = (windowPtr+1) % staticParams.airpressureWindowLength;
472
          windowPtr = (windowPtr+1) % staticParams.airpressureWindowLength;
476
          filteredAirPressure = windowedAirPressure / staticParams.airpressureWindowLength;
473
          filteredAirPressure = windowedAirPressure / staticParams.airpressureWindowLength;
477
      }
474
      }
478
 
475
 
479
      pressureMeasurementCount = airPressureSum = 0;
476
      pressureMeasurementCount = airPressureSum = 0;
480
    }
477
    }
481
  }
478
  }
482
}
479
}
483
 
480
 
484
void analog_updateBatteryVoltage(void) {
481
void analog_updateBatteryVoltage(void) {
485
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
482
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
486
  // This is divided by 3 --> 10.34 counts per volt.
483
  // This is divided by 3 --> 10.34 counts per volt.
487
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
484
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
488
}
485
}
489
 
486
 
490
void analog_update(void) {
487
void analog_update(void) {
491
  analog_updateGyros();
488
  analog_updateGyros();
492
  analog_updateAccelerometers();
489
  analog_updateAccelerometers();
493
  analog_updateAirPressure();
490
  analog_updateAirPressure();
494
  analog_updateBatteryVoltage();
491
  analog_updateBatteryVoltage();
-
 
492
#ifdef USE_MK3MAG
495
  debugOut.analog[12] = magneticHeading = volatileMagneticHeading;
493
  debugOut.analog[12] = magneticHeading = volatileMagneticHeading;
-
 
494
#endif
496
}
495
}
497
 
496
 
498
void analog_setNeutral() {
497
void analog_setNeutral() {
499
  gyro_init();
498
  gyro_init();
500
 
499
 
501
  if (gyroOffset_readFromEEProm()) {
500
  if (gyroOffset_readFromEEProm()) {
502
    printf("gyro offsets invalid%s",recal);
501
    printf("gyro offsets invalid%s",recal);
503
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
502
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
504
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
503
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
505
  }
504
  }
506
 
505
 
507
  if (accOffset_readFromEEProm()) {
506
  if (accOffset_readFromEEProm()) {
508
    printf("acc. meter offsets invalid%s",recal);
507
    printf("acc. meter offsets invalid%s",recal);
509
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
508
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
510
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
509
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
511
  }
510
  }
512
 
511
 
513
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
512
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
514
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
513
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
515
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
514
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
516
 
515
 
517
  // Setting offset values has an influence in the analog.c ISR
516
  // Setting offset values has an influence in the analog.c ISR
518
  // Therefore run measurement for 100ms to achive stable readings
517
  // Therefore run measurement for 100ms to achive stable readings
519
  delay_ms_with_adc_measurement(100, 0);
518
  delay_ms_with_adc_measurement(100, 0);
520
 
519
 
521
  // Rough estimate. Hmm no nothing happens at calibration anyway.
520
  // Rough estimate. Hmm no nothing happens at calibration anyway.
522
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_OVERSAMPLING/2);
521
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_OVERSAMPLING/2);
523
  // pressureMeasurementCount = 0;
522
  // pressureMeasurementCount = 0;
524
}
523
}
525
 
524
 
526
void analog_calibrateGyros(void) {
525
void analog_calibrateGyros(void) {
527
#define GYRO_OFFSET_CYCLES 32
526
#define GYRO_OFFSET_CYCLES 32
528
  uint8_t i, axis;
527
  uint8_t i, axis;
529
  int32_t offsets[3] = { 0, 0, 0 };
528
  int32_t offsets[3] = { 0, 0, 0 };
530
  gyro_calibrate();
529
  gyro_calibrate();
531
 
530
 
532
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
531
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
533
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
532
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
534
    delay_ms_with_adc_measurement(10, 1);
533
    delay_ms_with_adc_measurement(10, 1);
535
    for (axis = PITCH; axis <= YAW; axis++) {
534
    for (axis = PITCH; axis <= YAW; axis++) {
536
      offsets[axis] += rawGyroValue(axis);
535
      offsets[axis] += rawGyroValue(axis);
537
    }
536
    }
538
  }
537
  }
539
 
538
 
540
  for (axis = PITCH; axis <= YAW; axis++) {
539
  for (axis = PITCH; axis <= YAW; axis++) {
541
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
540
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
542
 
541
 
543
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
542
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
544
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
543
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
545
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
544
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
546
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
545
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
547
  }
546
  }
548
 
547
 
549
  gyroOffset_writeToEEProm();  
548
  gyroOffset_writeToEEProm();  
550
  startAnalogConversionCycle();
549
  startAnalogConversionCycle();
551
}
550
}
552
 
551
 
553
/*
552
/*
554
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
553
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
555
 * Does not (!} update the local variables. This must be done with a
554
 * Does not (!} update the local variables. This must be done with a
556
 * call to analog_calibrate() - this always (?) is done by the caller
555
 * call to analog_calibrate() - this always (?) is done by the caller
557
 * anyway. There would be nothing wrong with updating the variables
556
 * anyway. There would be nothing wrong with updating the variables
558
 * directly from here, though.
557
 * directly from here, though.
559
 */
558
 */
560
void analog_calibrateAcc(void) {
559
void analog_calibrateAcc(void) {
561
#define ACC_OFFSET_CYCLES 32
560
#define ACC_OFFSET_CYCLES 32
562
  uint8_t i, axis;
561
  uint8_t i, axis;
563
  int32_t offsets[3] = { 0, 0, 0 };
562
  int32_t offsets[3] = { 0, 0, 0 };
564
 
563
 
565
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
564
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
566
    delay_ms_with_adc_measurement(10, 1);
565
    delay_ms_with_adc_measurement(10, 1);
567
    for (axis = PITCH; axis <= YAW; axis++) {
566
    for (axis = PITCH; axis <= YAW; axis++) {
568
      offsets[axis] += rawAccValue(axis);
567
      offsets[axis] += rawAccValue(axis);
569
    }
568
    }
570
  }
569
  }
571
 
570
 
572
  for (axis = PITCH; axis <= YAW; axis++) {
571
  for (axis = PITCH; axis <= YAW; axis++) {
573
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
572
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
574
    int16_t min,max;
573
    int16_t min,max;
575
    if (axis==Z) {
574
    if (axis==Z) {
576
        if (staticParams.imuReversedFlags & IMU_REVERSE_ACC_Z) {
575
        if (staticParams.imuReversedFlags & IMU_REVERSE_ACC_Z) {
577
        // TODO: This assumes a sensitivity of +/- 2g.
576
        // TODO: This assumes a sensitivity of +/- 2g.
578
                min = (256-200) * ACC_OVERSAMPLING_Z;
577
                min = (256-200) * ACC_OVERSAMPLING_Z;
579
                        max = (256+200) * ACC_OVERSAMPLING_Z;
578
                        max = (256+200) * ACC_OVERSAMPLING_Z;
580
        } else {
579
        } else {
581
        // TODO: This assumes a sensitivity of +/- 2g.
580
        // TODO: This assumes a sensitivity of +/- 2g.
582
                min = (768-200) * ACC_OVERSAMPLING_Z;
581
                min = (768-200) * ACC_OVERSAMPLING_Z;
583
                        max = (768+200) * ACC_OVERSAMPLING_Z;
582
                        max = (768+200) * ACC_OVERSAMPLING_Z;
584
        }
583
        }
585
    } else {
584
    } else {
586
        min = (512-200) * ACC_OVERSAMPLING_XY;
585
        min = (512-200) * ACC_OVERSAMPLING_XY;
587
        max = (512+200) * ACC_OVERSAMPLING_XY;
586
        max = (512+200) * ACC_OVERSAMPLING_XY;
588
    }
587
    }
589
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
588
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
590
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
589
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
591
    }
590
    }
592
  }
591
  }
593
 
592
 
594
  accOffset_writeToEEProm();
593
  accOffset_writeToEEProm();
595
  startAnalogConversionCycle();
594
  startAnalogConversionCycle();
596
}
595
}
597
 
596
 
598
void analog_setGround() {
597
void analog_setGround() {
599
  groundPressure = filteredAirPressure;
598
  groundPressure = filteredAirPressure;
600
}
599
}
601
 
600
 
602
int32_t analog_getHeight(void) {
601
int32_t analog_getHeight(void) {
603
  return groundPressure - filteredAirPressure;
602
  return groundPressure - filteredAirPressure;
604
}
603
}
605
 
604
 
606
int16_t analog_getDHeight(void) {
605
int16_t analog_getDHeight(void) {
607
  // dHeight = -dPressure, so here it is the old pressure minus the current, not opposite.
606
  // dHeight = -dPressure, so here it is the old pressure minus the current, not opposite.
608
  return lastFilteredAirPressure - filteredAirPressure;
607
  return lastFilteredAirPressure - filteredAirPressure;
609
}
608
}
610
 
609