Subversion Repositories FlightCtrl

Rev

Rev 1961 | Rev 1964 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1961 Rev 1963
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt und genannt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-
 
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <avr/io.h>
52
#include <avr/io.h>
52
#include <avr/interrupt.h>
53
#include <avr/interrupt.h>
53
#include <avr/pgmspace.h>
54
#include <avr/pgmspace.h>
54
 
55
 
55
#include "analog.h"
56
#include "analog.h"
56
#include "attitude.h"
57
#include "attitude.h"
57
#include "sensors.h"
58
#include "sensors.h"
58
 
59
 
59
// for Delay functions
60
// for Delay functions
60
#include "timer0.h"
61
#include "timer0.h"
61
 
62
 
62
// For debugOut
63
// For debugOut
63
#include "uart0.h"
64
#include "uart0.h"
64
 
65
 
65
// For reading and writing acc. meter offsets.
66
// For reading and writing acc. meter offsets.
66
#include "eeprom.h"
67
#include "eeprom.h"
67
 
68
 
68
// For debugOut.digital
69
// For debugOut.digital
69
#include "output.h"
70
#include "output.h"
70
 
71
 
71
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
72
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
72
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
73
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
73
 
74
 
74
/*
75
/*
75
 * For each A/D conversion cycle, each analog channel is sampled a number of times
76
 * For each A/D conversion cycle, each analog channel is sampled a number of times
76
 * (see array channelsForStates), and the results for each channel are summed.
77
 * (see array channelsForStates), and the results for each channel are summed.
77
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
78
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
78
 * They are exported in the analog.h file - but please do not use them! The only
79
 * They are exported in the analog.h file - but please do not use them! The only
79
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
80
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
80
 * the offsets with the DAC.
81
 * the offsets with the DAC.
81
 */
82
 */
82
volatile uint16_t sensorInputs[8];
83
volatile uint16_t sensorInputs[8];
83
volatile int16_t rawGyroSum[3];
84
volatile int16_t rawGyroSum[3];
84
volatile int16_t acc[3];
85
volatile int16_t acc[3];
85
volatile int16_t filteredAcc[2] = { 0,0 };
86
volatile int16_t filteredAcc[2] = { 0,0 };
86
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
87
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
87
 
88
 
88
/*
89
/*
89
 * These 4 exported variables are zero-offset. The "PID" ones are used
90
 * These 4 exported variables are zero-offset. The "PID" ones are used
90
 * in the attitude control as rotation rates. The "ATT" ones are for
91
 * in the attitude control as rotation rates. The "ATT" ones are for
91
 * integration to angles.
92
 * integration to angles.
92
 */
93
 */
93
volatile int16_t gyro_PID[2];
94
volatile int16_t gyro_PID[2];
94
volatile int16_t gyro_ATT[2];
95
volatile int16_t gyro_ATT[2];
95
volatile int16_t gyroD[2];
96
volatile int16_t gyroD[2];
96
volatile int16_t yawGyro;
97
volatile int16_t yawGyro;
97
 
98
 
98
/*
99
/*
99
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
100
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
100
 * standing still. They are used for adjusting the gyro and acc. meter values
101
 * standing still. They are used for adjusting the gyro and acc. meter values
101
 * to be centered on zero.
102
 * to be centered on zero.
102
 */
103
 */
103
 
104
 
104
sensorOffset_t gyroOffset;
105
sensorOffset_t gyroOffset;
105
sensorOffset_t accOffset;
106
sensorOffset_t accOffset;
106
 
107
 
107
/*
108
/*
108
 * This allows some experimentation with the gyro filters.
109
 * This allows some experimentation with the gyro filters.
109
 * Should be replaced by #define's later on...
110
 * Should be replaced by #define's later on...
110
 */
111
 */
111
 
112
 
112
/*
113
/*
113
 * Air pressure
114
 * Air pressure
114
 */
115
 */
115
volatile uint8_t rangewidth = 106;
116
volatile uint8_t rangewidth = 106;
116
 
117
 
117
// Direct from sensor, irrespective of range.
118
// Direct from sensor, irrespective of range.
118
// volatile uint16_t rawAirPressure;
119
// volatile uint16_t rawAirPressure;
119
 
120
 
120
// Value of 2 samples, with range.
121
// Value of 2 samples, with range.
121
volatile uint16_t simpleAirPressure;
122
volatile uint16_t simpleAirPressure;
122
 
123
 
123
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
124
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
124
volatile int32_t filteredAirPressure;
125
volatile int32_t filteredAirPressure;
125
 
126
 
126
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
127
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
127
volatile int32_t airPressureSum;
128
volatile int32_t airPressureSum;
128
 
129
 
129
// The number of samples summed into airPressureSum so far.
130
// The number of samples summed into airPressureSum so far.
130
volatile uint8_t pressureMeasurementCount;
131
volatile uint8_t pressureMeasurementCount;
131
 
132
 
132
/*
133
/*
133
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
134
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
134
 * That is divided by 3 below, for a final 10.34 per volt.
135
 * That is divided by 3 below, for a final 10.34 per volt.
135
 * So the initial value of 100 is for 9.7 volts.
136
 * So the initial value of 100 is for 9.7 volts.
136
 */
137
 */
137
volatile int16_t UBat = 100;
138
volatile int16_t UBat = 100;
138
 
139
 
139
/*
140
/*
140
 * Control and status.
141
 * Control and status.
141
 */
142
 */
142
volatile uint16_t ADCycleCount = 0;
143
volatile uint16_t ADCycleCount = 0;
143
volatile uint8_t analogDataReady = 1;
144
volatile uint8_t analogDataReady = 1;
144
 
145
 
145
/*
146
/*
146
 * Experiment: Measuring vibration-induced sensor noise.
147
 * Experiment: Measuring vibration-induced sensor noise.
147
 */
148
 */
148
volatile uint16_t gyroNoisePeak[2];
149
volatile uint16_t gyroNoisePeak[2];
149
volatile uint16_t accNoisePeak[2];
150
volatile uint16_t accNoisePeak[2];
150
 
151
 
151
// ADC channels
152
// ADC channels
152
#define AD_GYRO_YAW       0
153
#define AD_GYRO_YAW       0
153
#define AD_GYRO_ROLL      1
154
#define AD_GYRO_ROLL      1
154
#define AD_GYRO_PITCH     2
155
#define AD_GYRO_PITCH     2
155
#define AD_AIRPRESSURE    3
156
#define AD_AIRPRESSURE    3
156
#define AD_UBAT           4
157
#define AD_UBAT           4
157
#define AD_ACC_Z          5
158
#define AD_ACC_Z          5
158
#define AD_ACC_ROLL       6
159
#define AD_ACC_ROLL       6
159
#define AD_ACC_PITCH      7
160
#define AD_ACC_PITCH      7
160
 
161
 
161
/*
162
/*
162
 * Table of AD converter inputs for each state.
163
 * Table of AD converter inputs for each state.
163
 * The number of samples summed for each channel is equal to
164
 * The number of samples summed for each channel is equal to
164
 * the number of times the channel appears in the array.
165
 * the number of times the channel appears in the array.
165
 * The max. number of samples that can be taken in 2 ms is:
166
 * The max. number of samples that can be taken in 2 ms is:
166
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
167
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
167
 * loop needs a little time between reading AD values and
168
 * loop needs a little time between reading AD values and
168
 * re-enabling ADC, the real limit is (how much?) lower.
169
 * re-enabling ADC, the real limit is (how much?) lower.
169
 * The acc. sensor is sampled even if not used - or installed
170
 * The acc. sensor is sampled even if not used - or installed
170
 * at all. The cost is not significant.
171
 * at all. The cost is not significant.
171
 */
172
 */
172
 
173
 
173
const uint8_t channelsForStates[] PROGMEM = {
174
const uint8_t channelsForStates[] PROGMEM = {
174
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
175
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
175
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
176
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
176
 
177
 
177
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
178
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
178
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
179
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
179
 
180
 
180
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
181
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
181
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
182
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
182
  AD_AIRPRESSURE, // at 14, finish air pressure.
183
  AD_AIRPRESSURE, // at 14, finish air pressure.
183
 
184
 
184
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
185
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
185
  AD_GYRO_ROLL,   // at 16, finish roll gyro
186
  AD_GYRO_ROLL,   // at 16, finish roll gyro
186
  AD_UBAT         // at 17, measure battery.
187
  AD_UBAT         // at 17, measure battery.
187
};
188
};
188
 
189
 
189
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
190
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
190
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
191
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
191
 
192
 
192
void analog_init(void) {
193
void analog_init(void) {
193
        uint8_t sreg = SREG;
194
        uint8_t sreg = SREG;
194
        // disable all interrupts before reconfiguration
195
        // disable all interrupts before reconfiguration
195
        cli();
196
        cli();
196
 
197
 
197
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
198
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
198
        DDRA = 0x00;
199
        DDRA = 0x00;
199
        PORTA = 0x00;
200
        PORTA = 0x00;
200
        // Digital Input Disable Register 0
201
        // Digital Input Disable Register 0
201
        // Disable digital input buffer for analog adc_channel pins
202
        // Disable digital input buffer for analog adc_channel pins
202
        DIDR0 = 0xFF;
203
        DIDR0 = 0xFF;
203
        // external reference, adjust data to the right
204
        // external reference, adjust data to the right
204
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
205
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
205
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
206
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
206
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
207
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
207
        //Set ADC Control and Status Register A
208
        //Set ADC Control and Status Register A
208
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
209
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
209
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
210
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
210
        //Set ADC Control and Status Register B
211
        //Set ADC Control and Status Register B
211
        //Trigger Source to Free Running Mode
212
        //Trigger Source to Free Running Mode
212
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
213
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
213
 
214
 
214
        startAnalogConversionCycle();
215
        startAnalogConversionCycle();
215
 
216
 
216
        // restore global interrupt flags
217
        // restore global interrupt flags
217
        SREG = sreg;
218
        SREG = sreg;
218
}
219
}
219
 
220
 
220
void measureNoise(const int16_t sensor,
221
void measureNoise(const int16_t sensor,
221
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
222
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
222
        if (sensor > (int16_t) (*noiseMeasurement)) {
223
        if (sensor > (int16_t) (*noiseMeasurement)) {
223
                *noiseMeasurement = sensor;
224
                *noiseMeasurement = sensor;
224
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
225
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
225
                *noiseMeasurement = -sensor;
226
                *noiseMeasurement = -sensor;
226
        } else if (*noiseMeasurement > damping) {
227
        } else if (*noiseMeasurement > damping) {
227
                *noiseMeasurement -= damping;
228
                *noiseMeasurement -= damping;
228
        } else {
229
        } else {
229
                *noiseMeasurement = 0;
230
                *noiseMeasurement = 0;
230
        }
231
        }
231
}
232
}
232
 
233
 
233
/*
234
/*
234
 * Min.: 0
235
 * Min.: 0
235
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
236
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
236
 */
237
 */
237
uint16_t getSimplePressure(int advalue) {
238
uint16_t getSimplePressure(int advalue) {
238
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
239
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
239
}
240
}
240
 
241
 
241
void startAnalogConversionCycle(void) {
242
void startAnalogConversionCycle(void) {
242
  analogDataReady = 0;
243
  analogDataReady = 0;
243
  // Stop the sampling. Cycle is over.
244
  // Stop the sampling. Cycle is over.
244
  for (uint8_t i = 0; i < 8; i++) {
245
  for (uint8_t i = 0; i < 8; i++) {
245
    sensorInputs[i] = 0;
246
    sensorInputs[i] = 0;
246
  }
247
  }
247
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
248
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
248
  startADC();
249
  startADC();
249
}
250
}
250
 
251
 
251
/*****************************************************
252
/*****************************************************
252
 * Interrupt Service Routine for ADC
253
 * Interrupt Service Routine for ADC
253
 * Runs at 312.5 kHz or 3.2 µs. When all states are
254
 * Runs at 312.5 kHz or 3.2 �s. When all states are
254
 * processed further conversions are stopped.
255
 * processed further conversions are stopped.
255
 *****************************************************/
256
 *****************************************************/
256
ISR(ADC_vect) {
257
ISR(ADC_vect) {
257
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
258
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
258
  sensorInputs[ad_channel] += ADC;
259
  sensorInputs[ad_channel] += ADC;
259
  // set up for next state.
260
  // set up for next state.
260
  state++;
261
  state++;
261
  if (state < 18) {
262
  if (state < 18) {
262
    ad_channel = pgm_read_byte(&channelsForStates[state]);
263
    ad_channel = pgm_read_byte(&channelsForStates[state]);
263
    // set adc muxer to next ad_channel
264
    // set adc muxer to next ad_channel
264
    ADMUX = (ADMUX & 0xE0) | ad_channel;
265
    ADMUX = (ADMUX & 0xE0) | ad_channel;
265
    // after full cycle stop further interrupts
266
    // after full cycle stop further interrupts
266
    startADC();
267
    startADC();
267
  } else {
268
  } else {
268
    state = 0;
269
    state = 0;
269
    ADCycleCount++;
270
    ADCycleCount++;
270
    analogDataReady = 1;
271
    analogDataReady = 1;
271
    // do not restart ADC converter. 
272
    // do not restart ADC converter. 
272
  }
273
  }
273
}
274
}
274
 
275
 
275
void analog_updateGyros(void) {
276
void analog_updateGyros(void) {
276
  // for various filters...
277
  // for various filters...
277
  int16_t tempOffsetGyro, tempGyro;
278
  int16_t tempOffsetGyro, tempGyro;
278
 
279
 
279
  for (uint8_t axis=0; axis<2; axis++) {
280
  for (uint8_t axis=0; axis<2; axis++) {
280
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
281
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
281
    /*
282
    /*
282
     * Process the gyro data for the PID controller.
283
     * Process the gyro data for the PID controller.
283
     */
284
     */
284
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
285
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
285
    //    gyro with a wider range, and helps counter saturation at full control.
286
    //    gyro with a wider range, and helps counter saturation at full control.
286
   
287
   
287
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
288
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
288
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
289
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
289
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
290
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
290
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
291
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
291
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
292
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
292
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
293
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
293
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
294
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
294
          + SENSOR_MAX_PITCHROLL;
295
          + SENSOR_MAX_PITCHROLL;
295
      } else {
296
      } else {
296
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
297
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
297
      }
298
      }
298
    }
299
    }
299
   
300
   
300
    // 2) Apply sign and offset, scale before filtering.
301
    // 2) Apply sign and offset, scale before filtering.
301
    if (GYRO_REVERSED[axis]) {
302
    if (GYRO_REVERSED[axis]) {
302
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
303
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
303
    } else {
304
    } else {
304
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
305
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
305
    }
306
    }
306
   
307
   
307
    // 3) Scale and filter.
308
    // 3) Scale and filter.
308
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
309
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
309
   
310
   
310
    // 4) Measure noise.
311
    // 4) Measure noise.
311
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
312
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
312
   
313
   
313
    // 5) Differential measurement.
314
    // 5) Differential measurement.
314
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
315
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
315
   
316
   
316
    // 6) Done.
317
    // 6) Done.
317
    gyro_PID[axis] = tempOffsetGyro;
318
    gyro_PID[axis] = tempOffsetGyro;
318
   
319
   
319
    /*
320
    /*
320
     * Now process the data for attitude angles.
321
     * Now process the data for attitude angles.
321
     */
322
     */
322
    tempGyro = rawGyroSum[axis];
323
    tempGyro = rawGyroSum[axis];
323
   
324
   
324
    // 1) Apply sign and offset, scale before filtering.
325
    // 1) Apply sign and offset, scale before filtering.
325
    if (GYRO_REVERSED[axis]) {
326
    if (GYRO_REVERSED[axis]) {
326
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
327
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
327
    } else {
328
    } else {
328
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
329
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
329
    }
330
    }
330
   
331
   
331
    // 2) Filter.
332
    // 2) Filter.
332
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
333
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
333
  }
334
  }
334
 
335
 
335
  // Yaw gyro.
336
  // Yaw gyro.
336
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
337
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
337
  if (GYRO_REVERSED[YAW])
338
  if (GYRO_REVERSED[YAW])
338
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
339
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
339
  else
340
  else
340
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
341
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
341
 
342
 
342
  debugOut.analog[3] = gyro_ATT[PITCH];
343
  debugOut.analog[3] = gyro_ATT[PITCH];
343
  debugOut.analog[4] = gyro_ATT[ROLL];
344
  debugOut.analog[4] = gyro_ATT[ROLL];
344
  debugOut.analog[5] = yawGyro;
345
  debugOut.analog[5] = yawGyro;
345
}
346
}
346
 
347
 
347
void analog_updateAccelerometers(void) {
348
void analog_updateAccelerometers(void) {
348
  // Pitch and roll axis accelerations.
349
  // Pitch and roll axis accelerations.
349
  for (uint8_t axis=0; axis<2; axis++) {
350
  for (uint8_t axis=0; axis<2; axis++) {
350
    if (ACC_REVERSED[axis])
351
    if (ACC_REVERSED[axis])
351
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
352
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
352
    else
353
    else
353
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
354
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
354
   
355
   
355
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
356
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
356
   
357
   
357
    /*
358
    /*
358
      stronglyFilteredAcc[PITCH] =
359
      stronglyFilteredAcc[PITCH] =
359
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
360
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
360
    */
361
    */
361
   
362
   
362
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
363
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
363
  }
364
  }
364
 
365
 
365
  // Z acc.
366
  // Z acc.
366
  if (ACC_REVERSED[Z])
367
  if (ACC_REVERSED[Z])
367
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
368
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
368
  else
369
  else
369
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
370
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
370
 
371
 
371
  /*
372
  /*
372
    stronglyFilteredAcc[Z] =
373
    stronglyFilteredAcc[Z] =
373
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
374
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
374
  */
375
  */
375
}
376
}
376
 
377
 
377
void analog_updateAirPressure(void) {
378
void analog_updateAirPressure(void) {
378
  static uint16_t pressureAutorangingWait = 25;
379
  static uint16_t pressureAutorangingWait = 25;
379
  uint16_t rawAirPressure;
380
  uint16_t rawAirPressure;
380
  int16_t newrange;
381
  int16_t newrange;
381
  // air pressure
382
  // air pressure
382
  if (pressureAutorangingWait) {
383
  if (pressureAutorangingWait) {
383
    //A range switch was done recently. Wait for steadying.
384
    //A range switch was done recently. Wait for steadying.
384
    pressureAutorangingWait--;
385
    pressureAutorangingWait--;
385
    debugOut.analog[27] = (uint16_t) OCR0A;
386
    debugOut.analog[27] = (uint16_t) OCR0A;
386
    debugOut.analog[31] = simpleAirPressure;
387
    debugOut.analog[31] = simpleAirPressure;
387
  } else {
388
  } else {
388
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
389
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
389
    if (rawAirPressure < MIN_RAWPRESSURE) {
390
    if (rawAirPressure < MIN_RAWPRESSURE) {
390
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
391
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
391
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
392
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
392
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
393
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
393
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
394
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
394
        OCR0A = newrange;
395
        OCR0A = newrange;
395
      } else {
396
      } else {
396
        if (OCR0A) {
397
        if (OCR0A) {
397
          OCR0A--;
398
          OCR0A--;
398
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
399
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
399
        }
400
        }
400
      }
401
      }
401
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
402
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
402
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
403
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
403
      // If near the end, make a limited increase
404
      // If near the end, make a limited increase
404
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
405
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
405
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
406
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
406
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
407
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
407
        OCR0A = newrange;
408
        OCR0A = newrange;
408
      } else {
409
      } else {
409
        if (OCR0A < 254) {
410
        if (OCR0A < 254) {
410
          OCR0A++;
411
          OCR0A++;
411
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
412
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
412
        }
413
        }
413
      }
414
      }
414
    }
415
    }
415
   
416
   
416
    // Even if the sample is off-range, use it.
417
    // Even if the sample is off-range, use it.
417
    simpleAirPressure = getSimplePressure(rawAirPressure);
418
    simpleAirPressure = getSimplePressure(rawAirPressure);
418
    debugOut.analog[27] = (uint16_t) OCR0A;
419
    debugOut.analog[27] = (uint16_t) OCR0A;
419
    debugOut.analog[31] = simpleAirPressure;
420
    debugOut.analog[31] = simpleAirPressure;
420
   
421
   
421
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
422
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
422
      // Danger: pressure near lower end of range. If the measurement saturates, the
423
      // Danger: pressure near lower end of range. If the measurement saturates, the
423
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
424
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
424
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
425
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
425
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
426
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
426
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
427
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
427
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
428
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
428
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
429
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
429
      // Danger: pressure near upper end of range. If the measurement saturates, the
430
      // Danger: pressure near upper end of range. If the measurement saturates, the
430
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
431
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
431
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
432
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
432
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
433
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
433
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
434
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
434
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
435
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
435
    } else {
436
    } else {
436
      // normal case.
437
      // normal case.
437
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
438
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
438
      // The 2 cases above (end of range) are ignored for this.
439
      // The 2 cases above (end of range) are ignored for this.
439
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
440
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
440
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
441
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
441
        airPressureSum += simpleAirPressure / 2;
442
        airPressureSum += simpleAirPressure / 2;
442
      else
443
      else
443
        airPressureSum += simpleAirPressure;
444
        airPressureSum += simpleAirPressure;
444
    }
445
    }
445
   
446
   
446
    // 2 samples were added.
447
    // 2 samples were added.
447
    pressureMeasurementCount += 2;
448
    pressureMeasurementCount += 2;
448
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
449
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
449
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
450
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
450
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
451
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
451
      pressureMeasurementCount = airPressureSum = 0;
452
      pressureMeasurementCount = airPressureSum = 0;
452
    }
453
    }
453
  }
454
  }
454
}
455
}
455
 
456
 
456
void analog_updateBatteryVoltage(void) {
457
void analog_updateBatteryVoltage(void) {
457
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
458
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
458
  // This is divided by 3 --> 10.34 counts per volt.
459
  // This is divided by 3 --> 10.34 counts per volt.
459
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
460
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
460
  debugOut.analog[11] = UBat;
461
  debugOut.analog[11] = UBat;
461
}
462
}
462
 
463
 
463
void analog_update(void) {
464
void analog_update(void) {
464
  analog_updateGyros();
465
  analog_updateGyros();
465
  analog_updateAccelerometers();
466
  analog_updateAccelerometers();
466
  analog_updateAirPressure();
467
  analog_updateAirPressure();
467
  analog_updateBatteryVoltage();
468
  analog_updateBatteryVoltage();
468
}
469
}
469
 
470
 
470
void analog_setNeutral() {
471
void analog_setNeutral() {
471
  if (gyroOffset_readFromEEProm()) {
472
  if (gyroOffset_readFromEEProm()) {
472
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
473
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
473
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
474
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
474
  }
475
  }
475
 
476
 
476
  if (accOffset_readFromEEProm()) {
477
  if (accOffset_readFromEEProm()) {
477
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
478
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
478
    accOffset.offsets[Z] = 512 * ACC_SUMMATION_FACTOR_Z;
479
    accOffset.offsets[Z] = 512 * ACC_SUMMATION_FACTOR_Z;
479
  }
480
  }
480
 
481
 
481
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
482
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
482
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
483
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
483
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
484
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
484
 
485
 
485
  // Setting offset values has an influence in the analog.c ISR
486
  // Setting offset values has an influence in the analog.c ISR
486
  // Therefore run measurement for 100ms to achive stable readings
487
  // Therefore run measurement for 100ms to achive stable readings
487
  delay_ms_Mess(100);
488
  delay_ms_Mess(100);
488
 
489
 
489
  // Rough estimate. Hmm no nothing happens at calibration anyway.
490
  // Rough estimate. Hmm no nothing happens at calibration anyway.
490
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
491
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
491
  // pressureMeasurementCount = 0;
492
  // pressureMeasurementCount = 0;
492
}
493
}
493
 
494
 
494
void analog_calibrateGyros(void) {
495
void analog_calibrateGyros(void) {
495
#define GYRO_OFFSET_CYCLES 32
496
#define GYRO_OFFSET_CYCLES 32
496
  uint8_t i, axis;
497
  uint8_t i, axis;
497
  int32_t deltaOffsets[3] = { 0, 0, 0 };
498
  int32_t offsets[3] = { 0, 0, 0 };
498
  gyro_calibrate();
499
  gyro_calibrate();
499
 
500
 
500
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
501
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
501
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
502
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
502
    delay_ms_Mess(20);
503
    delay_ms_Mess(20);
503
    for (axis = PITCH; axis <= YAW; axis++) {
504
    for (axis = PITCH; axis <= YAW; axis++) {
504
      deltaOffsets[axis] += rawGyroSum[axis];
505
      offsets[axis] += rawGyroSum[axis];
505
    }
506
    }
506
  }
507
  }
507
 
508
 
508
  for (axis = PITCH; axis <= YAW; axis++) {
509
  for (axis = PITCH; axis <= YAW; axis++) {
509
    gyroOffset.offsets[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
510
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
510
    debugOut.analog[6+axis] = gyroOffset.offsets[axis];
-
 
511
  }
511
  }
512
 
512
 
513
  gyroOffset_writeToEEProm();  
513
  gyroOffset_writeToEEProm();  
514
}
514
}
515
 
515
 
516
/*
516
/*
517
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
517
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
518
 * Does not (!} update the local variables. This must be done with a
518
 * Does not (!} update the local variables. This must be done with a
519
 * call to analog_calibrate() - this always (?) is done by the caller
519
 * call to analog_calibrate() - this always (?) is done by the caller
520
 * anyway. There would be nothing wrong with updating the variables
520
 * anyway. There would be nothing wrong with updating the variables
521
 * directly from here, though.
521
 * directly from here, though.
522
 */
522
 */
523
void analog_calibrateAcc(void) {
523
void analog_calibrateAcc(void) {
524
#define ACC_OFFSET_CYCLES 10
524
#define ACC_OFFSET_CYCLES 10
525
  uint8_t i, axis;
525
  uint8_t i, axis;
526
  int32_t deltaOffset[3] = { 0, 0, 0 };
526
  int32_t deltaOffset[3] = { 0, 0, 0 };
527
  int16_t filteredDelta;
527
  int16_t filteredDelta;
528
  // int16_t pressureDiff, savedRawAirPressure;
-
 
529
 
528
 
530
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
529
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
531
    delay_ms_Mess(10);
530
    delay_ms_Mess(10);
532
    for (axis = PITCH; axis <= YAW; axis++) {
531
    for (axis = PITCH; axis <= YAW; axis++) {
533
      deltaOffset[axis] += acc[axis];
532
      deltaOffset[axis] += acc[axis];
534
    }
533
    }
535
  }
534
  }
536
 
535
 
537
  for (axis = PITCH; axis <= YAW; axis++) {
536
  for (axis = PITCH; axis <= YAW; axis++) {
538
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
537
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
539
      / ACC_OFFSET_CYCLES;
538
      / ACC_OFFSET_CYCLES;
540
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
539
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
541
  }
540
  }
542
 
541
 
543
  accOffset_writeToEEProm();  
542
  accOffset_writeToEEProm();  
544
}
543
}
545
 
544