Subversion Repositories FlightCtrl

Rev

Rev 1796 | Rev 1854 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1796 Rev 1821
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <avr/io.h>
51
#include <avr/io.h>
52
#include <avr/interrupt.h>
52
#include <avr/interrupt.h>
53
#include <avr/pgmspace.h>
53
#include <avr/pgmspace.h>
54
#include "analog.h"
54
#include "analog.h"
55
 
55
 
56
#include "sensors.h"
56
#include "sensors.h"
57
 
57
 
58
// for Delay functions
58
// for Delay functions
59
#include "timer0.h"
59
#include "timer0.h"
60
 
60
 
61
// For DebugOut
61
// For DebugOut
62
#include "uart0.h"
62
#include "uart0.h"
63
 
63
 
64
// For reading and writing acc. meter offsets.
64
// For reading and writing acc. meter offsets.
65
#include "eeprom.h"
65
#include "eeprom.h"
66
 
66
 
67
// For DebugOut.Digital
67
// For DebugOut.Digital
68
#include "output.h"
68
#include "output.h"
69
 
69
 
70
/*
70
/*
71
 * For each A/D conversion cycle, each analog channel is sampled a number of times
71
 * For each A/D conversion cycle, each analog channel is sampled a number of times
72
 * (see array channelsForStates), and the results for each channel are summed.
72
 * (see array channelsForStates), and the results for each channel are summed.
73
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
73
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
74
 * They are exported in the analog.h file - but please do not use them! The only
74
 * They are exported in the analog.h file - but please do not use them! The only
75
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
75
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
76
 * the offsets with the DAC.
76
 * the offsets with the DAC.
77
 */
77
 */
78
volatile int16_t rawGyroSum[3];
78
volatile int16_t rawGyroSum[3];
79
volatile int16_t acc[3];
79
volatile int16_t acc[3];
80
volatile int16_t filteredAcc[2]={0,0};
80
volatile int16_t filteredAcc[2] = { 0, 0 };
81
 
81
 
82
/*
82
/*
83
 * These 4 exported variables are zero-offset. The "PID" ones are used
83
 * These 4 exported variables are zero-offset. The "PID" ones are used
84
 * in the attitude control as rotation rates. The "ATT" ones are for
84
 * in the attitude control as rotation rates. The "ATT" ones are for
85
 * integration to angles.
85
 * integration to angles.
86
 */
86
 */
87
volatile int16_t gyro_PID[2];
87
volatile int16_t gyro_PID[2];
88
volatile int16_t gyro_ATT[2];
88
volatile int16_t gyro_ATT[2];
89
volatile int16_t gyroD[2];
89
volatile int16_t gyroD[2];
90
volatile int16_t yawGyro;
90
volatile int16_t yawGyro;
91
 
91
 
92
/*
92
/*
93
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
93
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
94
 * standing still. They are used for adjusting the gyro and acc. meter values
94
 * standing still. They are used for adjusting the gyro and acc. meter values
95
 * to be centered on zero.
95
 * to be centered on zero.
96
 */
96
 */
97
volatile int16_t gyroOffset[3] = {
-
 
98
        512 * GYRO_SUMMATION_FACTOR_PITCHROLL,
97
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
99
        512 * GYRO_SUMMATION_FACTOR_PITCHROLL,
98
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
100
        512 * GYRO_SUMMATION_FACTOR_YAW
-
 
101
};
-
 
102
 
99
 
103
volatile int16_t accOffset[3] = {
-
 
104
        512 * ACC_SUMMATION_FACTOR_PITCHROLL,
100
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
105
        512 * ACC_SUMMATION_FACTOR_PITCHROLL,
101
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
106
        512 * ACC_SUMMATION_FACTOR_Z
-
 
107
};
-
 
108
 
102
 
109
/*
103
/*
110
 * This allows some experimentation with the gyro filters.
104
 * This allows some experimentation with the gyro filters.
111
 * Should be replaced by #define's later on...
105
 * Should be replaced by #define's later on...
112
 */
106
 */
113
volatile uint8_t GYROS_PID_FILTER;
107
volatile uint8_t GYROS_PID_FILTER;
114
volatile uint8_t GYROS_ATT_FILTER;
108
volatile uint8_t GYROS_ATT_FILTER;
115
volatile uint8_t GYROS_D_FILTER;
109
volatile uint8_t GYROS_D_FILTER;
116
volatile uint8_t ACC_FILTER;
110
volatile uint8_t ACC_FILTER;
117
 
111
 
118
/*
112
/*
119
 * Air pressure
113
 * Air pressure
120
 */
114
 */
121
volatile uint8_t rangewidth = 106;
115
volatile uint8_t rangewidth = 106;
122
 
116
 
123
// Direct from sensor, irrespective of range.
117
// Direct from sensor, irrespective of range.
124
// volatile uint16_t rawAirPressure;
118
// volatile uint16_t rawAirPressure;
125
 
119
 
126
// Value of 2 samples, with range.
120
// Value of 2 samples, with range.
127
volatile uint16_t simpleAirPressure;
121
volatile uint16_t simpleAirPressure;
128
 
122
 
129
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
123
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
130
volatile int32_t filteredAirPressure;
124
volatile int32_t filteredAirPressure;
131
 
125
 
132
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
126
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
133
volatile int32_t airPressureSum;
127
volatile int32_t airPressureSum;
134
 
128
 
135
// The number of samples summed into airPressureSum so far.
129
// The number of samples summed into airPressureSum so far.
136
volatile uint8_t pressureMeasurementCount;
130
volatile uint8_t pressureMeasurementCount;
137
 
131
 
138
/*
132
/*
139
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
133
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
140
 * That is divided by 3 below, for a final 10.34 per volt.
134
 * That is divided by 3 below, for a final 10.34 per volt.
141
 * So the initial value of 100 is for 9.7 volts.
135
 * So the initial value of 100 is for 9.7 volts.
142
 */
136
 */
143
volatile int16_t UBat = 100;
137
volatile int16_t UBat = 100;
144
 
138
 
145
/*
139
/*
146
 * Control and status.
140
 * Control and status.
147
 */
141
 */
148
volatile uint16_t ADCycleCount = 0;
142
volatile uint16_t ADCycleCount = 0;
149
volatile uint8_t analogDataReady = 1;
143
volatile uint8_t analogDataReady = 1;
150
 
144
 
151
/*
145
/*
152
 * Experiment: Measuring vibration-induced sensor noise.
146
 * Experiment: Measuring vibration-induced sensor noise.
153
 */
147
 */
154
volatile uint16_t gyroNoisePeak[2];
148
volatile uint16_t gyroNoisePeak[2];
155
volatile uint16_t accNoisePeak[2];
149
volatile uint16_t accNoisePeak[2];
156
 
150
 
157
// ADC channels
151
// ADC channels
158
#define AD_GYRO_YAW       0
152
#define AD_GYRO_YAW       0
159
#define AD_GYRO_ROLL      1
153
#define AD_GYRO_ROLL      1
160
#define AD_GYRO_PITCH     2
154
#define AD_GYRO_PITCH     2
161
#define AD_AIRPRESSURE    3
155
#define AD_AIRPRESSURE    3
162
#define AD_UBAT           4
156
#define AD_UBAT           4
163
#define AD_ACC_Z          5
157
#define AD_ACC_Z          5
164
#define AD_ACC_ROLL       6
158
#define AD_ACC_ROLL       6
165
#define AD_ACC_PITCH      7
159
#define AD_ACC_PITCH      7
166
 
160
 
167
/*
161
/*
168
 * Table of AD converter inputs for each state.
162
 * Table of AD converter inputs for each state.
169
 * The number of samples summed for each channel is equal to
163
 * The number of samples summed for each channel is equal to
170
 * the number of times the channel appears in the array.
164
 * the number of times the channel appears in the array.
171
 * The max. number of samples that can be taken in 2 ms is:
165
 * The max. number of samples that can be taken in 2 ms is:
172
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
166
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
173
 * loop needs a little time between reading AD values and
167
 * loop needs a little time between reading AD values and
174
 * re-enabling ADC, the real limit is (how much?) lower.
168
 * re-enabling ADC, the real limit is (how much?) lower.
175
 * The acc. sensor is sampled even if not used - or installed
169
 * The acc. sensor is sampled even if not used - or installed
176
 * at all. The cost is not significant.
170
 * at all. The cost is not significant.
177
 */
171
 */
178
 
172
 
179
const uint8_t channelsForStates[] PROGMEM = {
-
 
180
  AD_GYRO_PITCH,
-
 
181
  AD_GYRO_ROLL,
173
const uint8_t channelsForStates[] PROGMEM = { AD_GYRO_PITCH, AD_GYRO_ROLL,
182
  AD_GYRO_YAW,
174
                AD_GYRO_YAW,
183
 
-
 
184
  AD_ACC_PITCH,
-
 
185
  AD_ACC_ROLL,
175
 
186
  AD_AIRPRESSURE,
176
                AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
187
 
-
 
188
  AD_GYRO_PITCH,
-
 
189
  AD_GYRO_ROLL,
177
 
190
  AD_ACC_Z,       // at 8, measure Z acc.
178
                AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
191
 
-
 
192
  AD_GYRO_PITCH,
-
 
193
  AD_GYRO_ROLL,
179
 
194
  AD_GYRO_YAW,    // at 11, finish yaw gyro
180
                AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
195
 
181
 
196
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
182
                AD_ACC_PITCH, // at 12, finish pitch axis acc.
197
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
183
                AD_ACC_ROLL, // at 13, finish roll axis acc.
198
  AD_AIRPRESSURE, // at 14, finish air pressure.
184
                AD_AIRPRESSURE, // at 14, finish air pressure.
199
 
185
 
200
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
186
                AD_GYRO_PITCH, // at 15, finish pitch gyro
201
  AD_GYRO_ROLL,   // at 16, finish roll gyro
187
                AD_GYRO_ROLL, // at 16, finish roll gyro
202
  AD_UBAT         // at 17, measure battery.
188
                AD_UBAT // at 17, measure battery.
203
};
189
                };
204
 
190
 
205
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
191
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
206
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
192
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
207
 
193
 
208
void analog_init(void) {
194
void analog_init(void) {
209
  uint8_t sreg = SREG;
195
        uint8_t sreg = SREG;
210
  // disable all interrupts before reconfiguration
196
        // disable all interrupts before reconfiguration
211
  cli();
197
        cli();
212
 
198
 
213
  //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
199
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
214
  DDRA = 0x00;
200
        DDRA = 0x00;
215
  PORTA = 0x00;
201
        PORTA = 0x00;
216
  // Digital Input Disable Register 0
202
        // Digital Input Disable Register 0
217
  // Disable digital input buffer for analog adc_channel pins
203
        // Disable digital input buffer for analog adc_channel pins
218
  DIDR0 = 0xFF;
204
        DIDR0 = 0xFF;
219
  // external reference, adjust data to the right
205
        // external reference, adjust data to the right
220
  ADMUX &= ~((1 << REFS1)|(1 << REFS0)|(1 << ADLAR));
206
        ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR));
221
  // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
207
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
222
  ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
208
        ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
223
  //Set ADC Control and Status Register A
209
        //Set ADC Control and Status Register A
224
  //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
210
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
225
  ADCSRA = (0<<ADEN)|(0<<ADSC)|(0<<ADATE)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0)|(0<<ADIE);
211
        ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1
-
 
212
                        << ADPS1) | (1 << ADPS0) | (0 << ADIE);
226
  //Set ADC Control and Status Register B
213
        //Set ADC Control and Status Register B
227
  //Trigger Source to Free Running Mode
214
        //Trigger Source to Free Running Mode
228
  ADCSRB &= ~((1 << ADTS2)|(1 << ADTS1)|(1 << ADTS0));
215
        ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));
229
  // Start AD conversion
216
        // Start AD conversion
230
  analog_start();
217
        analog_start();
231
  // restore global interrupt flags
218
        // restore global interrupt flags
232
  SREG = sreg;
219
        SREG = sreg;
233
}
220
}
-
 
221
 
234
 
222
void measureNoise(const int16_t sensor,
235
void measureNoise(const int16_t sensor, volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
223
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
236
  if (sensor > (int16_t)(*noiseMeasurement)) {
224
        if (sensor > (int16_t) (*noiseMeasurement)) {
237
    *noiseMeasurement = sensor;
225
                *noiseMeasurement = sensor;
238
  } else if (-sensor > (int16_t)(*noiseMeasurement)) {
226
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
239
    *noiseMeasurement = -sensor;
227
                *noiseMeasurement = -sensor;
240
  } else if (*noiseMeasurement > damping) {
228
        } else if (*noiseMeasurement > damping) {
241
    *noiseMeasurement -= damping;
229
                *noiseMeasurement -= damping;
242
  } else {
230
        } else {
243
    *noiseMeasurement = 0;
231
                *noiseMeasurement = 0;
244
  }
232
        }
245
}
233
}
246
 
234
 
247
/*
235
/*
248
 * Min.: 0
236
 * Min.: 0
249
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
237
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
250
 */
238
 */
251
uint16_t getSimplePressure(int advalue) {
239
uint16_t getSimplePressure(int advalue) {
252
  return (uint16_t)OCR0A * (uint16_t)rangewidth + advalue;
240
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
253
}
241
}
254
 
242
 
255
/*****************************************************
243
/*****************************************************
256
 * Interrupt Service Routine for ADC            
244
 * Interrupt Service Routine for ADC            
257
 * Runs at 312.5 kHz or 3.2 µs. When all states are
245
 * Runs at 312.5 kHz or 3.2 µs. When all states are
258
 * processed the interrupt is disabled and further
246
 * processed the interrupt is disabled and further
259
 * AD conversions are stopped.
247
 * AD conversions are stopped.
260
 *****************************************************/
248
 *****************************************************/
334
        }
453
        }
335
      }
-
 
336
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
-
 
337
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
-
 
338
      // If near the end, make a limited increase
-
 
339
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
-
 
340
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
-
 
341
      pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
-
 
342
      OCR0A = newrange;
-
 
343
      } else {
-
 
344
        if (OCR0A<254) {
-
 
345
          OCR0A++;
-
 
346
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
-
 
347
        }
-
 
348
      }
-
 
349
    }
-
 
350
 
-
 
351
    // Even if the sample is off-range, use it.
-
 
352
    simpleAirPressure = getSimplePressure(rawAirPressure);
-
 
353
    DebugOut.Analog[27] = (uint16_t)OCR0A;
-
 
354
    DebugOut.Analog[31] = simpleAirPressure;
-
 
355
 
-
 
356
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
-
 
357
      // Danger: pressure near lower end of range. If the measurement saturates, the 
-
 
358
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
-
 
359
      airPressureSum += (int16_t)MIN_RANGES_EXTRAPOLATION * rangewidth + (simpleAirPressure - (int16_t)MIN_RANGES_EXTRAPOLATION * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
360
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
-
 
361
      // Danger: pressure near upper end of range. If the measurement saturates, the 
-
 
362
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
-
 
363
      airPressureSum += (int16_t)MAX_RANGES_EXTRAPOLATION * rangewidth + (simpleAirPressure - (int16_t)MAX_RANGES_EXTRAPOLATION * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
-
 
364
    } else {
-
 
365
      // normal case.
-
 
366
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
-
 
367
      // The 2 cases above (end of range) are ignored for this.
-
 
368
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
-
 
369
        airPressureSum += simpleAirPressure / 2;
-
 
370
      else
-
 
371
        airPressureSum += simpleAirPressure;
-
 
372
    }
-
 
373
 
-
 
374
    // 2 samples were added.
-
 
375
    pressureMeasurementCount += 2;
-
 
376
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
-
 
377
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER-1) + airPressureSum + AIRPRESSURE_FILTER/2) / AIRPRESSURE_FILTER;
-
 
378
      pressureMeasurementCount = airPressureSum = 0;
-
 
379
    }
-
 
380
 
-
 
381
    break;
-
 
382
 
-
 
383
  case 15:
-
 
384
  case 16: // pitch or roll gyro.
-
 
385
    axis = state - 16;
-
 
386
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
-
 
387
        // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
-
 
388
    /*
-
 
389
     * Process the gyro data for the PID controller.
-
 
390
     */
-
 
391
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
-
 
392
    //    gyro with a wider range, and helps counter saturation at full control.
-
 
393
 
-
 
394
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
-
 
395
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
-
 
396
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
-
 
397
      }
-
 
398
      else if (tempGyro > SENSOR_MAX_PITCHROLL) {
-
 
399
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
-
 
400
      }
-
 
401
    }
-
 
402
 
-
 
403
    // 2) Apply sign and offset, scale before filtering.
-
 
404
    if (GYRO_REVERSED[axis]) {
-
 
405
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
-
 
406
    } else {
-
 
407
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
408
    }
-
 
409
 
-
 
410
    // 3) Scale and filter.
-
 
411
    tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER-1) + tempOffsetGyro) / GYROS_PID_FILTER;
-
 
412
 
-
 
413
    // 4) Measure noise.
-
 
414
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
-
 
415
 
-
 
416
    // 5) Differential measurement. 
-
 
417
    gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER-1) + (tempOffsetGyro - gyro_PID[axis])) / GYROS_D_FILTER;
-
 
418
 
-
 
419
    // 6) Done.
-
 
420
    gyro_PID[axis] = tempOffsetGyro;
-
 
421
 
-
 
422
    /*
-
 
423
     * Now process the data for attitude angles.
-
 
424
     */
-
 
425
    tempGyro = rawGyroSum[axis];
-
 
426
   
-
 
427
    // 1) Apply sign and offset, scale before filtering.
-
 
428
    if (GYRO_REVERSED[axis]) {
-
 
429
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
-
 
430
    } else {
-
 
431
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
-
 
432
    }
-
 
433
   
-
 
434
    // 2) Filter.
-
 
435
    gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER-1) + tempOffsetGyro) / GYROS_ATT_FILTER;
-
 
436
    break;
-
 
437
   
-
 
438
  case 17:
-
 
439
    // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
-
 
440
    // This is divided by 3 --> 10.34 counts per volt.
-
 
441
    UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
-
 
442
    DebugOut.Analog[11] = UBat;
-
 
443
    analogDataReady = 1; // mark
-
 
444
    ADCycleCount++;
-
 
445
    // Stop the sampling. Cycle is over.
-
 
446
    state = 0;
-
 
447
    for (i=0; i<8; i++) {
-
 
448
      sensorInputs[i] = 0;
-
 
449
    }
-
 
450
    break;
-
 
451
  default: {} // do nothing.
-
 
452
  }
-
 
453
 
454
 
454
  // set up for next state.
455
        // set up for next state.
455
  ad_channel = pgm_read_byte(&channelsForStates[state]);
456
        ad_channel = pgm_read_byte(&channelsForStates[state]);
456
  // ad_channel = channelsForStates[state];
457
        // ad_channel = channelsForStates[state];
457
     
458
 
458
  // set adc muxer to next ad_channel
459
        // set adc muxer to next ad_channel
459
  ADMUX = (ADMUX & 0xE0) | ad_channel;
460
        ADMUX = (ADMUX & 0xE0) | ad_channel;
-
 
461
        // after full cycle stop further interrupts
460
  // after full cycle stop further interrupts
462
        if (state)
461
  if(state) analog_start();
463
                analog_start();
462
}
464
}
463
 
465
 
464
void analog_calibrate(void) {
466
void analog_calibrate(void) {
465
#define GYRO_OFFSET_CYCLES 32
467
#define GYRO_OFFSET_CYCLES 32
466
  uint8_t i, axis;
468
        uint8_t i, axis;
467
  int32_t deltaOffsets[3] = {0,0,0};
469
        int32_t deltaOffsets[3] = { 0, 0, 0 };
468
 
470
 
469
  // Set the filters... to be removed again, once some good settings are found.
471
        // Set the filters... to be removed again, once some good settings are found.
470
  GYROS_PID_FILTER = (dynamicParams.UserParams[4]   & 0b00000011)       + 1;
472
        GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
471
  GYROS_ATT_FILTER = ((dynamicParams.UserParams[4]  & 0b00001100) >> 2) + 1;
473
        GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
472
  GYROS_D_FILTER = ((dynamicParams.UserParams[4]    & 0b00110000) >> 4) + 1;
474
        GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
473
  ACC_FILTER = ((dynamicParams.UserParams[4]        & 0b11000000) >> 6) + 1;
475
        ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
474
 
476
 
475
  gyro_calibrate();
477
        gyro_calibrate();
476
 
478
 
477
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
479
        // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
478
  for(i=0; i < GYRO_OFFSET_CYCLES; i++) {
480
        for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
479
    Delay_ms_Mess(20);
481
                Delay_ms_Mess(20);
480
    for (axis=PITCH; axis<=YAW; axis++) {
482
                for (axis = PITCH; axis <= YAW; axis++) {
481
      deltaOffsets[axis] += rawGyroSum[axis];
-
 
482
    }
483
                        deltaOffsets[axis] += rawGyroSum[axis];
483
  }
-
 
484
 
-
 
485
  for (axis=PITCH; axis<=YAW; axis++) {
-
 
486
    gyroOffset[axis] =  (deltaOffsets[axis] + GYRO_OFFSET_CYCLES/2) / GYRO_OFFSET_CYCLES;
-
 
487
    DebugOut.Analog[20+axis] = gyroOffset[axis];
484
                }
488
  }
-
 
489
 
-
 
490
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
-
 
491
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
-
 
492
 
-
 
493
  accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
-
 
494
  accOffset[ROLL]  = GetParamWord(PID_ACC_ROLL);
-
 
495
  accOffset[Z]     = GetParamWord(PID_ACC_Z);
-
 
496
 
-
 
497
  // Rough estimate. Hmm no nothing happens at calibration anyway.
-
 
498
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
-
 
-
 
485
        }
-
 
486
 
-
 
487
        for (axis = PITCH; axis <= YAW; axis++) {
-
 
488
                gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2)
-
 
489
                                / GYRO_OFFSET_CYCLES;
-
 
490
                DebugOut.Analog[20 + axis] = gyroOffset[axis];
-
 
491
        }
-
 
492
 
-
 
493
        // Noise is relative to offset. So, reset noise measurements when changing offsets.
-
 
494
        gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
-
 
495
 
-
 
496
        accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
-
 
497
        accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
-
 
498
        accOffset[Z] = GetParamWord(PID_ACC_Z);
-
 
499
 
-
 
500
        // Rough estimate. Hmm no nothing happens at calibration anyway.
-
 
501
        // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
499
  // pressureMeasurementCount = 0;
502
        // pressureMeasurementCount = 0;
500
 
503
 
501
  Delay_ms_Mess(100);
504
        Delay_ms_Mess(100);
502
}
505
}
503
 
506
 
504
/*
507
/*
505
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
508
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
506
 * Does not (!} update the local variables. This must be done with a
509
 * Does not (!} update the local variables. This must be done with a
507
 * call to analog_calibrate() - this always (?) is done by the caller
510
 * call to analog_calibrate() - this always (?) is done by the caller
508
 * anyway. There would be nothing wrong with updating the variables
511
 * anyway. There would be nothing wrong with updating the variables
509
 * directly from here, though.
512
 * directly from here, though.
510
 */
513
 */
511
void analog_calibrateAcc(void) {
514
void analog_calibrateAcc(void) {
512
#define ACC_OFFSET_CYCLES 10
515
#define ACC_OFFSET_CYCLES 10
513
  uint8_t i, axis;
516
        uint8_t i, axis;
514
  int32_t deltaOffset[3] = {0,0,0};
517
        int32_t deltaOffset[3] = { 0, 0, 0 };
515
  int16_t filteredDelta;
518
        int16_t filteredDelta;
516
  // int16_t pressureDiff, savedRawAirPressure;
519
        // int16_t pressureDiff, savedRawAirPressure;
517
 
520
 
518
  for(i=0; i < ACC_OFFSET_CYCLES; i++) {
521
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
519
    Delay_ms_Mess(10);
522
                Delay_ms_Mess(10);
520
    for (axis=PITCH; axis<=YAW; axis++) {
523
                for (axis = PITCH; axis <= YAW; axis++) {
521
      deltaOffset[axis] += acc[axis];
524
                        deltaOffset[axis] += acc[axis];
522
    }
525
                }
523
  }
526
        }
524
 
527
 
525
  for (axis=PITCH; axis<=YAW; axis++) {
528
        for (axis = PITCH; axis <= YAW; axis++) {
526
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
529
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
-
 
530
                                / ACC_OFFSET_CYCLES;
527
    accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
531
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
528
  }
532
        }
529
 
533
 
530
  // Save ACC neutral settings to eeprom
534
        // Save ACC neutral settings to eeprom
531
  SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
535
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
532
  SetParamWord(PID_ACC_ROLL,  accOffset[ROLL]);
536
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
533
  SetParamWord(PID_ACC_Z,     accOffset[Z]);
537
        SetParamWord(PID_ACC_Z, accOffset[Z]);
534
 
538
 
535
  // Noise is relative to offset. So, reset noise measurements when
539
        // Noise is relative to offset. So, reset noise measurements when
536
  // changing offsets.
540
        // changing offsets.
537
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
541
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
538
 
542
 
539
  // Setting offset values has an influence in the analog.c ISR
543
        // Setting offset values has an influence in the analog.c ISR
540
  // Therefore run measurement for 100ms to achive stable readings
544
        // Therefore run measurement for 100ms to achive stable readings
541
  Delay_ms_Mess(100);
545
        Delay_ms_Mess(100);
542
 
546
 
543
  // Set the feedback so that air pressure ends up in the middle of the range.
547
        // Set the feedback so that air pressure ends up in the middle of the range.
544
  // (raw pressure high --> OCR0A also high...)
548
        // (raw pressure high --> OCR0A also high...)
545
  /*
549
        /*
546
  OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
550
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
547
  Delay_ms_Mess(1000);
551
         Delay_ms_Mess(1000);
548
 
552
 
549
  pressureDiff = 0;
553
         pressureDiff = 0;
550
  // DebugOut.Analog[16] = rawAirPressure;
554
         // DebugOut.Analog[16] = rawAirPressure;
551
 
555
 
552
#define PRESSURE_CAL_CYCLE_COUNT 5
556
         #define PRESSURE_CAL_CYCLE_COUNT 5
553
  for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
557
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
554
    savedRawAirPressure = rawAirPressure;
558
         savedRawAirPressure = rawAirPressure;
555
    OCR0A+=2;
559
         OCR0A+=2;
556
    Delay_ms_Mess(500);
560
         Delay_ms_Mess(500);
557
    // raw pressure will decrease.
561
         // raw pressure will decrease.
558
    pressureDiff += (savedRawAirPressure - rawAirPressure);
562
         pressureDiff += (savedRawAirPressure - rawAirPressure);
559
    savedRawAirPressure = rawAirPressure;
563
         savedRawAirPressure = rawAirPressure;
560
    OCR0A-=2;
564
         OCR0A-=2;
561
    Delay_ms_Mess(500);
565
         Delay_ms_Mess(500);
562
    // raw pressure will increase.
566
         // raw pressure will increase.
563
    pressureDiff += (rawAirPressure - savedRawAirPressure);
567
         pressureDiff += (rawAirPressure - savedRawAirPressure);
564
  }
568
         }
565
 
569
 
566
  rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
570
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
567
  DebugOut.Analog[27] = rangewidth;
571
         DebugOut.Analog[27] = rangewidth;
568
  */
572
         */
569
}
573
}
570
 
574