Subversion Repositories FlightCtrl

Rev

Rev 1952 | Rev 1960 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1952 Rev 1955
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <avr/io.h>
51
#include <avr/io.h>
52
#include <avr/interrupt.h>
52
#include <avr/interrupt.h>
53
#include <avr/pgmspace.h>
53
#include <avr/pgmspace.h>
54
 
54
 
55
#include "analog.h"
55
#include "analog.h"
56
#include "attitude.h"
56
#include "attitude.h"
57
#include "sensors.h"
57
#include "sensors.h"
58
 
58
 
59
// for Delay functions
59
// for Delay functions
60
#include "timer0.h"
60
#include "timer0.h"
61
 
61
 
62
// For DebugOut
62
// For debugOut
63
#include "uart0.h"
63
#include "uart0.h"
64
 
64
 
65
// For reading and writing acc. meter offsets.
65
// For reading and writing acc. meter offsets.
66
#include "eeprom.h"
66
#include "eeprom.h"
67
 
67
 
68
// For DebugOut.Digital
68
// For debugOut.digital
69
#include "output.h"
69
#include "output.h"
70
 
70
 
71
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
71
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
72
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
72
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
73
 
73
 
74
/*
74
/*
75
 * For each A/D conversion cycle, each analog channel is sampled a number of times
75
 * For each A/D conversion cycle, each analog channel is sampled a number of times
76
 * (see array channelsForStates), and the results for each channel are summed.
76
 * (see array channelsForStates), and the results for each channel are summed.
77
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
77
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
78
 * They are exported in the analog.h file - but please do not use them! The only
78
 * They are exported in the analog.h file - but please do not use them! The only
79
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
79
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
80
 * the offsets with the DAC.
80
 * the offsets with the DAC.
81
 */
81
 */
82
volatile uint16_t sensorInputs[8];
82
volatile uint16_t sensorInputs[8];
83
volatile int16_t rawGyroSum[3];
83
volatile int16_t rawGyroSum[3];
84
volatile int16_t acc[3];
84
volatile int16_t acc[3];
85
volatile int16_t filteredAcc[2] = { 0,0 };
85
volatile int16_t filteredAcc[2] = { 0,0 };
86
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
86
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
87
 
87
 
88
/*
88
/*
89
 * These 4 exported variables are zero-offset. The "PID" ones are used
89
 * These 4 exported variables are zero-offset. The "PID" ones are used
90
 * in the attitude control as rotation rates. The "ATT" ones are for
90
 * in the attitude control as rotation rates. The "ATT" ones are for
91
 * integration to angles.
91
 * integration to angles.
92
 */
92
 */
93
volatile int16_t gyro_PID[2];
93
volatile int16_t gyro_PID[2];
94
volatile int16_t gyro_ATT[2];
94
volatile int16_t gyro_ATT[2];
95
volatile int16_t gyroD[2];
95
volatile int16_t gyroD[2];
96
volatile int16_t yawGyro;
96
volatile int16_t yawGyro;
97
 
97
 
98
/*
98
/*
99
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
99
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
100
 * standing still. They are used for adjusting the gyro and acc. meter values
100
 * standing still. They are used for adjusting the gyro and acc. meter values
101
 * to be centered on zero.
101
 * to be centered on zero.
102
 */
102
 */
103
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
103
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
104
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
104
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
105
 
105
 
106
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
106
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
107
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
107
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
108
 
108
 
109
/*
109
/*
110
 * This allows some experimentation with the gyro filters.
110
 * This allows some experimentation with the gyro filters.
111
 * Should be replaced by #define's later on...
111
 * Should be replaced by #define's later on...
112
 */
112
 */
113
volatile uint8_t GYROS_PID_FILTER;
113
volatile uint8_t GYROS_PID_FILTER;
114
volatile uint8_t GYROS_ATT_FILTER;
114
volatile uint8_t GYROS_ATT_FILTER;
115
volatile uint8_t GYROS_D_FILTER;
115
volatile uint8_t GYROS_D_FILTER;
116
volatile uint8_t ACC_FILTER;
116
volatile uint8_t ACC_FILTER;
117
 
117
 
118
/*
118
/*
119
 * Air pressure
119
 * Air pressure
120
 */
120
 */
121
volatile uint8_t rangewidth = 106;
121
volatile uint8_t rangewidth = 106;
122
 
122
 
123
// Direct from sensor, irrespective of range.
123
// Direct from sensor, irrespective of range.
124
// volatile uint16_t rawAirPressure;
124
// volatile uint16_t rawAirPressure;
125
 
125
 
126
// Value of 2 samples, with range.
126
// Value of 2 samples, with range.
127
volatile uint16_t simpleAirPressure;
127
volatile uint16_t simpleAirPressure;
128
 
128
 
129
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
129
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
130
volatile int32_t filteredAirPressure;
130
volatile int32_t filteredAirPressure;
131
 
131
 
132
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
132
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
133
volatile int32_t airPressureSum;
133
volatile int32_t airPressureSum;
134
 
134
 
135
// The number of samples summed into airPressureSum so far.
135
// The number of samples summed into airPressureSum so far.
136
volatile uint8_t pressureMeasurementCount;
136
volatile uint8_t pressureMeasurementCount;
137
 
137
 
138
/*
138
/*
139
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
139
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
140
 * That is divided by 3 below, for a final 10.34 per volt.
140
 * That is divided by 3 below, for a final 10.34 per volt.
141
 * So the initial value of 100 is for 9.7 volts.
141
 * So the initial value of 100 is for 9.7 volts.
142
 */
142
 */
143
volatile int16_t UBat = 100;
143
volatile int16_t UBat = 100;
144
 
144
 
145
/*
145
/*
146
 * Control and status.
146
 * Control and status.
147
 */
147
 */
148
volatile uint16_t ADCycleCount = 0;
148
volatile uint16_t ADCycleCount = 0;
149
volatile uint8_t analogDataReady = 1;
149
volatile uint8_t analogDataReady = 1;
150
 
150
 
151
/*
151
/*
152
 * Experiment: Measuring vibration-induced sensor noise.
152
 * Experiment: Measuring vibration-induced sensor noise.
153
 */
153
 */
154
volatile uint16_t gyroNoisePeak[2];
154
volatile uint16_t gyroNoisePeak[2];
155
volatile uint16_t accNoisePeak[2];
155
volatile uint16_t accNoisePeak[2];
156
 
156
 
157
// ADC channels
157
// ADC channels
158
#define AD_GYRO_YAW       0
158
#define AD_GYRO_YAW       0
159
#define AD_GYRO_ROLL      1
159
#define AD_GYRO_ROLL      1
160
#define AD_GYRO_PITCH     2
160
#define AD_GYRO_PITCH     2
161
#define AD_AIRPRESSURE    3
161
#define AD_AIRPRESSURE    3
162
#define AD_UBAT           4
162
#define AD_UBAT           4
163
#define AD_ACC_Z          5
163
#define AD_ACC_Z          5
164
#define AD_ACC_ROLL       6
164
#define AD_ACC_ROLL       6
165
#define AD_ACC_PITCH      7
165
#define AD_ACC_PITCH      7
166
 
166
 
167
/*
167
/*
168
 * Table of AD converter inputs for each state.
168
 * Table of AD converter inputs for each state.
169
 * The number of samples summed for each channel is equal to
169
 * The number of samples summed for each channel is equal to
170
 * the number of times the channel appears in the array.
170
 * the number of times the channel appears in the array.
171
 * The max. number of samples that can be taken in 2 ms is:
171
 * The max. number of samples that can be taken in 2 ms is:
172
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
172
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
173
 * loop needs a little time between reading AD values and
173
 * loop needs a little time between reading AD values and
174
 * re-enabling ADC, the real limit is (how much?) lower.
174
 * re-enabling ADC, the real limit is (how much?) lower.
175
 * The acc. sensor is sampled even if not used - or installed
175
 * The acc. sensor is sampled even if not used - or installed
176
 * at all. The cost is not significant.
176
 * at all. The cost is not significant.
177
 */
177
 */
178
 
178
 
179
const uint8_t channelsForStates[] PROGMEM = {
179
const uint8_t channelsForStates[] PROGMEM = {
180
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
180
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
181
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
181
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
182
 
182
 
183
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
183
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
184
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
184
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
185
 
185
 
186
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
186
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
187
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
187
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
188
  AD_AIRPRESSURE, // at 14, finish air pressure.
188
  AD_AIRPRESSURE, // at 14, finish air pressure.
189
 
189
 
190
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
190
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
191
  AD_GYRO_ROLL,   // at 16, finish roll gyro
191
  AD_GYRO_ROLL,   // at 16, finish roll gyro
192
  AD_UBAT         // at 17, measure battery.
192
  AD_UBAT         // at 17, measure battery.
193
};
193
};
194
 
194
 
195
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
195
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
196
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
196
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
197
 
197
 
198
void analog_init(void) {
198
void analog_init(void) {
199
        uint8_t sreg = SREG;
199
        uint8_t sreg = SREG;
200
        // disable all interrupts before reconfiguration
200
        // disable all interrupts before reconfiguration
201
        cli();
201
        cli();
202
 
202
 
203
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
203
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
204
        DDRA = 0x00;
204
        DDRA = 0x00;
205
        PORTA = 0x00;
205
        PORTA = 0x00;
206
        // Digital Input Disable Register 0
206
        // Digital Input Disable Register 0
207
        // Disable digital input buffer for analog adc_channel pins
207
        // Disable digital input buffer for analog adc_channel pins
208
        DIDR0 = 0xFF;
208
        DIDR0 = 0xFF;
209
        // external reference, adjust data to the right
209
        // external reference, adjust data to the right
210
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
210
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
211
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
211
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
212
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
212
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
213
        //Set ADC Control and Status Register A
213
        //Set ADC Control and Status Register A
214
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
214
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
215
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
215
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
216
        //Set ADC Control and Status Register B
216
        //Set ADC Control and Status Register B
217
        //Trigger Source to Free Running Mode
217
        //Trigger Source to Free Running Mode
218
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
218
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
219
 
219
 
220
        startAnalogConversionCycle();
220
        startAnalogConversionCycle();
221
 
221
 
222
        // restore global interrupt flags
222
        // restore global interrupt flags
223
        SREG = sreg;
223
        SREG = sreg;
224
}
224
}
225
 
225
 
226
void measureNoise(const int16_t sensor,
226
void measureNoise(const int16_t sensor,
227
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
227
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
228
        if (sensor > (int16_t) (*noiseMeasurement)) {
228
        if (sensor > (int16_t) (*noiseMeasurement)) {
229
                *noiseMeasurement = sensor;
229
                *noiseMeasurement = sensor;
230
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
230
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
231
                *noiseMeasurement = -sensor;
231
                *noiseMeasurement = -sensor;
232
        } else if (*noiseMeasurement > damping) {
232
        } else if (*noiseMeasurement > damping) {
233
                *noiseMeasurement -= damping;
233
                *noiseMeasurement -= damping;
234
        } else {
234
        } else {
235
                *noiseMeasurement = 0;
235
                *noiseMeasurement = 0;
236
        }
236
        }
237
}
237
}
238
 
238
 
239
/*
239
/*
240
 * Min.: 0
240
 * Min.: 0
241
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
241
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
242
 */
242
 */
243
uint16_t getSimplePressure(int advalue) {
243
uint16_t getSimplePressure(int advalue) {
244
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
244
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
245
}
245
}
246
 
246
 
247
void startAnalogConversionCycle(void) {
247
void startAnalogConversionCycle(void) {
248
  // Stop the sampling. Cycle is over.
248
  // Stop the sampling. Cycle is over.
249
  for (uint8_t i = 0; i < 8; i++) {
249
  for (uint8_t i = 0; i < 8; i++) {
250
    sensorInputs[i] = 0;
250
    sensorInputs[i] = 0;
251
  }
251
  }
252
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
252
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
253
  startADC();
253
  startADC();
254
}
254
}
255
 
255
 
256
/*****************************************************
256
/*****************************************************
257
 * Interrupt Service Routine for ADC
257
 * Interrupt Service Routine for ADC
258
 * Runs at 312.5 kHz or 3.2 µs. When all states are
258
 * Runs at 312.5 kHz or 3.2 µs. When all states are
259
 * processed further conversions are stopped.
259
 * processed further conversions are stopped.
260
 *****************************************************/
260
 *****************************************************/
261
ISR(ADC_vect) {
261
ISR(ADC_vect) {
262
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
262
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
263
  sensorInputs[ad_channel] += ADC;
263
  sensorInputs[ad_channel] += ADC;
264
  // set up for next state.
264
  // set up for next state.
265
  state++;
265
  state++;
266
  if (state < 18) {
266
  if (state < 18) {
267
    ad_channel = pgm_read_byte(&channelsForStates[state]);
267
    ad_channel = pgm_read_byte(&channelsForStates[state]);
268
    // set adc muxer to next ad_channel
268
    // set adc muxer to next ad_channel
269
    ADMUX = (ADMUX & 0xE0) | ad_channel;
269
    ADMUX = (ADMUX & 0xE0) | ad_channel;
270
    // after full cycle stop further interrupts
270
    // after full cycle stop further interrupts
271
    startADC();
271
    startADC();
272
  } else {
272
  } else {
273
    state = 0;
273
    state = 0;
274
    ADCycleCount++;
274
    ADCycleCount++;
275
    analogDataReady = 1;
275
    analogDataReady = 1;
276
    // do not restart ADC converter. 
276
    // do not restart ADC converter. 
277
  }
277
  }
278
}
278
}
279
 
279
 
280
void analog_updateGyros(void) {
280
void analog_updateGyros(void) {
281
  // for various filters...
281
  // for various filters...
282
  int16_t tempOffsetGyro, tempGyro;
282
  int16_t tempOffsetGyro, tempGyro;
283
 
283
 
284
  for (uint8_t axis=0; axis<2; axis++) {
284
  for (uint8_t axis=0; axis<2; axis++) {
285
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
285
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
286
    // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
-
 
287
    /*
286
    /*
288
     * Process the gyro data for the PID controller.
287
     * Process the gyro data for the PID controller.
289
     */
288
     */
290
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
289
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
291
    //    gyro with a wider range, and helps counter saturation at full control.
290
    //    gyro with a wider range, and helps counter saturation at full control.
292
   
291
   
293
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
292
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
294
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
293
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
295
        DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
294
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
296
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
295
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
297
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
296
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
298
        DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
297
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
299
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
298
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
300
          + SENSOR_MAX_PITCHROLL;
299
          + SENSOR_MAX_PITCHROLL;
301
      } else {
300
      } else {
302
        DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
301
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
303
      }
302
      }
304
    }
303
    }
305
   
304
   
306
    // 2) Apply sign and offset, scale before filtering.
305
    // 2) Apply sign and offset, scale before filtering.
307
    if (GYRO_REVERSED[axis]) {
306
    if (GYRO_REVERSED[axis]) {
308
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
307
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
309
    } else {
308
    } else {
310
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
309
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
311
    }
310
    }
312
   
311
   
313
    // 3) Scale and filter.
312
    // 3) Scale and filter.
314
    tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro) / GYROS_PID_FILTER;
313
    tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro) / GYROS_PID_FILTER;
315
   
314
   
316
    // 4) Measure noise.
315
    // 4) Measure noise.
317
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
316
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
318
   
317
   
319
    // 5) Differential measurement.
318
    // 5) Differential measurement.
320
    gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro - gyro_PID[axis])) / GYROS_D_FILTER;
319
    gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro - gyro_PID[axis])) / GYROS_D_FILTER;
321
   
320
   
322
    // 6) Done.
321
    // 6) Done.
323
    gyro_PID[axis] = tempOffsetGyro;
322
    gyro_PID[axis] = tempOffsetGyro;
324
   
323
   
325
    /*
324
    /*
326
     * Now process the data for attitude angles.
325
     * Now process the data for attitude angles.
327
     */
326
     */
328
    tempGyro = rawGyroSum[axis];
327
    tempGyro = rawGyroSum[axis];
329
   
328
   
330
    // 1) Apply sign and offset, scale before filtering.
329
    // 1) Apply sign and offset, scale before filtering.
331
    if (GYRO_REVERSED[axis]) {
330
    if (GYRO_REVERSED[axis]) {
332
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
331
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
333
    } else {
332
    } else {
334
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
333
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
335
    }
334
    }
336
   
335
   
337
    // 2) Filter.
336
    // 2) Filter.
338
    gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro) / GYROS_ATT_FILTER;
337
    gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro) / GYROS_ATT_FILTER;
339
  }
338
  }
340
 
339
 
341
  // Yaw gyro.
340
  // Yaw gyro.
342
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
341
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
343
  if (GYRO_REVERSED[YAW])
342
  if (GYRO_REVERSED[YAW])
344
    yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
343
    yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
345
  else
344
  else
346
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
345
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
-
 
346
 
-
 
347
  debugOut.analog[3] = gyro_ATT[PITCH];
-
 
348
  debugOut.analog[4] = gyro_ATT[ROLL];
-
 
349
  debugOut.analog[5] = yawGyro;
347
}
350
}
348
 
351
 
349
void analog_updateAccelerometers(void) {
352
void analog_updateAccelerometers(void) {
350
  // Pitch and roll axis accelerations.
353
  // Pitch and roll axis accelerations.
351
  for (uint8_t axis=0; axis<2; axis++) {
354
  for (uint8_t axis=0; axis<2; axis++) {
352
    if (ACC_REVERSED[axis])
355
    if (ACC_REVERSED[axis])
353
      acc[axis] = accOffset[axis] - sensorInputs[AD_ACC_PITCH-axis];
356
      acc[axis] = accOffset[axis] - sensorInputs[AD_ACC_PITCH-axis];
354
    else
357
    else
355
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset[axis];
358
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset[axis];
356
   
359
   
357
    filteredAcc[axis] = (filteredAcc[axis] * (ACC_FILTER - 1) + acc[axis]) / ACC_FILTER;
360
    filteredAcc[axis] = (filteredAcc[axis] * (ACC_FILTER - 1) + acc[axis]) / ACC_FILTER;
358
   
361
   
359
    /*
362
    /*
360
      stronglyFilteredAcc[PITCH] =
363
      stronglyFilteredAcc[PITCH] =
361
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
364
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
362
    */
365
    */
363
   
366
   
364
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
367
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
365
  }
368
  }
366
 
369
 
367
  // Z acc.
370
  // Z acc.
368
  if (ACC_REVERSED[Z])
371
  if (ACC_REVERSED[Z])
369
    acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
372
    acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
370
  else
373
  else
371
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
374
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
372
 
375
 
373
  /*
376
  /*
374
    stronglyFilteredAcc[Z] =
377
    stronglyFilteredAcc[Z] =
375
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
378
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
376
  */
379
  */
-
 
380
 
-
 
381
  debugOut.analog[6] = acc[PITCH];
-
 
382
  debugOut.analog[7] = acc[ROLL];
377
}
383
}
378
 
384
 
379
void analog_updateAirPressure(void) {
385
void analog_updateAirPressure(void) {
380
  static uint16_t pressureAutorangingWait = 25;
386
  static uint16_t pressureAutorangingWait = 25;
381
  uint16_t rawAirPressure;
387
  uint16_t rawAirPressure;
382
  int16_t newrange;
388
  int16_t newrange;
383
  // air pressure
389
  // air pressure
384
  if (pressureAutorangingWait) {
390
  if (pressureAutorangingWait) {
385
    //A range switch was done recently. Wait for steadying.
391
    //A range switch was done recently. Wait for steadying.
386
    pressureAutorangingWait--;
392
    pressureAutorangingWait--;
387
    DebugOut.Analog[27] = (uint16_t) OCR0A;
393
    debugOut.analog[27] = (uint16_t) OCR0A;
388
    DebugOut.Analog[31] = simpleAirPressure;
394
    debugOut.analog[31] = simpleAirPressure;
389
  } else {
395
  } else {
390
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
396
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
391
    if (rawAirPressure < MIN_RAWPRESSURE) {
397
    if (rawAirPressure < MIN_RAWPRESSURE) {
392
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
398
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
393
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
399
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
394
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
400
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
395
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
401
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
396
        OCR0A = newrange;
402
        OCR0A = newrange;
397
      } else {
403
      } else {
398
        if (OCR0A) {
404
        if (OCR0A) {
399
          OCR0A--;
405
          OCR0A--;
400
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
406
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
401
        }
407
        }
402
      }
408
      }
403
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
409
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
404
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
410
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
405
      // If near the end, make a limited increase
411
      // If near the end, make a limited increase
406
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
412
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
407
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
413
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
408
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
414
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
409
        OCR0A = newrange;
415
        OCR0A = newrange;
410
      } else {
416
      } else {
411
        if (OCR0A < 254) {
417
        if (OCR0A < 254) {
412
          OCR0A++;
418
          OCR0A++;
413
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
419
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
414
        }
420
        }
415
      }
421
      }
416
    }
422
    }
417
   
423
   
418
    // Even if the sample is off-range, use it.
424
    // Even if the sample is off-range, use it.
419
    simpleAirPressure = getSimplePressure(rawAirPressure);
425
    simpleAirPressure = getSimplePressure(rawAirPressure);
420
    DebugOut.Analog[27] = (uint16_t) OCR0A;
426
    debugOut.analog[27] = (uint16_t) OCR0A;
421
    DebugOut.Analog[31] = simpleAirPressure;
427
    debugOut.analog[31] = simpleAirPressure;
422
   
428
   
423
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
429
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
424
      // Danger: pressure near lower end of range. If the measurement saturates, the
430
      // Danger: pressure near lower end of range. If the measurement saturates, the
425
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
431
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
426
      DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
432
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
427
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
433
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
428
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
434
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
429
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
435
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
430
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
436
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
431
      // Danger: pressure near upper end of range. If the measurement saturates, the
437
      // Danger: pressure near upper end of range. If the measurement saturates, the
432
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
438
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
433
      DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
439
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
434
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
440
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
435
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
441
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
436
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
442
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
437
    } else {
443
    } else {
438
      // normal case.
444
      // normal case.
439
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
445
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
440
      // The 2 cases above (end of range) are ignored for this.
446
      // The 2 cases above (end of range) are ignored for this.
441
      DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
447
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
442
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
448
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
443
        airPressureSum += simpleAirPressure / 2;
449
        airPressureSum += simpleAirPressure / 2;
444
      else
450
      else
445
        airPressureSum += simpleAirPressure;
451
        airPressureSum += simpleAirPressure;
446
    }
452
    }
447
   
453
   
448
    // 2 samples were added.
454
    // 2 samples were added.
449
    pressureMeasurementCount += 2;
455
    pressureMeasurementCount += 2;
450
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
456
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
451
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
457
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
452
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
458
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
453
      pressureMeasurementCount = airPressureSum = 0;
459
      pressureMeasurementCount = airPressureSum = 0;
454
    }
460
    }
455
  }
461
  }
456
}
462
}
457
 
463
 
458
void analog_updateBatteryVoltage(void) {
464
void analog_updateBatteryVoltage(void) {
459
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
465
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
460
  // This is divided by 3 --> 10.34 counts per volt.
466
  // This is divided by 3 --> 10.34 counts per volt.
461
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
467
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
462
  DebugOut.Analog[11] = UBat;
468
  debugOut.analog[11] = UBat;
463
}
469
}
464
 
470
 
465
void analog_update(void) {
471
void analog_update(void) {
466
  analog_updateGyros();
472
  analog_updateGyros();
467
  analog_updateAccelerometers();
473
  analog_updateAccelerometers();
468
  analog_updateAirPressure();
474
  analog_updateAirPressure();
469
  analog_updateBatteryVoltage();
475
  analog_updateBatteryVoltage();
470
}
476
}
471
 
477
 
472
void analog_calibrate(void) {
478
void analog_calibrate(void) {
473
#define GYRO_OFFSET_CYCLES 32
479
#define GYRO_OFFSET_CYCLES 32
474
  uint8_t i, axis;
480
  uint8_t i, axis;
475
  int32_t deltaOffsets[3] = { 0, 0, 0 };
481
  int32_t deltaOffsets[3] = { 0, 0, 0 };
476
 
482
 
477
  // Set the filters... to be removed again, once some good settings are found.
483
  // Set the filters... to be removed again, once some good settings are found.
478
  GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
484
  GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
479
  GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
485
  GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
480
  GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
486
  GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
481
  ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
487
  ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
482
 
488
 
483
  gyro_calibrate();
489
  gyro_calibrate();
484
 
490
 
485
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
491
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
486
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
492
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
487
    delay_ms_Mess(20);
493
    delay_ms_Mess(20);
488
    for (axis = PITCH; axis <= YAW; axis++) {
494
    for (axis = PITCH; axis <= YAW; axis++) {
489
      deltaOffsets[axis] += rawGyroSum[axis];
495
      deltaOffsets[axis] += rawGyroSum[axis];
490
    }
496
    }
491
  }
497
  }
492
 
498
 
493
  for (axis = PITCH; axis <= YAW; axis++) {
499
  for (axis = PITCH; axis <= YAW; axis++) {
494
    gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
500
    gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
495
    // DebugOut.Analog[20 + axis] = gyroOffset[axis];
501
    // DebugOut.Analog[20 + axis] = gyroOffset[axis];
496
  }
502
  }
497
 
503
 
498
  // Noise is relativ to offset. So, reset noise measurements when changing offsets.
504
  // Noise is relativ to offset. So, reset noise measurements when changing offsets.
499
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
505
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
500
 
506
 
501
  accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
507
  accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
502
  accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
508
  accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
503
  accOffset[Z] = GetParamWord(PID_ACC_Z);
509
  accOffset[Z] = GetParamWord(PID_ACC_Z);
504
 
510
 
505
  // Rough estimate. Hmm no nothing happens at calibration anyway.
511
  // Rough estimate. Hmm no nothing happens at calibration anyway.
506
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
512
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
507
  // pressureMeasurementCount = 0;
513
  // pressureMeasurementCount = 0;
508
 
514
 
509
  delay_ms_Mess(100);
515
  delay_ms_Mess(100);
510
}
516
}
511
 
517
 
512
/*
518
/*
513
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
519
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
514
 * Does not (!} update the local variables. This must be done with a
520
 * Does not (!} update the local variables. This must be done with a
515
 * call to analog_calibrate() - this always (?) is done by the caller
521
 * call to analog_calibrate() - this always (?) is done by the caller
516
 * anyway. There would be nothing wrong with updating the variables
522
 * anyway. There would be nothing wrong with updating the variables
517
 * directly from here, though.
523
 * directly from here, though.
518
 */
524
 */
519
void analog_calibrateAcc(void) {
525
void analog_calibrateAcc(void) {
520
#define ACC_OFFSET_CYCLES 10
526
#define ACC_OFFSET_CYCLES 10
521
        uint8_t i, axis;
527
        uint8_t i, axis;
522
        int32_t deltaOffset[3] = { 0, 0, 0 };
528
        int32_t deltaOffset[3] = { 0, 0, 0 };
523
        int16_t filteredDelta;
529
        int16_t filteredDelta;
524
        // int16_t pressureDiff, savedRawAirPressure;
530
        // int16_t pressureDiff, savedRawAirPressure;
525
 
531
 
526
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
532
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
527
                delay_ms_Mess(10);
533
                delay_ms_Mess(10);
528
                for (axis = PITCH; axis <= YAW; axis++) {
534
                for (axis = PITCH; axis <= YAW; axis++) {
529
                        deltaOffset[axis] += acc[axis];
535
                        deltaOffset[axis] += acc[axis];
530
                }
536
                }
531
        }
537
        }
532
 
538
 
533
        for (axis = PITCH; axis <= YAW; axis++) {
539
        for (axis = PITCH; axis <= YAW; axis++) {
534
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
540
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
535
                                / ACC_OFFSET_CYCLES;
541
                                / ACC_OFFSET_CYCLES;
536
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
542
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
537
        }
543
        }
538
 
544
 
539
        // Save ACC neutral settings to eeprom
545
        // Save ACC neutral settings to eeprom
540
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
546
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
541
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
547
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
542
        SetParamWord(PID_ACC_Z, accOffset[Z]);
548
        SetParamWord(PID_ACC_Z, accOffset[Z]);
543
 
549
 
544
        // Noise is relative to offset. So, reset noise measurements when
550
        // Noise is relative to offset. So, reset noise measurements when
545
        // changing offsets.
551
        // changing offsets.
546
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
552
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
547
 
553
 
548
        // Setting offset values has an influence in the analog.c ISR
554
        // Setting offset values has an influence in the analog.c ISR
549
        // Therefore run measurement for 100ms to achive stable readings
555
        // Therefore run measurement for 100ms to achive stable readings
550
        delay_ms_Mess(100);
556
        delay_ms_Mess(100);
551
 
557
 
552
        // Set the feedback so that air pressure ends up in the middle of the range.
558
        // Set the feedback so that air pressure ends up in the middle of the range.
553
        // (raw pressure high --> OCR0A also high...)
559
        // (raw pressure high --> OCR0A also high...)
554
        /*
560
        /*
555
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
561
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
556
         delay_ms_Mess(1000);
562
         delay_ms_Mess(1000);
557
 
563
 
558
         pressureDiff = 0;
564
         pressureDiff = 0;
559
         // DebugOut.Analog[16] = rawAirPressure;
565
         // DebugOut.Analog[16] = rawAirPressure;
560
 
566
 
561
         #define PRESSURE_CAL_CYCLE_COUNT 5
567
         #define PRESSURE_CAL_CYCLE_COUNT 5
562
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
568
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
563
         savedRawAirPressure = rawAirPressure;
569
         savedRawAirPressure = rawAirPressure;
564
         OCR0A+=2;
570
         OCR0A+=2;
565
         delay_ms_Mess(500);
571
         delay_ms_Mess(500);
566
         // raw pressure will decrease.
572
         // raw pressure will decrease.
567
         pressureDiff += (savedRawAirPressure - rawAirPressure);
573
         pressureDiff += (savedRawAirPressure - rawAirPressure);
568
         savedRawAirPressure = rawAirPressure;
574
         savedRawAirPressure = rawAirPressure;
569
         OCR0A-=2;
575
         OCR0A-=2;
570
         delay_ms_Mess(500);
576
         delay_ms_Mess(500);
571
         // raw pressure will increase.
577
         // raw pressure will increase.
572
         pressureDiff += (rawAirPressure - savedRawAirPressure);
578
         pressureDiff += (rawAirPressure - savedRawAirPressure);
573
         }
579
         }
574
 
580
 
575
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
581
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
576
         DebugOut.Analog[27] = rangewidth;
582
         DebugOut.Analog[27] = rangewidth;
577
         */
583
         */
578
}
584
}
579
 
585